1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
//! Defines the various compiler queries.
//!
//! For more information on the query system, see
//! ["Queries: demand-driven compilation"](https://rustc-dev-guide.rust-lang.org/query.html).
//! This chapter includes instructions for adding new queries.

// Each of these queries corresponds to a function pointer field in the
// `Providers` struct for requesting a value of that type, and a method
// on `tcx: TyCtxt` (and `tcx.at(span)`) for doing that request in a way
// which memoizes and does dep-graph tracking, wrapping around the actual
// `Providers` that the driver creates (using several `rustc_*` crates).
//
// The result type of each query must implement `Clone`, and additionally
// `ty::query::values::Value`, which produces an appropriate placeholder
// (error) value if the query resulted in a query cycle.
// Queries marked with `fatal_cycle` do not need the latter implementation,
// as they will raise an fatal error on query cycles instead.
rustc_queries! {
    query trigger_delay_span_bug(key: DefId) -> () {
        desc { "trigger a delay span bug" }
    }

    query resolutions(_: ()) -> &'tcx ty::ResolverOutputs {
        eval_always
        no_hash
        desc { "get the resolver outputs" }
    }

    query resolver_for_lowering(_: ()) -> &'tcx Steal<ty::ResolverAstLowering> {
        eval_always
        no_hash
        desc { "get the resolver for lowering" }
    }

    /// Return the span for a definition.
    /// Contrary to `def_span` below, this query returns the full absolute span of the definition.
    /// This span is meant for dep-tracking rather than diagnostics. It should not be used outside
    /// of rustc_middle::hir::source_map.
    query source_span(key: LocalDefId) -> Span {
        desc { "get the source span" }
    }

    /// Represents crate as a whole (as distinct from the top-level crate module).
    /// If you call `hir_crate` (e.g., indirectly by calling `tcx.hir().krate()`),
    /// we will have to assume that any change means that you need to be recompiled.
    /// This is because the `hir_crate` query gives you access to all other items.
    /// To avoid this fate, do not call `tcx.hir().krate()`; instead,
    /// prefer wrappers like `tcx.visit_all_items_in_krate()`.
    query hir_crate(key: ()) -> Crate<'tcx> {
        arena_cache
        eval_always
        desc { "get the crate HIR" }
    }

    /// All items in the crate.
    query hir_crate_items(_: ()) -> rustc_middle::hir::ModuleItems {
        arena_cache
        eval_always
        desc { "get HIR crate items" }
    }

    /// The items in a module.
    ///
    /// This can be conveniently accessed by `tcx.hir().visit_item_likes_in_module`.
    /// Avoid calling this query directly.
    query hir_module_items(key: LocalDefId) -> rustc_middle::hir::ModuleItems {
        arena_cache
        desc { |tcx| "HIR module items in `{}`", tcx.def_path_str(key.to_def_id()) }
        cache_on_disk_if { true }
    }

    /// Gives access to the HIR node for the HIR owner `key`.
    ///
    /// This can be conveniently accessed by methods on `tcx.hir()`.
    /// Avoid calling this query directly.
    query hir_owner(key: hir::OwnerId) -> Option<crate::hir::Owner<'tcx>> {
        desc { |tcx| "HIR owner of `{}`", tcx.def_path_str(key.to_def_id()) }
    }

    /// Gives access to the HIR ID for the given `LocalDefId` owner `key`.
    ///
    /// This can be conveniently accessed by methods on `tcx.hir()`.
    /// Avoid calling this query directly.
    query local_def_id_to_hir_id(key: LocalDefId) -> hir::HirId {
        desc { |tcx| "HIR ID of `{}`", tcx.def_path_str(key.to_def_id()) }
    }

    /// Gives access to the HIR node's parent for the HIR owner `key`.
    ///
    /// This can be conveniently accessed by methods on `tcx.hir()`.
    /// Avoid calling this query directly.
    query hir_owner_parent(key: hir::OwnerId) -> hir::HirId {
        desc { |tcx| "HIR parent of `{}`", tcx.def_path_str(key.to_def_id()) }
    }

    /// Gives access to the HIR nodes and bodies inside the HIR owner `key`.
    ///
    /// This can be conveniently accessed by methods on `tcx.hir()`.
    /// Avoid calling this query directly.
    query hir_owner_nodes(key: hir::OwnerId) -> hir::MaybeOwner<&'tcx hir::OwnerNodes<'tcx>> {
        desc { |tcx| "HIR owner items in `{}`", tcx.def_path_str(key.to_def_id()) }
    }

    /// Gives access to the HIR attributes inside the HIR owner `key`.
    ///
    /// This can be conveniently accessed by methods on `tcx.hir()`.
    /// Avoid calling this query directly.
    query hir_attrs(key: hir::OwnerId) -> &'tcx hir::AttributeMap<'tcx> {
        desc { |tcx| "HIR owner attributes in `{}`", tcx.def_path_str(key.to_def_id()) }
    }

    /// Computes the `DefId` of the corresponding const parameter in case the `key` is a
    /// const argument and returns `None` otherwise.
    ///
    /// ```ignore (incomplete)
    /// let a = foo::<7>();
    /// //            ^ Calling `opt_const_param_of` for this argument,
    ///
    /// fn foo<const N: usize>()
    /// //           ^ returns this `DefId`.
    ///
    /// fn bar() {
    /// // ^ While calling `opt_const_param_of` for other bodies returns `None`.
    /// }
    /// ```
    // It looks like caching this query on disk actually slightly
    // worsened performance in #74376.
    //
    // Once const generics are more prevalently used, we might want to
    // consider only caching calls returning `Some`.
    query opt_const_param_of(key: LocalDefId) -> Option<DefId> {
        desc { |tcx| "computing the optional const parameter of `{}`", tcx.def_path_str(key.to_def_id()) }
    }

    /// Given the def_id of a const-generic parameter, computes the associated default const
    /// parameter. e.g. `fn example<const N: usize=3>` called on `N` would return `3`.
    query const_param_default(param: DefId) -> ty::Const<'tcx> {
        desc { |tcx| "compute const default for a given parameter `{}`", tcx.def_path_str(param)  }
        cache_on_disk_if { param.is_local() }
        separate_provide_extern
    }

    /// Returns the [`Ty`][rustc_middle::ty::Ty] of the given [`DefId`]. If the [`DefId`] points
    /// to an alias, it will "skip" this alias to return the aliased type.
    ///
    /// [`DefId`]: rustc_hir::def_id::DefId
    query type_of(key: DefId) -> Ty<'tcx> {
        desc { |tcx|
            "{action} `{path}`",
            action = {
                use rustc_hir::def::DefKind;
                match tcx.def_kind(key) {
                    DefKind::TyAlias => "expanding type alias",
                    DefKind::TraitAlias => "expanding trait alias",
                    _ => "computing type of",
                }
            },
            path = tcx.def_path_str(key),
        }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    query collect_trait_impl_trait_tys(key: DefId)
        -> Result<&'tcx FxHashMap<DefId, Ty<'tcx>>, ErrorGuaranteed>
    {
        desc { "compare an impl and trait method signature, inferring any hidden `impl Trait` types in the process" }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    query analysis(key: ()) -> Result<(), ErrorGuaranteed> {
        eval_always
        desc { "running analysis passes on this crate" }
    }

    /// This query checks the fulfillment of collected lint expectations.
    /// All lint emitting queries have to be done before this is executed
    /// to ensure that all expectations can be fulfilled.
    ///
    /// This is an extra query to enable other drivers (like rustdoc) to
    /// only execute a small subset of the `analysis` query, while allowing
    /// lints to be expected. In rustc, this query will be executed as part of
    /// the `analysis` query and doesn't have to be called a second time.
    ///
    /// Tools can additionally pass in a tool filter. That will restrict the
    /// expectations to only trigger for lints starting with the listed tool
    /// name. This is useful for cases were not all linting code from rustc
    /// was called. With the default `None` all registered lints will also
    /// be checked for expectation fulfillment.
    query check_expectations(key: Option<Symbol>) -> () {
        eval_always
        desc { "checking lint expectations (RFC 2383)" }
    }

    /// Maps from the `DefId` of an item (trait/struct/enum/fn) to its
    /// associated generics.
    query generics_of(key: DefId) -> ty::Generics {
        desc { |tcx| "computing generics of `{}`", tcx.def_path_str(key) }
        arena_cache
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    /// Maps from the `DefId` of an item (trait/struct/enum/fn) to the
    /// predicates (where-clauses) that must be proven true in order
    /// to reference it. This is almost always the "predicates query"
    /// that you want.
    ///
    /// `predicates_of` builds on `predicates_defined_on` -- in fact,
    /// it is almost always the same as that query, except for the
    /// case of traits. For traits, `predicates_of` contains
    /// an additional `Self: Trait<...>` predicate that users don't
    /// actually write. This reflects the fact that to invoke the
    /// trait (e.g., via `Default::default`) you must supply types
    /// that actually implement the trait. (However, this extra
    /// predicate gets in the way of some checks, which are intended
    /// to operate over only the actual where-clauses written by the
    /// user.)
    query predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> {
        desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
    }

    /// Returns the list of bounds that can be used for
    /// `SelectionCandidate::ProjectionCandidate(_)` and
    /// `ProjectionTyCandidate::TraitDef`.
    /// Specifically this is the bounds written on the trait's type
    /// definition, or those after the `impl` keyword
    ///
    /// ```ignore (incomplete)
    /// type X: Bound + 'lt
    /// //      ^^^^^^^^^^^
    /// impl Debug + Display
    /// //   ^^^^^^^^^^^^^^^
    /// ```
    ///
    /// `key` is the `DefId` of the associated type or opaque type.
    ///
    /// Bounds from the parent (e.g. with nested impl trait) are not included.
    query explicit_item_bounds(key: DefId) -> &'tcx [(ty::Predicate<'tcx>, Span)] {
        desc { |tcx| "finding item bounds for `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    /// Elaborated version of the predicates from `explicit_item_bounds`.
    ///
    /// For example:
    ///
    /// ```
    /// trait MyTrait {
    ///     type MyAType: Eq + ?Sized;
    /// }
    /// ```
    ///
    /// `explicit_item_bounds` returns `[<Self as MyTrait>::MyAType: Eq]`,
    /// and `item_bounds` returns
    /// ```text
    /// [
    ///     <Self as Trait>::MyAType: Eq,
    ///     <Self as Trait>::MyAType: PartialEq<<Self as Trait>::MyAType>
    /// ]
    /// ```
    ///
    /// Bounds from the parent (e.g. with nested impl trait) are not included.
    query item_bounds(key: DefId) -> &'tcx ty::List<ty::Predicate<'tcx>> {
        desc { |tcx| "elaborating item bounds for `{}`", tcx.def_path_str(key) }
    }

    query native_libraries(_: CrateNum) -> Vec<NativeLib> {
        arena_cache
        desc { "looking up the native libraries of a linked crate" }
        separate_provide_extern
    }

    query lint_levels(_: ()) -> LintLevelMap {
        arena_cache
        eval_always
        desc { "computing the lint levels for items in this crate" }
    }

    query parent_module_from_def_id(key: LocalDefId) -> LocalDefId {
        eval_always
        desc { |tcx| "parent module of `{}`", tcx.def_path_str(key.to_def_id()) }
    }

    query expn_that_defined(key: DefId) -> rustc_span::ExpnId {
        desc { |tcx| "expansion that defined `{}`", tcx.def_path_str(key) }
        separate_provide_extern
    }

    query is_panic_runtime(_: CrateNum) -> bool {
        fatal_cycle
        desc { "checking if the crate is_panic_runtime" }
        separate_provide_extern
    }

    /// Fetch the THIR for a given body. If typeck for that body failed, returns an empty `Thir`.
    query thir_body(key: ty::WithOptConstParam<LocalDefId>)
        -> Result<(&'tcx Steal<thir::Thir<'tcx>>, thir::ExprId), ErrorGuaranteed>
    {
        // Perf tests revealed that hashing THIR is inefficient (see #85729).
        no_hash
        desc { |tcx| "building THIR for `{}`", tcx.def_path_str(key.did.to_def_id()) }
    }

    /// Create a THIR tree for debugging.
    query thir_tree(key: ty::WithOptConstParam<LocalDefId>) -> String {
        no_hash
        arena_cache
        desc { |tcx| "constructing THIR tree for `{}`", tcx.def_path_str(key.did.to_def_id()) }
    }

    /// Set of all the `DefId`s in this crate that have MIR associated with
    /// them. This includes all the body owners, but also things like struct
    /// constructors.
    query mir_keys(_: ()) -> rustc_data_structures::fx::FxIndexSet<LocalDefId> {
        arena_cache
        desc { "getting a list of all mir_keys" }
    }

    /// Maps DefId's that have an associated `mir::Body` to the result
    /// of the MIR const-checking pass. This is the set of qualifs in
    /// the final value of a `const`.
    query mir_const_qualif(key: DefId) -> mir::ConstQualifs {
        desc { |tcx| "const checking `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }
    query mir_const_qualif_const_arg(
        key: (LocalDefId, DefId)
    ) -> mir::ConstQualifs {
        desc {
            |tcx| "const checking the const argument `{}`",
            tcx.def_path_str(key.0.to_def_id())
        }
    }

    /// Fetch the MIR for a given `DefId` right after it's built - this includes
    /// unreachable code.
    query mir_built(key: ty::WithOptConstParam<LocalDefId>) -> &'tcx Steal<mir::Body<'tcx>> {
        desc { |tcx| "building MIR for `{}`", tcx.def_path_str(key.did.to_def_id()) }
    }

    /// Fetch the MIR for a given `DefId` up till the point where it is
    /// ready for const qualification.
    ///
    /// See the README for the `mir` module for details.
    query mir_const(key: ty::WithOptConstParam<LocalDefId>) -> &'tcx Steal<mir::Body<'tcx>> {
        desc {
            |tcx| "processing MIR for {}`{}`",
            if key.const_param_did.is_some() { "the const argument " } else { "" },
            tcx.def_path_str(key.did.to_def_id()),
        }
        no_hash
    }

    /// Try to build an abstract representation of the given constant.
    query thir_abstract_const(
        key: DefId
    ) -> Result<Option<&'tcx [ty::abstract_const::Node<'tcx>]>, ErrorGuaranteed> {
        desc {
            |tcx| "building an abstract representation for {}", tcx.def_path_str(key),
        }
        separate_provide_extern
    }
    /// Try to build an abstract representation of the given constant.
    query thir_abstract_const_of_const_arg(
        key: (LocalDefId, DefId)
    ) -> Result<Option<&'tcx [ty::abstract_const::Node<'tcx>]>, ErrorGuaranteed> {
        desc {
            |tcx|
            "building an abstract representation for the const argument {}",
            tcx.def_path_str(key.0.to_def_id()),
        }
    }

    query try_unify_abstract_consts(key:
        ty::ParamEnvAnd<'tcx, (ty::UnevaluatedConst<'tcx>, ty::UnevaluatedConst<'tcx>
    )>) -> bool {
        desc {
            |tcx| "trying to unify the generic constants {} and {}",
            tcx.def_path_str(key.value.0.def.did), tcx.def_path_str(key.value.1.def.did)
        }
    }

    query mir_drops_elaborated_and_const_checked(
        key: ty::WithOptConstParam<LocalDefId>
    ) -> &'tcx Steal<mir::Body<'tcx>> {
        no_hash
        desc { |tcx| "elaborating drops for `{}`", tcx.def_path_str(key.did.to_def_id()) }
    }

    query mir_for_ctfe(
        key: DefId
    ) -> &'tcx mir::Body<'tcx> {
        desc { |tcx| "caching mir of `{}` for CTFE", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    query mir_for_ctfe_of_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::Body<'tcx> {
        desc {
            |tcx| "MIR for CTFE of the const argument `{}`",
            tcx.def_path_str(key.0.to_def_id())
        }
    }

    query mir_promoted(key: ty::WithOptConstParam<LocalDefId>) ->
        (
            &'tcx Steal<mir::Body<'tcx>>,
            &'tcx Steal<IndexVec<mir::Promoted, mir::Body<'tcx>>>
        ) {
        no_hash
        desc {
            |tcx| "processing {}`{}`",
            if key.const_param_did.is_some() { "the const argument " } else { "" },
            tcx.def_path_str(key.did.to_def_id()),
        }
    }

    query symbols_for_closure_captures(
        key: (LocalDefId, LocalDefId)
    ) -> Vec<rustc_span::Symbol> {
        arena_cache
        desc {
            |tcx| "symbols for captures of closure `{}` in `{}`",
            tcx.def_path_str(key.1.to_def_id()),
            tcx.def_path_str(key.0.to_def_id())
        }
    }

    /// MIR after our optimization passes have run. This is MIR that is ready
    /// for codegen. This is also the only query that can fetch non-local MIR, at present.
    query optimized_mir(key: DefId) -> &'tcx mir::Body<'tcx> {
        desc { |tcx| "optimizing MIR for `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    /// Returns coverage summary info for a function, after executing the `InstrumentCoverage`
    /// MIR pass (assuming the -Cinstrument-coverage option is enabled).
    query coverageinfo(key: ty::InstanceDef<'tcx>) -> mir::CoverageInfo {
        desc { |tcx| "retrieving coverage info from MIR for `{}`", tcx.def_path_str(key.def_id()) }
        arena_cache
    }

    /// Returns the `CodeRegions` for a function that has instrumented coverage, in case the
    /// function was optimized out before codegen, and before being added to the Coverage Map.
    query covered_code_regions(key: DefId) -> Vec<&'tcx mir::coverage::CodeRegion> {
        desc {
            |tcx| "retrieving the covered `CodeRegion`s, if instrumented, for `{}`",
            tcx.def_path_str(key)
        }
        arena_cache
        cache_on_disk_if { key.is_local() }
    }

    /// The `DefId` is the `DefId` of the containing MIR body. Promoteds do not have their own
    /// `DefId`. This function returns all promoteds in the specified body. The body references
    /// promoteds by the `DefId` and the `mir::Promoted` index. This is necessary, because
    /// after inlining a body may refer to promoteds from other bodies. In that case you still
    /// need to use the `DefId` of the original body.
    query promoted_mir(key: DefId) -> &'tcx IndexVec<mir::Promoted, mir::Body<'tcx>> {
        desc { |tcx| "optimizing promoted MIR for `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }
    query promoted_mir_of_const_arg(
        key: (LocalDefId, DefId)
    ) -> &'tcx IndexVec<mir::Promoted, mir::Body<'tcx>> {
        desc {
            |tcx| "optimizing promoted MIR for the const argument `{}`",
            tcx.def_path_str(key.0.to_def_id()),
        }
    }

    /// Erases regions from `ty` to yield a new type.
    /// Normally you would just use `tcx.erase_regions(value)`,
    /// however, which uses this query as a kind of cache.
    query erase_regions_ty(ty: Ty<'tcx>) -> Ty<'tcx> {
        // This query is not expected to have input -- as a result, it
        // is not a good candidates for "replay" because it is essentially a
        // pure function of its input (and hence the expectation is that
        // no caller would be green **apart** from just these
        // queries). Making it anonymous avoids hashing the result, which
        // may save a bit of time.
        anon
        desc { "erasing regions from `{:?}`", ty }
    }

    query wasm_import_module_map(_: CrateNum) -> FxHashMap<DefId, String> {
        arena_cache
        desc { "wasm import module map" }
    }

    /// Maps from the `DefId` of an item (trait/struct/enum/fn) to the
    /// predicates (where-clauses) directly defined on it. This is
    /// equal to the `explicit_predicates_of` predicates plus the
    /// `inferred_outlives_of` predicates.
    query predicates_defined_on(key: DefId) -> ty::GenericPredicates<'tcx> {
        desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) }
    }

    /// Returns everything that looks like a predicate written explicitly
    /// by the user on a trait item.
    ///
    /// Traits are unusual, because predicates on associated types are
    /// converted into bounds on that type for backwards compatibility:
    ///
    /// trait X where Self::U: Copy { type U; }
    ///
    /// becomes
    ///
    /// trait X { type U: Copy; }
    ///
    /// `explicit_predicates_of` and `explicit_item_bounds` will then take
    /// the appropriate subsets of the predicates here.
    query trait_explicit_predicates_and_bounds(key: LocalDefId) -> ty::GenericPredicates<'tcx> {
        desc { |tcx| "computing explicit predicates of trait `{}`", tcx.def_path_str(key.to_def_id()) }
    }

    /// Returns the predicates written explicitly by the user.
    query explicit_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> {
        desc { |tcx| "computing explicit predicates of `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    /// Returns the inferred outlives predicates (e.g., for `struct
    /// Foo<'a, T> { x: &'a T }`, this would return `T: 'a`).
    query inferred_outlives_of(key: DefId) -> &'tcx [(ty::Predicate<'tcx>, Span)] {
        desc { |tcx| "computing inferred outlives predicates of `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    /// Maps from the `DefId` of a trait to the list of
    /// super-predicates. This is a subset of the full list of
    /// predicates. We store these in a separate map because we must
    /// evaluate them even during type conversion, often before the
    /// full predicates are available (note that supertraits have
    /// additional acyclicity requirements).
    query super_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> {
        desc { |tcx| "computing the super predicates of `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    /// The `Option<Ident>` is the name of an associated type. If it is `None`, then this query
    /// returns the full set of predicates. If `Some<Ident>`, then the query returns only the
    /// subset of super-predicates that reference traits that define the given associated type.
    /// This is used to avoid cycles in resolving types like `T::Item`.
    query super_predicates_that_define_assoc_type(key: (DefId, Option<rustc_span::symbol::Ident>)) -> ty::GenericPredicates<'tcx> {
        desc { |tcx| "computing the super traits of `{}`{}",
            tcx.def_path_str(key.0),
            if let Some(assoc_name) = key.1 { format!(" with associated type name `{}`", assoc_name) } else { "".to_string() },
        }
    }

    /// To avoid cycles within the predicates of a single item we compute
    /// per-type-parameter predicates for resolving `T::AssocTy`.
    query type_param_predicates(key: (DefId, LocalDefId, rustc_span::symbol::Ident)) -> ty::GenericPredicates<'tcx> {
        desc { |tcx| "computing the bounds for type parameter `{}`", tcx.hir().ty_param_name(key.1) }
    }

    query trait_def(key: DefId) -> ty::TraitDef {
        desc { |tcx| "computing trait definition for `{}`", tcx.def_path_str(key) }
        arena_cache
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }
    query adt_def(key: DefId) -> ty::AdtDef<'tcx> {
        desc { |tcx| "computing ADT definition for `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }
    query adt_destructor(key: DefId) -> Option<ty::Destructor> {
        desc { |tcx| "computing `Drop` impl for `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    // The cycle error here should be reported as an error by `check_representable`.
    // We consider the type as Sized in the meanwhile to avoid
    // further errors (done in impl Value for AdtSizedConstraint).
    // Use `cycle_delay_bug` to delay the cycle error here to be emitted later
    // in case we accidentally otherwise don't emit an error.
    query adt_sized_constraint(
        key: DefId
    ) -> AdtSizedConstraint<'tcx> {
        desc { |tcx| "computing `Sized` constraints for `{}`", tcx.def_path_str(key) }
        cycle_delay_bug
    }

    query adt_dtorck_constraint(
        key: DefId
    ) -> Result<&'tcx DropckConstraint<'tcx>, NoSolution> {
        desc { |tcx| "computing drop-check constraints for `{}`", tcx.def_path_str(key) }
    }

    /// Returns `true` if this is a const fn, use the `is_const_fn` to know whether your crate
    /// actually sees it as const fn (e.g., the const-fn-ness might be unstable and you might
    /// not have the feature gate active).
    ///
    /// **Do not call this function manually.** It is only meant to cache the base data for the
    /// `is_const_fn` function. Consider using `is_const_fn` or `is_const_fn_raw` instead.
    query constness(key: DefId) -> hir::Constness {
        desc { |tcx| "checking if item is const: `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    query asyncness(key: DefId) -> hir::IsAsync {
        desc { |tcx| "checking if the function is async: `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    /// Returns `true` if calls to the function may be promoted.
    ///
    /// This is either because the function is e.g., a tuple-struct or tuple-variant
    /// constructor, or because it has the `#[rustc_promotable]` attribute. The attribute should
    /// be removed in the future in favour of some form of check which figures out whether the
    /// function does not inspect the bits of any of its arguments (so is essentially just a
    /// constructor function).
    query is_promotable_const_fn(key: DefId) -> bool {
        desc { |tcx| "checking if item is promotable: `{}`", tcx.def_path_str(key) }
    }

    /// Returns `true` if this is a foreign item (i.e., linked via `extern { ... }`).
    query is_foreign_item(key: DefId) -> bool {
        desc { |tcx| "checking if `{}` is a foreign item", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    /// Returns `Some(generator_kind)` if the node pointed to by `def_id` is a generator.
    query generator_kind(def_id: DefId) -> Option<hir::GeneratorKind> {
        desc { |tcx| "looking up generator kind of `{}`", tcx.def_path_str(def_id) }
        cache_on_disk_if { def_id.is_local() }
        separate_provide_extern
    }

    /// Gets a map with the variance of every item; use `item_variance` instead.
    query crate_variances(_: ()) -> ty::CrateVariancesMap<'tcx> {
        arena_cache
        desc { "computing the variances for items in this crate" }
    }

    /// Maps from the `DefId` of a type or region parameter to its (inferred) variance.
    query variances_of(def_id: DefId) -> &'tcx [ty::Variance] {
        desc { |tcx| "computing the variances of `{}`", tcx.def_path_str(def_id) }
        cache_on_disk_if { def_id.is_local() }
        separate_provide_extern
    }

    /// Maps from thee `DefId` of a type to its (inferred) outlives.
    query inferred_outlives_crate(_: ()) -> ty::CratePredicatesMap<'tcx> {
        arena_cache
        desc { "computing the inferred outlives predicates for items in this crate" }
    }

    /// Maps from an impl/trait `DefId` to a list of the `DefId`s of its items.
    query associated_item_def_ids(key: DefId) -> &'tcx [DefId] {
        desc { |tcx| "collecting associated items of `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    /// Maps from a trait item to the trait item "descriptor".
    query associated_item(key: DefId) -> ty::AssocItem {
        desc { |tcx| "computing associated item data for `{}`", tcx.def_path_str(key) }
        arena_cache
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    /// Collects the associated items defined on a trait or impl.
    query associated_items(key: DefId) -> ty::AssocItems<'tcx> {
        arena_cache
        desc { |tcx| "collecting associated items of {}", tcx.def_path_str(key) }
    }

    /// Maps from associated items on a trait to the corresponding associated
    /// item on the impl specified by `impl_id`.
    ///
    /// For example, with the following code
    ///
    /// ```
    /// struct Type {}
    ///                         // DefId
    /// trait Trait {           // trait_id
    ///     fn f();             // trait_f
    ///     fn g() {}           // trait_g
    /// }
    ///
    /// impl Trait for Type {   // impl_id
    ///     fn f() {}           // impl_f
    ///     fn g() {}           // impl_g
    /// }
    /// ```
    ///
    /// The map returned for `tcx.impl_item_implementor_ids(impl_id)` would be
    ///`{ trait_f: impl_f, trait_g: impl_g }`
    query impl_item_implementor_ids(impl_id: DefId) -> FxHashMap<DefId, DefId> {
        arena_cache
        desc { |tcx| "comparing impl items against trait for {}", tcx.def_path_str(impl_id) }
    }

    /// Given an `impl_id`, return the trait it implements.
    /// Return `None` if this is an inherent impl.
    query impl_trait_ref(impl_id: DefId) -> Option<ty::TraitRef<'tcx>> {
        desc { |tcx| "computing trait implemented by `{}`", tcx.def_path_str(impl_id) }
        cache_on_disk_if { impl_id.is_local() }
        separate_provide_extern
    }
    query impl_polarity(impl_id: DefId) -> ty::ImplPolarity {
        desc { |tcx| "computing implementation polarity of `{}`", tcx.def_path_str(impl_id) }
        cache_on_disk_if { impl_id.is_local() }
        separate_provide_extern
    }

    query issue33140_self_ty(key: DefId) -> Option<ty::Ty<'tcx>> {
        desc { |tcx| "computing Self type wrt issue #33140 `{}`", tcx.def_path_str(key) }
    }

    /// Maps a `DefId` of a type to a list of its inherent impls.
    /// Contains implementations of methods that are inherent to a type.
    /// Methods in these implementations don't need to be exported.
    query inherent_impls(key: DefId) -> &'tcx [DefId] {
        desc { |tcx| "collecting inherent impls for `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    query incoherent_impls(key: SimplifiedType) -> &'tcx [DefId] {
        desc { |tcx| "collecting all inherent impls for `{:?}`", key }
    }

    /// The result of unsafety-checking this `LocalDefId`.
    query unsafety_check_result(key: LocalDefId) -> &'tcx mir::UnsafetyCheckResult {
        desc { |tcx| "unsafety-checking `{}`", tcx.def_path_str(key.to_def_id()) }
        cache_on_disk_if { true }
    }
    query unsafety_check_result_for_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::UnsafetyCheckResult {
        desc {
            |tcx| "unsafety-checking the const argument `{}`",
            tcx.def_path_str(key.0.to_def_id())
        }
    }

    /// Unsafety-check this `LocalDefId` with THIR unsafeck. This should be
    /// used with `-Zthir-unsafeck`.
    query thir_check_unsafety(key: LocalDefId) {
        desc { |tcx| "unsafety-checking `{}`", tcx.def_path_str(key.to_def_id()) }
        cache_on_disk_if { true }
    }
    query thir_check_unsafety_for_const_arg(key: (LocalDefId, DefId)) {
        desc {
            |tcx| "unsafety-checking the const argument `{}`",
            tcx.def_path_str(key.0.to_def_id())
        }
    }

    /// HACK: when evaluated, this reports an "unsafe derive on repr(packed)" error.
    ///
    /// Unsafety checking is executed for each method separately, but we only want
    /// to emit this error once per derive. As there are some impls with multiple
    /// methods, we use a query for deduplication.
    query unsafe_derive_on_repr_packed(key: LocalDefId) -> () {
        desc { |tcx| "processing `{}`", tcx.def_path_str(key.to_def_id()) }
    }

    /// Returns the types assumed to be well formed while "inside" of the given item.
    ///
    /// Note that we've liberated the late bound regions of function signatures, so
    /// this can not be used to check whether these types are well formed.
    query assumed_wf_types(key: DefId) -> &'tcx ty::List<Ty<'tcx>> {
        desc { |tcx| "computing the implied bounds of {}", tcx.def_path_str(key) }
    }

    /// Computes the signature of the function.
    query fn_sig(key: DefId) -> ty::PolyFnSig<'tcx> {
        desc { |tcx| "computing function signature of `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
        cycle_delay_bug
    }

    /// Performs lint checking for the module.
    query lint_mod(key: LocalDefId) -> () {
        desc { |tcx| "linting {}", describe_as_module(key, tcx) }
    }

    /// Checks the attributes in the module.
    query check_mod_attrs(key: LocalDefId) -> () {
        desc { |tcx| "checking attributes in {}", describe_as_module(key, tcx) }
    }

    /// Checks for uses of unstable APIs in the module.
    query check_mod_unstable_api_usage(key: LocalDefId) -> () {
        desc { |tcx| "checking for unstable API usage in {}", describe_as_module(key, tcx) }
    }

    /// Checks the const bodies in the module for illegal operations (e.g. `if` or `loop`).
    query check_mod_const_bodies(key: LocalDefId) -> () {
        desc { |tcx| "checking consts in {}", describe_as_module(key, tcx) }
    }

    /// Checks the loops in the module.
    query check_mod_loops(key: LocalDefId) -> () {
        desc { |tcx| "checking loops in {}", describe_as_module(key, tcx) }
    }

    query check_mod_naked_functions(key: LocalDefId) -> () {
        desc { |tcx| "checking naked functions in {}", describe_as_module(key, tcx) }
    }

    query check_mod_item_types(key: LocalDefId) -> () {
        desc { |tcx| "checking item types in {}", describe_as_module(key, tcx) }
    }

    query check_mod_privacy(key: LocalDefId) -> () {
        desc { |tcx| "checking privacy in {}", describe_as_module(key, tcx) }
    }

    query check_liveness(key: DefId) {
        desc { |tcx| "checking liveness of variables in {}", tcx.def_path_str(key) }
    }

    /// Return the live symbols in the crate for dead code check.
    ///
    /// The second return value maps from ADTs to ignored derived traits (e.g. Debug and Clone) and
    /// their respective impl (i.e., part of the derive macro)
    query live_symbols_and_ignored_derived_traits(_: ()) -> (
        FxHashSet<LocalDefId>,
        FxHashMap<LocalDefId, Vec<(DefId, DefId)>>
    ) {
        arena_cache
        desc { "find live symbols in crate" }
    }

    query check_mod_deathness(key: LocalDefId) -> () {
        desc { |tcx| "checking deathness of variables in {}", describe_as_module(key, tcx) }
    }

    query check_mod_impl_wf(key: LocalDefId) -> () {
        desc { |tcx| "checking that impls are well-formed in {}", describe_as_module(key, tcx) }
    }

    query check_mod_type_wf(key: LocalDefId) -> () {
        desc { |tcx| "checking that types are well-formed in {}", describe_as_module(key, tcx) }
    }

    query collect_mod_item_types(key: LocalDefId) -> () {
        desc { |tcx| "collecting item types in {}", describe_as_module(key, tcx) }
    }

    /// Caches `CoerceUnsized` kinds for impls on custom types.
    query coerce_unsized_info(key: DefId) -> ty::adjustment::CoerceUnsizedInfo {
        desc { |tcx| "computing CoerceUnsized info for `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    query typeck_item_bodies(_: ()) -> () {
        desc { "type-checking all item bodies" }
    }

    query typeck(key: LocalDefId) -> &'tcx ty::TypeckResults<'tcx> {
        desc { |tcx| "type-checking `{}`", tcx.def_path_str(key.to_def_id()) }
        cache_on_disk_if { true }
    }
    query typeck_const_arg(
        key: (LocalDefId, DefId)
    ) -> &'tcx ty::TypeckResults<'tcx> {
        desc {
            |tcx| "type-checking the const argument `{}`",
            tcx.def_path_str(key.0.to_def_id()),
        }
    }
    query diagnostic_only_typeck(key: LocalDefId) -> &'tcx ty::TypeckResults<'tcx> {
        desc { |tcx| "type-checking `{}`", tcx.def_path_str(key.to_def_id()) }
        cache_on_disk_if { true }
    }

    query used_trait_imports(key: LocalDefId) -> &'tcx FxHashSet<LocalDefId> {
        desc { |tcx| "used_trait_imports `{}`", tcx.def_path_str(key.to_def_id()) }
        cache_on_disk_if { true }
    }

    query has_typeck_results(def_id: DefId) -> bool {
        desc { |tcx| "checking whether `{}` has a body", tcx.def_path_str(def_id) }
    }

    query coherent_trait(def_id: DefId) -> () {
        desc { |tcx| "coherence checking all impls of trait `{}`", tcx.def_path_str(def_id) }
    }

    /// Borrow-checks the function body. If this is a closure, returns
    /// additional requirements that the closure's creator must verify.
    query mir_borrowck(key: LocalDefId) -> &'tcx mir::BorrowCheckResult<'tcx> {
        desc { |tcx| "borrow-checking `{}`", tcx.def_path_str(key.to_def_id()) }
        cache_on_disk_if(tcx) { tcx.is_typeck_child(key.to_def_id()) }
    }
    query mir_borrowck_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::BorrowCheckResult<'tcx> {
        desc {
            |tcx| "borrow-checking the const argument`{}`",
            tcx.def_path_str(key.0.to_def_id())
        }
    }

    /// Gets a complete map from all types to their inherent impls.
    /// Not meant to be used directly outside of coherence.
    query crate_inherent_impls(k: ()) -> CrateInherentImpls {
        arena_cache
        desc { "all inherent impls defined in crate" }
    }

    /// Checks all types in the crate for overlap in their inherent impls. Reports errors.
    /// Not meant to be used directly outside of coherence.
    query crate_inherent_impls_overlap_check(_: ()) -> () {
        desc { "check for overlap between inherent impls defined in this crate" }
    }

    /// Checks whether all impls in the crate pass the overlap check, returning
    /// which impls fail it. If all impls are correct, the returned slice is empty.
    query orphan_check_impl(key: LocalDefId) -> Result<(), ErrorGuaranteed> {
        desc { |tcx|
            "checking whether impl `{}` follows the orphan rules",
            tcx.def_path_str(key.to_def_id()),
        }
    }

    /// Check whether the function has any recursion that could cause the inliner to trigger
    /// a cycle. Returns the call stack causing the cycle. The call stack does not contain the
    /// current function, just all intermediate functions.
    query mir_callgraph_reachable(key: (ty::Instance<'tcx>, LocalDefId)) -> bool {
        fatal_cycle
        desc { |tcx|
            "computing if `{}` (transitively) calls `{}`",
            key.0,
            tcx.def_path_str(key.1.to_def_id()),
        }
    }

    /// Obtain all the calls into other local functions
    query mir_inliner_callees(key: ty::InstanceDef<'tcx>) -> &'tcx [(DefId, SubstsRef<'tcx>)] {
        fatal_cycle
        desc { |tcx|
            "computing all local function calls in `{}`",
            tcx.def_path_str(key.def_id()),
        }
    }

    /// Evaluates a constant and returns the computed allocation.
    ///
    /// **Do not use this** directly, use the `tcx.eval_static_initializer` wrapper.
    query eval_to_allocation_raw(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>)
        -> EvalToAllocationRawResult<'tcx> {
        desc { |tcx|
            "const-evaluating + checking `{}`",
            key.value.display(tcx)
        }
        cache_on_disk_if { true }
    }

    /// Evaluates const items or anonymous constants
    /// (such as enum variant explicit discriminants or array lengths)
    /// into a representation suitable for the type system and const generics.
    ///
    /// **Do not use this** directly, use one of the following wrappers: `tcx.const_eval_poly`,
    /// `tcx.const_eval_resolve`, `tcx.const_eval_instance`, or `tcx.const_eval_global_id`.
    query eval_to_const_value_raw(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>)
        -> EvalToConstValueResult<'tcx> {
        desc { |tcx|
            "simplifying constant for the type system `{}`",
            key.value.display(tcx)
        }
        cache_on_disk_if { true }
    }

    /// Evaluate a constant and convert it to a type level constant or
    /// return `None` if that is not possible.
    query eval_to_valtree(
        key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>
    ) -> EvalToValTreeResult<'tcx> {
        desc { "evaluating type-level constant" }
    }

    /// Converts a type level constant value into `ConstValue`
    query valtree_to_const_val(key: (Ty<'tcx>, ty::ValTree<'tcx>)) -> ConstValue<'tcx> {
        desc { "converting type-level constant value to mir constant value"}
    }

    /// Destructures array, ADT or tuple constants into the constants
    /// of their fields.
    query destructure_const(key: ty::Const<'tcx>) -> ty::DestructuredConst<'tcx> {
        desc { "destructuring type level constant"}
    }

    /// Tries to destructure an `mir::ConstantKind` ADT or array into its variant index
    /// and its field values.
    query try_destructure_mir_constant(
        key: ty::ParamEnvAnd<'tcx, mir::ConstantKind<'tcx>>
    ) -> Option<mir::DestructuredConstant<'tcx>> {
        desc { "destructuring mir constant"}
        remap_env_constness
    }

    /// Dereference a constant reference or raw pointer and turn the result into a constant
    /// again.
    query deref_mir_constant(
        key: ty::ParamEnvAnd<'tcx, mir::ConstantKind<'tcx>>
    ) -> mir::ConstantKind<'tcx> {
        desc { "dereferencing mir constant" }
        remap_env_constness
    }

    query const_caller_location(key: (rustc_span::Symbol, u32, u32)) -> ConstValue<'tcx> {
        desc { "get a &core::panic::Location referring to a span" }
    }

    // FIXME get rid of this with valtrees
    query lit_to_const(
        key: LitToConstInput<'tcx>
    ) -> Result<ty::Const<'tcx>, LitToConstError> {
        desc { "converting literal to const" }
    }

    query lit_to_mir_constant(key: LitToConstInput<'tcx>) -> Result<mir::ConstantKind<'tcx>, LitToConstError> {
        desc { "converting literal to mir constant" }
    }

    query check_match(key: DefId) {
        desc { |tcx| "match-checking `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
    }

    /// Performs part of the privacy check and computes "access levels".
    query privacy_access_levels(_: ()) -> &'tcx AccessLevels {
        eval_always
        desc { "privacy access levels" }
    }
    query check_private_in_public(_: ()) -> () {
        eval_always
        desc { "checking for private elements in public interfaces" }
    }

    query reachable_set(_: ()) -> FxHashSet<LocalDefId> {
        arena_cache
        desc { "reachability" }
    }

    /// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body;
    /// in the case of closures, this will be redirected to the enclosing function.
    query region_scope_tree(def_id: DefId) -> &'tcx crate::middle::region::ScopeTree {
        desc { |tcx| "computing drop scopes for `{}`", tcx.def_path_str(def_id) }
    }

    /// Generates a MIR body for the shim.
    query mir_shims(key: ty::InstanceDef<'tcx>) -> mir::Body<'tcx> {
        arena_cache
        desc { |tcx| "generating MIR shim for `{}`", tcx.def_path_str(key.def_id()) }
    }

    /// The `symbol_name` query provides the symbol name for calling a
    /// given instance from the local crate. In particular, it will also
    /// look up the correct symbol name of instances from upstream crates.
    query symbol_name(key: ty::Instance<'tcx>) -> ty::SymbolName<'tcx> {
        desc { "computing the symbol for `{}`", key }
        cache_on_disk_if { true }
    }

    query opt_def_kind(def_id: DefId) -> Option<DefKind> {
        desc { |tcx| "looking up definition kind of `{}`", tcx.def_path_str(def_id) }
        cache_on_disk_if { def_id.is_local() }
        separate_provide_extern
    }

    /// Gets the span for the definition.
    query def_span(def_id: DefId) -> Span {
        desc { |tcx| "looking up span for `{}`", tcx.def_path_str(def_id) }
        cache_on_disk_if { def_id.is_local() }
        separate_provide_extern
    }

    /// Gets the span for the identifier of the definition.
    query def_ident_span(def_id: DefId) -> Option<Span> {
        desc { |tcx| "looking up span for `{}`'s identifier", tcx.def_path_str(def_id) }
        cache_on_disk_if { def_id.is_local() }
        separate_provide_extern
    }

    query lookup_stability(def_id: DefId) -> Option<attr::Stability> {
        desc { |tcx| "looking up stability of `{}`", tcx.def_path_str(def_id) }
        cache_on_disk_if { def_id.is_local() }
        separate_provide_extern
    }

    query lookup_const_stability(def_id: DefId) -> Option<attr::ConstStability> {
        desc { |tcx| "looking up const stability of `{}`", tcx.def_path_str(def_id) }
        cache_on_disk_if { def_id.is_local() }
        separate_provide_extern
    }

    query lookup_default_body_stability(def_id: DefId) -> Option<attr::DefaultBodyStability> {
        desc { |tcx| "looking up default body stability of `{}`", tcx.def_path_str(def_id) }
        separate_provide_extern
    }

    query should_inherit_track_caller(def_id: DefId) -> bool {
        desc { |tcx| "computing should_inherit_track_caller of `{}`", tcx.def_path_str(def_id) }
    }

    query lookup_deprecation_entry(def_id: DefId) -> Option<DeprecationEntry> {
        desc { |tcx| "checking whether `{}` is deprecated", tcx.def_path_str(def_id) }
        cache_on_disk_if { def_id.is_local() }
        separate_provide_extern
    }

    /// Determines whether an item is annotated with `doc(hidden)`.
    query is_doc_hidden(def_id: DefId) -> bool {
        desc { |tcx| "checking whether `{}` is `doc(hidden)`", tcx.def_path_str(def_id) }
    }

    /// Determines whether an item is annotated with `doc(notable_trait)`.
    query is_doc_notable_trait(def_id: DefId) -> bool {
        desc { |tcx| "checking whether `{}` is `doc(notable_trait)`", tcx.def_path_str(def_id) }
    }

    /// Returns the attributes on the item at `def_id`.
    ///
    /// Do not use this directly, use `tcx.get_attrs` instead.
    query item_attrs(def_id: DefId) -> &'tcx [ast::Attribute] {
        desc { |tcx| "collecting attributes of `{}`", tcx.def_path_str(def_id) }
        separate_provide_extern
    }

    query codegen_fn_attrs(def_id: DefId) -> CodegenFnAttrs {
        desc { |tcx| "computing codegen attributes of `{}`", tcx.def_path_str(def_id) }
        arena_cache
        cache_on_disk_if { def_id.is_local() }
        separate_provide_extern
    }

    query asm_target_features(def_id: DefId) -> &'tcx FxHashSet<Symbol> {
        desc { |tcx| "computing target features for inline asm of `{}`", tcx.def_path_str(def_id) }
    }

    query fn_arg_names(def_id: DefId) -> &'tcx [rustc_span::symbol::Ident] {
        desc { |tcx| "looking up function parameter names for `{}`", tcx.def_path_str(def_id) }
        cache_on_disk_if { def_id.is_local() }
        separate_provide_extern
    }
    /// Gets the rendered value of the specified constant or associated constant.
    /// Used by rustdoc.
    query rendered_const(def_id: DefId) -> String {
        arena_cache
        desc { |tcx| "rendering constant initializer of `{}`", tcx.def_path_str(def_id) }
        cache_on_disk_if { def_id.is_local() }
        separate_provide_extern
    }
    query impl_parent(def_id: DefId) -> Option<DefId> {
        desc { |tcx| "computing specialization parent impl of `{}`", tcx.def_path_str(def_id) }
        cache_on_disk_if { def_id.is_local() }
        separate_provide_extern
    }

    query is_ctfe_mir_available(key: DefId) -> bool {
        desc { |tcx| "checking if item has ctfe mir available: `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }
    query is_mir_available(key: DefId) -> bool {
        desc { |tcx| "checking if item has mir available: `{}`", tcx.def_path_str(key) }
        cache_on_disk_if { key.is_local() }
        separate_provide_extern
    }

    query own_existential_vtable_entries(
        key: ty::PolyExistentialTraitRef<'tcx>
    ) -> &'tcx [DefId] {
        desc { |tcx| "finding all existential vtable entries for trait {}", tcx.def_path_str(key.def_id()) }
    }

    query vtable_entries(key: ty::PolyTraitRef<'tcx>)
                        -> &'tcx [ty::VtblEntry<'tcx>] {
        desc { |tcx| "finding all vtable entries for trait {}", tcx.def_path_str(key.def_id()) }
    }

    query vtable_trait_upcasting_coercion_new_vptr_slot(key: (ty::Ty<'tcx>, ty::Ty<'tcx>)) -> Option<usize> {
        desc { |tcx| "finding the slot within vtable for trait object {} vtable ptr during trait upcasting coercion from {} vtable",
            key.1, key.0 }
    }

    query vtable_allocation(key: (Ty<'tcx>, Option<ty::PolyExistentialTraitRef<'tcx>>)) -> mir::interpret::AllocId {
        desc { |tcx| "vtable const allocation for <{} as {}>",
            key.0,
            key.1.map(|trait_ref| format!("{}", trait_ref)).unwrap_or("_".to_owned())
        }
    }

    query codegen_select_candidate(
        key: (ty::ParamEnv<'tcx>, ty::PolyTraitRef<'tcx>)
    ) -> Result<&'tcx ImplSource<'tcx, ()>, traits::CodegenObligationError> {
        cache_on_disk_if { true }
        desc { |tcx| "computing candidate for `{}`", key.1 }
    }

    /// Return all `impl` blocks in the current crate.
    query all_local_trait_impls(_: ()) -> &'tcx rustc_data_structures::fx::FxIndexMap<DefId, Vec<LocalDefId>> {
        desc { "local trait impls" }
    }

    /// Given a trait `trait_id`, return all known `impl` blocks.
    query trait_impls_of(trait_id: DefId) -> ty::trait_def::TraitImpls {
        arena_cache
        desc { |tcx| "trait impls of `{}`", tcx.def_path_str(trait_id) }
    }

    query specialization_graph_of(trait_id: DefId) -> specialization_graph::Graph {
        arena_cache
        desc { |tcx| "building specialization graph of trait `{}`", tcx.def_path_str(trait_id) }
        cache_on_disk_if { true }
    }
    query object_safety_violations(trait_id: DefId) -> &'tcx [traits::ObjectSafetyViolation] {
        desc { |tcx| "determine object safety of trait `{}`", tcx.def_path_str(trait_id) }
    }

    /// Gets the ParameterEnvironment for a given item; this environment
    /// will be in "user-facing" mode, meaning that it is suitable for
    /// type-checking etc, and it does not normalize specializable
    /// associated types. This is almost always what you want,
    /// unless you are doing MIR optimizations, in which case you
    /// might want to use `reveal_all()` method to change modes.
    query param_env(def_id: DefId) -> ty::ParamEnv<'tcx> {
        desc { |tcx| "computing normalized predicates of `{}`", tcx.def_path_str(def_id) }
    }

    /// Like `param_env`, but returns the `ParamEnv` in `Reveal::All` mode.
    /// Prefer this over `tcx.param_env(def_id).with_reveal_all_normalized(tcx)`,
    /// as this method is more efficient.
    query param_env_reveal_all_normalized(def_id: DefId) -> ty::ParamEnv<'tcx> {
        desc { |tcx| "computing revealed normalized predicates of `{}`", tcx.def_path_str(def_id) }
    }

    /// Trait selection queries. These are best used by invoking `ty.is_copy_modulo_regions()`,
    /// `ty.is_copy()`, etc, since that will prune the environment where possible.
    query is_copy_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
        desc { "computing whether `{}` is `Copy`", env.value }
        remap_env_constness
    }
    /// Query backing `Ty::is_sized`.
    query is_sized_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
        desc { "computing whether `{}` is `Sized`", env.value }
        remap_env_constness
    }
    /// Query backing `Ty::is_freeze`.
    query is_freeze_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
        desc { "computing whether `{}` is freeze", env.value }
        remap_env_constness
    }
    /// Query backing `Ty::is_unpin`.
    query is_unpin_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
        desc { "computing whether `{}` is `Unpin`", env.value }
        remap_env_constness
    }
    /// Query backing `Ty::needs_drop`.
    query needs_drop_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
        desc { "computing whether `{}` needs drop", env.value }
        remap_env_constness
    }
    /// Query backing `Ty::has_significant_drop_raw`.
    query has_significant_drop_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
        desc { "computing whether `{}` has a significant drop", env.value }
        remap_env_constness
    }

    /// Query backing `Ty::is_structural_eq_shallow`.
    ///
    /// This is only correct for ADTs. Call `is_structural_eq_shallow` to handle all types
    /// correctly.
    query has_structural_eq_impls(ty: Ty<'tcx>) -> bool {
        desc {
            "computing whether `{:?}` implements `PartialStructuralEq` and `StructuralEq`",
            ty
        }
    }

    /// A list of types where the ADT requires drop if and only if any of
    /// those types require drop. If the ADT is known to always need drop
    /// then `Err(AlwaysRequiresDrop)` is returned.
    query adt_drop_tys(def_id: DefId) -> Result<&'tcx ty::List<Ty<'tcx>>, AlwaysRequiresDrop> {
        desc { |tcx| "computing when `{}` needs drop", tcx.def_path_str(def_id) }
        cache_on_disk_if { true }
    }

    /// A list of types where the ADT requires drop if and only if any of those types
    /// has significant drop. A type marked with the attribute `rustc_insignificant_dtor`
    /// is considered to not be significant. A drop is significant if it is implemented
    /// by the user or does anything that will have any observable behavior (other than
    /// freeing up memory). If the ADT is known to have a significant destructor then
    /// `Err(AlwaysRequiresDrop)` is returned.
    query adt_significant_drop_tys(def_id: DefId) -> Result<&'tcx ty::List<Ty<'tcx>>, AlwaysRequiresDrop> {
        desc { |tcx| "computing when `{}` has a significant destructor", tcx.def_path_str(def_id) }
        cache_on_disk_if { false }
    }

    /// Computes the layout of a type. Note that this implicitly
    /// executes in "reveal all" mode, and will normalize the input type.
    query layout_of(
        key: ty::ParamEnvAnd<'tcx, Ty<'tcx>>
    ) -> Result<ty::layout::TyAndLayout<'tcx>, ty::layout::LayoutError<'tcx>> {
        depth_limit
        desc { "computing layout of `{}`", key.value }
        remap_env_constness
    }

    /// Compute a `FnAbi` suitable for indirect calls, i.e. to `fn` pointers.
    ///
    /// NB: this doesn't handle virtual calls - those should use `fn_abi_of_instance`
    /// instead, where the instance is an `InstanceDef::Virtual`.
    query fn_abi_of_fn_ptr(
        key: ty::ParamEnvAnd<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List<Ty<'tcx>>)>
    ) -> Result<&'tcx abi::call::FnAbi<'tcx, Ty<'tcx>>, ty::layout::FnAbiError<'tcx>> {
        desc { "computing call ABI of `{}` function pointers", key.value.0 }
        remap_env_constness
    }

    /// Compute a `FnAbi` suitable for declaring/defining an `fn` instance, and for
    /// direct calls to an `fn`.
    ///
    /// NB: that includes virtual calls, which are represented by "direct calls"
    /// to an `InstanceDef::Virtual` instance (of `<dyn Trait as Trait>::fn`).
    query fn_abi_of_instance(
        key: ty::ParamEnvAnd<'tcx, (ty::Instance<'tcx>, &'tcx ty::List<Ty<'tcx>>)>
    ) -> Result<&'tcx abi::call::FnAbi<'tcx, Ty<'tcx>>, ty::layout::FnAbiError<'tcx>> {
        desc { "computing call ABI of `{}`", key.value.0 }
        remap_env_constness
    }

    query dylib_dependency_formats(_: CrateNum)
                                    -> &'tcx [(CrateNum, LinkagePreference)] {
        desc { "dylib dependency formats of crate" }
        separate_provide_extern
    }

    query dependency_formats(_: ()) -> Lrc<crate::middle::dependency_format::Dependencies> {
        arena_cache
        desc { "get the linkage format of all dependencies" }
    }

    query is_compiler_builtins(_: CrateNum) -> bool {
        fatal_cycle
        desc { "checking if the crate is_compiler_builtins" }
        separate_provide_extern
    }
    query has_global_allocator(_: CrateNum) -> bool {
        // This query depends on untracked global state in CStore
        eval_always
        fatal_cycle
        desc { "checking if the crate has_global_allocator" }
        separate_provide_extern
    }
    query has_panic_handler(_: CrateNum) -> bool {
        fatal_cycle
        desc { "checking if the crate has_panic_handler" }
        separate_provide_extern
    }
    query is_profiler_runtime(_: CrateNum) -> bool {
        fatal_cycle
        desc { "query a crate is `#![profiler_runtime]`" }
        separate_provide_extern
    }
    query has_ffi_unwind_calls(key: LocalDefId) -> bool {
        desc { |tcx| "check if `{}` contains FFI-unwind calls", tcx.def_path_str(key.to_def_id()) }
        cache_on_disk_if { true }
    }
    query required_panic_strategy(_: CrateNum) -> Option<PanicStrategy> {
        fatal_cycle
        desc { "query a crate's required panic strategy" }
        separate_provide_extern
    }
    query panic_in_drop_strategy(_: CrateNum) -> PanicStrategy {
        fatal_cycle
        desc { "query a crate's configured panic-in-drop strategy" }
        separate_provide_extern
    }
    query is_no_builtins(_: CrateNum) -> bool {
        fatal_cycle
        desc { "test whether a crate has `#![no_builtins]`" }
        separate_provide_extern
    }
    query symbol_mangling_version(_: CrateNum) -> SymbolManglingVersion {
        fatal_cycle
        desc { "query a crate's symbol mangling version" }
        separate_provide_extern
    }

    query extern_crate(def_id: DefId) -> Option<&'tcx ExternCrate> {
        eval_always
        desc { "getting crate's ExternCrateData" }
        separate_provide_extern
    }

    query specializes(_: (DefId, DefId)) -> bool {
        desc { "computing whether impls specialize one another" }
    }
    query in_scope_traits_map(_: hir::OwnerId)
        -> Option<&'tcx FxHashMap<ItemLocalId, Box<[TraitCandidate]>>> {
        desc { "traits in scope at a block" }
    }

    query module_reexports(def_id: LocalDefId) -> Option<&'tcx [ModChild]> {
        desc { |tcx| "looking up reexports of module `{}`", tcx.def_path_str(def_id.to_def_id()) }
    }

    query impl_defaultness(def_id: DefId) -> hir::Defaultness {
        desc { |tcx| "looking up whether `{}` is a default impl", tcx.def_path_str(def_id) }
        cache_on_disk_if { def_id.is_local() }
        separate_provide_extern
    }

    query check_well_formed(key: hir::OwnerId) -> () {
        desc { |tcx| "checking that `{}` is well-formed", tcx.def_path_str(key.to_def_id()) }
    }

    // The `DefId`s of all non-generic functions and statics in the given crate
    // that can be reached from outside the crate.
    //
    // We expect this items to be available for being linked to.
    //
    // This query can also be called for `LOCAL_CRATE`. In this case it will
    // compute which items will be reachable to other crates, taking into account
    // the kind of crate that is currently compiled. Crates with only a
    // C interface have fewer reachable things.
    //
    // Does not include external symbols that don't have a corresponding DefId,
    // like the compiler-generated `main` function and so on.
    query reachable_non_generics(_: CrateNum)
        -> DefIdMap<SymbolExportInfo> {
        arena_cache
        desc { "looking up the exported symbols of a crate" }
        separate_provide_extern
    }
    query is_reachable_non_generic(def_id: DefId) -> bool {
        desc { |tcx| "checking whether `{}` is an exported symbol", tcx.def_path_str(def_id) }
        cache_on_disk_if { def_id.is_local() }
        separate_provide_extern
    }
    query is_unreachable_local_definition(def_id: LocalDefId) -> bool {
        desc { |tcx|
            "checking whether `{}` is reachable from outside the crate",
            tcx.def_path_str(def_id.to_def_id()),
        }
    }

    /// The entire set of monomorphizations the local crate can safely link
    /// to because they are exported from upstream crates. Do not depend on
    /// this directly, as its value changes anytime a monomorphization gets
    /// added or removed in any upstream crate. Instead use the narrower
    /// `upstream_monomorphizations_for`, `upstream_drop_glue_for`, or, even
    /// better, `Instance::upstream_monomorphization()`.
    query upstream_monomorphizations(_: ()) -> DefIdMap<FxHashMap<SubstsRef<'tcx>, CrateNum>> {
        arena_cache
        desc { "collecting available upstream monomorphizations" }
    }

    /// Returns the set of upstream monomorphizations available for the
    /// generic function identified by the given `def_id`. The query makes
    /// sure to make a stable selection if the same monomorphization is
    /// available in multiple upstream crates.
    ///
    /// You likely want to call `Instance::upstream_monomorphization()`
    /// instead of invoking this query directly.
    query upstream_monomorphizations_for(def_id: DefId)
        -> Option<&'tcx FxHashMap<SubstsRef<'tcx>, CrateNum>>
    {
        arena_cache
        desc { |tcx|
            "collecting available upstream monomorphizations for `{}`",
            tcx.def_path_str(def_id),
        }
        separate_provide_extern
    }

    /// Returns the upstream crate that exports drop-glue for the given
    /// type (`substs` is expected to be a single-item list containing the
    /// type one wants drop-glue for).
    ///
    /// This is a subset of `upstream_monomorphizations_for` in order to
    /// increase dep-tracking granularity. Otherwise adding or removing any
    /// type with drop-glue in any upstream crate would invalidate all
    /// functions calling drop-glue of an upstream type.
    ///
    /// You likely want to call `Instance::upstream_monomorphization()`
    /// instead of invoking this query directly.
    ///
    /// NOTE: This query could easily be extended to also support other
    ///       common functions that have are large set of monomorphizations
    ///       (like `Clone::clone` for example).
    query upstream_drop_glue_for(substs: SubstsRef<'tcx>) -> Option<CrateNum> {
        desc { "available upstream drop-glue for `{:?}`", substs }
    }

    query foreign_modules(_: CrateNum) -> FxHashMap<DefId, ForeignModule> {
        arena_cache
        desc { "looking up the foreign modules of a linked crate" }
        separate_provide_extern
    }

    /// Identifies the entry-point (e.g., the `main` function) for a given
    /// crate, returning `None` if there is no entry point (such as for library crates).
    query entry_fn(_: ()) -> Option<(DefId, EntryFnType)> {
        desc { "looking up the entry function of a crate" }
    }
    query proc_macro_decls_static(_: ()) -> Option<LocalDefId> {
        desc { "looking up the derive registrar for a crate" }
    }
    // The macro which defines `rustc_metadata::provide_extern` depends on this query's name.
    // Changing the name should cause a compiler error, but in case that changes, be aware.
    query crate_hash(_: CrateNum) -> Svh {
        eval_always
        desc { "looking up the hash a crate" }
        separate_provide_extern
    }
    query crate_host_hash(_: CrateNum) -> Option<Svh> {
        eval_always
        desc { "looking up the hash of a host version of a crate" }
        separate_provide_extern
    }
    query extra_filename(_: CrateNum) -> String {
        arena_cache
        eval_always
        desc { "looking up the extra filename for a crate" }
        separate_provide_extern
    }
    query crate_extern_paths(_: CrateNum) -> Vec<PathBuf> {
        arena_cache
        eval_always
        desc { "looking up the paths for extern crates" }
        separate_provide_extern
    }

    /// Given a crate and a trait, look up all impls of that trait in the crate.
    /// Return `(impl_id, self_ty)`.
    query implementations_of_trait(_: (CrateNum, DefId)) -> &'tcx [(DefId, Option<SimplifiedType>)] {
        desc { "looking up implementations of a trait in a crate" }
        separate_provide_extern
    }

    /// Collects all incoherent impls for the given crate and type.
    ///
    /// Do not call this directly, but instead use the `incoherent_impls` query.
    /// This query is only used to get the data necessary for that query.
    query crate_incoherent_impls(key: (CrateNum, SimplifiedType)) -> &'tcx [DefId] {
        desc { |tcx| "collecting all impls for a type in a crate" }
        separate_provide_extern
    }

    query is_dllimport_foreign_item(def_id: DefId) -> bool {
        desc { |tcx| "is_dllimport_foreign_item({})", tcx.def_path_str(def_id) }
    }
    query is_statically_included_foreign_item(def_id: DefId) -> bool {
        desc { |tcx| "is_statically_included_foreign_item({})", tcx.def_path_str(def_id) }
    }
    query native_library_kind(def_id: DefId)
        -> Option<NativeLibKind> {
        desc { |tcx| "native_library_kind({})", tcx.def_path_str(def_id) }
    }
    query native_library(def_id: DefId) -> Option<&'tcx NativeLib> {
        desc { |tcx| "native_library({})", tcx.def_path_str(def_id) }
    }

    /// Does lifetime resolution, but does not descend into trait items. This
    /// should only be used for resolving lifetimes of on trait definitions,
    /// and is used to avoid cycles. Importantly, `resolve_lifetimes` still visits
    /// the same lifetimes and is responsible for diagnostics.
    /// See `rustc_resolve::late::lifetimes for details.
    query resolve_lifetimes_trait_definition(_: LocalDefId) -> ResolveLifetimes {
        arena_cache
        desc { "resolving lifetimes for a trait definition" }
    }
    /// Does lifetime resolution on items. Importantly, we can't resolve
    /// lifetimes directly on things like trait methods, because of trait params.
    /// See `rustc_resolve::late::lifetimes for details.
    query resolve_lifetimes(_: LocalDefId) -> ResolveLifetimes {
        arena_cache
        desc { "resolving lifetimes" }
    }
    query named_region_map(_: hir::OwnerId) ->
        Option<&'tcx FxHashMap<ItemLocalId, Region>> {
        desc { "looking up a named region" }
    }
    query is_late_bound_map(_: LocalDefId) -> Option<&'tcx FxIndexSet<LocalDefId>> {
        desc { "testing if a region is late bound" }
    }
    /// For a given item's generic parameter, gets the default lifetimes to be used
    /// for each parameter if a trait object were to be passed for that parameter.
    /// For example, for `T` in `struct Foo<'a, T>`, this would be `'static`.
    /// For `T` in `struct Foo<'a, T: 'a>`, this would instead be `'a`.
    /// This query will panic if passed something that is not a type parameter.
    query object_lifetime_default(key: DefId) -> ObjectLifetimeDefault {
        desc { "looking up lifetime defaults for generic parameter `{}`", tcx.def_path_str(key) }
        separate_provide_extern
    }
    query late_bound_vars_map(_: hir::OwnerId)
        -> Option<&'tcx FxHashMap<ItemLocalId, Vec<ty::BoundVariableKind>>> {
        desc { "looking up late bound vars" }
    }

    /// Computes the visibility of the provided `def_id`.
    ///
    /// If the item from the `def_id` doesn't have a visibility, it will panic. For example
    /// a generic type parameter will panic if you call this method on it:
    ///
    /// ```
    /// pub trait Foo<T: Debug> {}
    /// ```
    ///
    /// In here, if you call `visibility` on `T`, it'll panic.
    query visibility(def_id: DefId) -> ty::Visibility<DefId> {
        desc { |tcx| "computing visibility of `{}`", tcx.def_path_str(def_id) }
        separate_provide_extern
    }

    /// Computes the set of modules from which this type is visibly uninhabited.
    /// To check whether a type is uninhabited at all (not just from a given module), you could
    /// check whether the forest is empty.
    query type_uninhabited_from(
        key: ty::ParamEnvAnd<'tcx, Ty<'tcx>>
    ) -> ty::inhabitedness::DefIdForest<'tcx> {
        desc { "computing the inhabitedness of `{:?}`", key }
        remap_env_constness
    }

    query dep_kind(_: CrateNum) -> CrateDepKind {
        eval_always
        desc { "fetching what a dependency looks like" }
        separate_provide_extern
    }

    /// Gets the name of the crate.
    query crate_name(_: CrateNum) -> Symbol {
        eval_always
        desc { "fetching what a crate is named" }
        separate_provide_extern
    }
    query module_children(def_id: DefId) -> &'tcx [ModChild] {
        desc { |tcx| "collecting child items of module `{}`", tcx.def_path_str(def_id) }
        separate_provide_extern
    }
    query extern_mod_stmt_cnum(def_id: LocalDefId) -> Option<CrateNum> {
        desc { |tcx| "computing crate imported by `{}`", tcx.def_path_str(def_id.to_def_id()) }
    }

    query lib_features(_: ()) -> LibFeatures {
        arena_cache
        desc { "calculating the lib features map" }
    }
    query defined_lib_features(_: CrateNum) -> &'tcx [(Symbol, Option<Symbol>)] {
        desc { "calculating the lib features defined in a crate" }
        separate_provide_extern
    }
    query stability_implications(_: CrateNum) -> FxHashMap<Symbol, Symbol> {
        arena_cache
        desc { "calculating the implications between `#[unstable]` features defined in a crate" }
        separate_provide_extern
    }
    /// Whether the function is an intrinsic
    query is_intrinsic(def_id: DefId) -> bool {
        desc { |tcx| "is_intrinsic({})", tcx.def_path_str(def_id) }
        separate_provide_extern
    }
    /// Returns the lang items defined in another crate by loading it from metadata.
    query get_lang_items(_: ()) -> LanguageItems {
        arena_cache
        eval_always
        desc { "calculating the lang items map" }
    }

    /// Returns all diagnostic items defined in all crates.
    query all_diagnostic_items(_: ()) -> rustc_hir::diagnostic_items::DiagnosticItems {
        arena_cache
        eval_always
        desc { "calculating the diagnostic items map" }
    }

    /// Returns the lang items defined in another crate by loading it from metadata.
    query defined_lang_items(_: CrateNum) -> &'tcx [(DefId, usize)] {
        desc { "calculating the lang items defined in a crate" }
        separate_provide_extern
    }

    /// Returns the diagnostic items defined in a crate.
    query diagnostic_items(_: CrateNum) -> rustc_hir::diagnostic_items::DiagnosticItems {
        arena_cache
        desc { "calculating the diagnostic items map in a crate" }
        separate_provide_extern
    }

    query missing_lang_items(_: CrateNum) -> &'tcx [LangItem] {
        desc { "calculating the missing lang items in a crate" }
        separate_provide_extern
    }
    query visible_parent_map(_: ()) -> DefIdMap<DefId> {
        arena_cache
        desc { "calculating the visible parent map" }
    }
    query trimmed_def_paths(_: ()) -> FxHashMap<DefId, Symbol> {
        arena_cache
        desc { "calculating trimmed def paths" }
    }
    query missing_extern_crate_item(_: CrateNum) -> bool {
        eval_always
        desc { "seeing if we're missing an `extern crate` item for this crate" }
        separate_provide_extern
    }
    query used_crate_source(_: CrateNum) -> Lrc<CrateSource> {
        arena_cache
        eval_always
        desc { "looking at the source for a crate" }
        separate_provide_extern
    }
    /// Returns the debugger visualizers defined for this crate.
    query debugger_visualizers(_: CrateNum) -> Vec<rustc_span::DebuggerVisualizerFile> {
        arena_cache
        desc { "looking up the debugger visualizers for this crate" }
        separate_provide_extern
    }
    query postorder_cnums(_: ()) -> &'tcx [CrateNum] {
        eval_always
        desc { "generating a postorder list of CrateNums" }
    }
    /// Returns whether or not the crate with CrateNum 'cnum'
    /// is marked as a private dependency
    query is_private_dep(c: CrateNum) -> bool {
        eval_always
        desc { "check whether crate {} is a private dependency", c }
        separate_provide_extern
    }
    query allocator_kind(_: ()) -> Option<AllocatorKind> {
        eval_always
        desc { "allocator kind for the current crate" }
    }

    query upvars_mentioned(def_id: DefId) -> Option<&'tcx FxIndexMap<hir::HirId, hir::Upvar>> {
        desc { |tcx| "collecting upvars mentioned in `{}`", tcx.def_path_str(def_id) }
    }
    query maybe_unused_trait_imports(_: ()) -> &'tcx FxIndexSet<LocalDefId> {
        desc { "fetching potentially unused trait imports" }
    }
    query maybe_unused_extern_crates(_: ()) -> &'tcx [(LocalDefId, Span)] {
        desc { "looking up all possibly unused extern crates" }
    }
    query names_imported_by_glob_use(def_id: LocalDefId) -> &'tcx FxHashSet<Symbol> {
        desc { |tcx| "names_imported_by_glob_use for `{}`", tcx.def_path_str(def_id.to_def_id()) }
    }

    query stability_index(_: ()) -> stability::Index {
        arena_cache
        eval_always
        desc { "calculating the stability index for the local crate" }
    }
    query crates(_: ()) -> &'tcx [CrateNum] {
        eval_always
        desc { "fetching all foreign CrateNum instances" }
    }

    /// A list of all traits in a crate, used by rustdoc and error reporting.
    /// NOTE: Not named just `traits` due to a naming conflict.
    query traits_in_crate(_: CrateNum) -> &'tcx [DefId] {
        desc { "fetching all traits in a crate" }
        separate_provide_extern
    }

    /// The list of symbols exported from the given crate.
    ///
    /// - All names contained in `exported_symbols(cnum)` are guaranteed to
    ///   correspond to a publicly visible symbol in `cnum` machine code.
    /// - The `exported_symbols` sets of different crates do not intersect.
    query exported_symbols(cnum: CrateNum) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportInfo)] {
        desc { "exported_symbols" }
        cache_on_disk_if { *cnum == LOCAL_CRATE }
        separate_provide_extern
    }

    query collect_and_partition_mono_items(_: ()) -> (&'tcx DefIdSet, &'tcx [CodegenUnit<'tcx>]) {
        eval_always
        desc { "collect_and_partition_mono_items" }
    }
    query is_codegened_item(def_id: DefId) -> bool {
        desc { |tcx| "determining whether `{}` needs codegen", tcx.def_path_str(def_id) }
    }

    /// All items participating in code generation together with items inlined into them.
    query codegened_and_inlined_items(_: ()) -> &'tcx DefIdSet {
        eval_always
       desc { "codegened_and_inlined_items" }
    }

    query codegen_unit(_: Symbol) -> &'tcx CodegenUnit<'tcx> {
        desc { "codegen_unit" }
    }
    query unused_generic_params(key: ty::InstanceDef<'tcx>) -> FiniteBitSet<u32> {
        cache_on_disk_if { key.def_id().is_local() }
        desc {
            |tcx| "determining which generic parameters are unused by `{}`",
                tcx.def_path_str(key.def_id())
        }
        separate_provide_extern
    }
    query backend_optimization_level(_: ()) -> OptLevel {
        desc { "optimization level used by backend" }
    }

    /// Return the filenames where output artefacts shall be stored.
    ///
    /// This query returns an `&Arc` because codegen backends need the value even after the `TyCtxt`
    /// has been destroyed.
    query output_filenames(_: ()) -> &'tcx Arc<OutputFilenames> {
        eval_always
        desc { "output_filenames" }
    }

    /// Do not call this query directly: invoke `normalize` instead.
    query normalize_projection_ty(
        goal: CanonicalProjectionGoal<'tcx>
    ) -> Result<
        &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>,
        NoSolution,
    > {
        desc { "normalizing `{:?}`", goal }
        remap_env_constness
    }

    /// Do not call this query directly: invoke `try_normalize_erasing_regions` instead.
    query try_normalize_generic_arg_after_erasing_regions(
        goal: ParamEnvAnd<'tcx, GenericArg<'tcx>>
    ) -> Result<GenericArg<'tcx>, NoSolution> {
        desc { "normalizing `{}`", goal.value }
        remap_env_constness
    }

    /// Do not call this query directly: invoke `try_normalize_erasing_regions` instead.
    query try_normalize_mir_const_after_erasing_regions(
        goal: ParamEnvAnd<'tcx, mir::ConstantKind<'tcx>>
    ) -> Result<mir::ConstantKind<'tcx>, NoSolution> {
        desc { "normalizing `{}`", goal.value }
        remap_env_constness
    }

    query implied_outlives_bounds(
        goal: CanonicalTyGoal<'tcx>
    ) -> Result<
        &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Vec<OutlivesBound<'tcx>>>>,
        NoSolution,
    > {
        desc { "computing implied outlives bounds for `{:?}`", goal }
        remap_env_constness
    }

    /// Do not call this query directly:
    /// invoke `DropckOutlives::new(dropped_ty)).fully_perform(typeck.infcx)` instead.
    query dropck_outlives(
        goal: CanonicalTyGoal<'tcx>
    ) -> Result<
        &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>,
        NoSolution,
    > {
        desc { "computing dropck types for `{:?}`", goal }
        remap_env_constness
    }

    /// Do not call this query directly: invoke `infcx.predicate_may_hold()` or
    /// `infcx.predicate_must_hold()` instead.
    query evaluate_obligation(
        goal: CanonicalPredicateGoal<'tcx>
    ) -> Result<traits::EvaluationResult, traits::OverflowError> {
        desc { "evaluating trait selection obligation `{}`", goal.value.value }
    }

    query evaluate_goal(
        goal: traits::CanonicalChalkEnvironmentAndGoal<'tcx>
    ) -> Result<
        &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
        NoSolution
    > {
        desc { "evaluating trait selection obligation `{}`", goal.value }
    }

    /// Do not call this query directly: part of the `Eq` type-op
    query type_op_ascribe_user_type(
        goal: CanonicalTypeOpAscribeUserTypeGoal<'tcx>
    ) -> Result<
        &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
        NoSolution,
    > {
        desc { "evaluating `type_op_ascribe_user_type` `{:?}`", goal }
        remap_env_constness
    }

    /// Do not call this query directly: part of the `Eq` type-op
    query type_op_eq(
        goal: CanonicalTypeOpEqGoal<'tcx>
    ) -> Result<
        &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
        NoSolution,
    > {
        desc { "evaluating `type_op_eq` `{:?}`", goal }
        remap_env_constness
    }

    /// Do not call this query directly: part of the `Subtype` type-op
    query type_op_subtype(
        goal: CanonicalTypeOpSubtypeGoal<'tcx>
    ) -> Result<
        &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
        NoSolution,
    > {
        desc { "evaluating `type_op_subtype` `{:?}`", goal }
        remap_env_constness
    }

    /// Do not call this query directly: part of the `ProvePredicate` type-op
    query type_op_prove_predicate(
        goal: CanonicalTypeOpProvePredicateGoal<'tcx>
    ) -> Result<
        &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
        NoSolution,
    > {
        desc { "evaluating `type_op_prove_predicate` `{:?}`", goal }
    }

    /// Do not call this query directly: part of the `Normalize` type-op
    query type_op_normalize_ty(
        goal: CanonicalTypeOpNormalizeGoal<'tcx, Ty<'tcx>>
    ) -> Result<
        &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Ty<'tcx>>>,
        NoSolution,
    > {
        desc { "normalizing `{:?}`", goal }
        remap_env_constness
    }

    /// Do not call this query directly: part of the `Normalize` type-op
    query type_op_normalize_predicate(
        goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::Predicate<'tcx>>
    ) -> Result<
        &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::Predicate<'tcx>>>,
        NoSolution,
    > {
        desc { "normalizing `{:?}`", goal }
        remap_env_constness
    }

    /// Do not call this query directly: part of the `Normalize` type-op
    query type_op_normalize_poly_fn_sig(
        goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::PolyFnSig<'tcx>>
    ) -> Result<
        &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::PolyFnSig<'tcx>>>,
        NoSolution,
    > {
        desc { "normalizing `{:?}`", goal }
        remap_env_constness
    }

    /// Do not call this query directly: part of the `Normalize` type-op
    query type_op_normalize_fn_sig(
        goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::FnSig<'tcx>>
    ) -> Result<
        &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::FnSig<'tcx>>>,
        NoSolution,
    > {
        desc { "normalizing `{:?}`", goal }
        remap_env_constness
    }

    query subst_and_check_impossible_predicates(key: (DefId, SubstsRef<'tcx>)) -> bool {
        desc { |tcx|
            "impossible substituted predicates:`{}`",
            tcx.def_path_str(key.0)
        }
    }

    query is_impossible_method(key: (DefId, DefId)) -> bool {
        desc { |tcx|
            "checking if {} is impossible to call within {}",
            tcx.def_path_str(key.1),
            tcx.def_path_str(key.0),
        }
    }

    query method_autoderef_steps(
        goal: CanonicalTyGoal<'tcx>
    ) -> MethodAutoderefStepsResult<'tcx> {
        desc { "computing autoderef types for `{:?}`", goal }
        remap_env_constness
    }

    query supported_target_features(_: CrateNum) -> FxHashMap<String, Option<Symbol>> {
        arena_cache
        eval_always
        desc { "looking up supported target features" }
    }

    /// Get an estimate of the size of an InstanceDef based on its MIR for CGU partitioning.
    query instance_def_size_estimate(def: ty::InstanceDef<'tcx>)
        -> usize {
        desc { |tcx| "estimating size for `{}`", tcx.def_path_str(def.def_id()) }
    }

    query features_query(_: ()) -> &'tcx rustc_feature::Features {
        eval_always
        desc { "looking up enabled feature gates" }
    }

    /// Attempt to resolve the given `DefId` to an `Instance`, for the
    /// given generics args (`SubstsRef`), returning one of:
    ///  * `Ok(Some(instance))` on success
    ///  * `Ok(None)` when the `SubstsRef` are still too generic,
    ///    and therefore don't allow finding the final `Instance`
    ///  * `Err(ErrorGuaranteed)` when the `Instance` resolution process
    ///    couldn't complete due to errors elsewhere - this is distinct
    ///    from `Ok(None)` to avoid misleading diagnostics when an error
    ///    has already been/will be emitted, for the original cause
    query resolve_instance(
        key: ty::ParamEnvAnd<'tcx, (DefId, SubstsRef<'tcx>)>
    ) -> Result<Option<ty::Instance<'tcx>>, ErrorGuaranteed> {
        desc { "resolving instance `{}`", ty::Instance::new(key.value.0, key.value.1) }
        remap_env_constness
    }

    query resolve_instance_of_const_arg(
        key: ty::ParamEnvAnd<'tcx, (LocalDefId, DefId, SubstsRef<'tcx>)>
    ) -> Result<Option<ty::Instance<'tcx>>, ErrorGuaranteed> {
        desc {
            "resolving instance of the const argument `{}`",
            ty::Instance::new(key.value.0.to_def_id(), key.value.2),
        }
        remap_env_constness
    }

    query normalize_opaque_types(key: &'tcx ty::List<ty::Predicate<'tcx>>) -> &'tcx ty::List<ty::Predicate<'tcx>> {
        desc { "normalizing opaque types in {:?}", key }
    }

    /// Checks whether a type is definitely uninhabited. This is
    /// conservative: for some types that are uninhabited we return `false`,
    /// but we only return `true` for types that are definitely uninhabited.
    /// `ty.conservative_is_privately_uninhabited` implies that any value of type `ty`
    /// will be `Abi::Uninhabited`. (Note that uninhabited types may have nonzero
    /// size, to account for partial initialisation. See #49298 for details.)
    query conservative_is_privately_uninhabited(key: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
        desc { "conservatively checking if {:?} is privately uninhabited", key }
        remap_env_constness
    }

    query limits(key: ()) -> Limits {
        desc { "looking up limits" }
    }

    /// Performs an HIR-based well-formed check on the item with the given `HirId`. If
    /// we get an `Unimplemented` error that matches the provided `Predicate`, return
    /// the cause of the newly created obligation.
    ///
    /// This is only used by error-reporting code to get a better cause (in particular, a better
    /// span) for an *existing* error. Therefore, it is best-effort, and may never handle
    /// all of the cases that the normal `ty::Ty`-based wfcheck does. This is fine,
    /// because the `ty::Ty`-based wfcheck is always run.
    query diagnostic_hir_wf_check(key: (ty::Predicate<'tcx>, traits::WellFormedLoc)) -> Option<traits::ObligationCause<'tcx>> {
        arena_cache
        eval_always
        no_hash
        desc { "performing HIR wf-checking for predicate {:?} at item {:?}", key.0, key.1 }
    }


    /// The list of backend features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`,
    /// `--target` and similar).
    query global_backend_features(_: ()) -> Vec<String> {
        arena_cache
        eval_always
        desc { "computing the backend features for CLI flags" }
    }

    query generator_diagnostic_data(key: DefId) -> Option<GeneratorDiagnosticData<'tcx>> {
        arena_cache
        desc { |tcx| "looking up generator diagnostic data of `{}`", tcx.def_path_str(key) }
        separate_provide_extern
    }

    query permits_uninit_init(key: TyAndLayout<'tcx>) -> bool {
        desc { "checking to see if {:?} permits being left uninit", key.ty }
    }

    query permits_zero_init(key: TyAndLayout<'tcx>) -> bool {
        desc { "checking to see if {:?} permits being left zeroed", key.ty }
    }
}