1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
use std::{collections::hash_map::Entry, iter};

use log::trace;

use rustc_apfloat::Float;
use rustc_ast::expand::allocator::AllocatorKind;
use rustc_hir::{
    def::DefKind,
    def_id::{CrateNum, DefId, LOCAL_CRATE},
};
use rustc_middle::middle::{
    codegen_fn_attrs::CodegenFnAttrFlags, dependency_format::Linkage,
    exported_symbols::ExportedSymbol,
};
use rustc_middle::mir;
use rustc_middle::ty;
use rustc_session::config::CrateType;
use rustc_span::Symbol;
use rustc_target::{
    abi::{Align, Size},
    spec::abi::Abi,
};

use super::backtrace::EvalContextExt as _;
use crate::helpers::{convert::Truncate, target_os_is_unix};
#[cfg(unix)]
use crate::shims::ffi_support::EvalContextExt as _;
use crate::*;

/// Returned by `emulate_foreign_item_by_name`.
pub enum EmulateByNameResult<'mir, 'tcx> {
    /// The caller is expected to jump to the return block.
    NeedsJumping,
    /// Jumping has already been taken care of.
    AlreadyJumped,
    /// A MIR body has been found for the function.
    MirBody(&'mir mir::Body<'tcx>, ty::Instance<'tcx>),
    /// The item is not supported.
    NotSupported,
}

impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriInterpCx<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriInterpCxExt<'mir, 'tcx> {
    /// Returns the minimum alignment for the target architecture for allocations of the given size.
    fn min_align(&self, size: u64, kind: MiriMemoryKind) -> Align {
        let this = self.eval_context_ref();
        // List taken from `library/std/src/sys/common/alloc.rs`.
        // This list should be kept in sync with the one from libstd.
        let min_align = match this.tcx.sess.target.arch.as_ref() {
            "x86" | "arm" | "mips" | "powerpc" | "powerpc64" | "asmjs" | "wasm32" => 8,
            "x86_64" | "aarch64" | "mips64" | "s390x" | "sparc64" => 16,
            arch => bug!("Unsupported target architecture: {}", arch),
        };
        // Windows always aligns, even small allocations.
        // Source: <https://support.microsoft.com/en-us/help/286470/how-to-use-pageheap-exe-in-windows-xp-windows-2000-and-windows-server>
        // But jemalloc does not, so for the C heap we only align if the allocation is sufficiently big.
        if kind == MiriMemoryKind::WinHeap || size >= min_align {
            return Align::from_bytes(min_align).unwrap();
        }
        // We have `size < min_align`. Round `size` *down* to the next power of two and use that.
        fn prev_power_of_two(x: u64) -> u64 {
            let next_pow2 = x.next_power_of_two();
            if next_pow2 == x {
                // x *is* a power of two, just use that.
                x
            } else {
                // x is between two powers, so next = 2*prev.
                next_pow2 / 2
            }
        }
        Align::from_bytes(prev_power_of_two(size)).unwrap()
    }

    fn malloc(
        &mut self,
        size: u64,
        zero_init: bool,
        kind: MiriMemoryKind,
    ) -> InterpResult<'tcx, Pointer<Option<Provenance>>> {
        let this = self.eval_context_mut();
        if size == 0 {
            Ok(Pointer::null())
        } else {
            let align = this.min_align(size, kind);
            let ptr = this.allocate_ptr(Size::from_bytes(size), align, kind.into())?;
            if zero_init {
                // We just allocated this, the access is definitely in-bounds and fits into our address space.
                this.write_bytes_ptr(
                    ptr.into(),
                    iter::repeat(0u8).take(usize::try_from(size).unwrap()),
                )
                .unwrap();
            }
            Ok(ptr.into())
        }
    }

    fn free(
        &mut self,
        ptr: Pointer<Option<Provenance>>,
        kind: MiriMemoryKind,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        if !this.ptr_is_null(ptr)? {
            this.deallocate_ptr(ptr, None, kind.into())?;
        }
        Ok(())
    }

    fn realloc(
        &mut self,
        old_ptr: Pointer<Option<Provenance>>,
        new_size: u64,
        kind: MiriMemoryKind,
    ) -> InterpResult<'tcx, Pointer<Option<Provenance>>> {
        let this = self.eval_context_mut();
        let new_align = this.min_align(new_size, kind);
        if this.ptr_is_null(old_ptr)? {
            if new_size == 0 {
                Ok(Pointer::null())
            } else {
                let new_ptr =
                    this.allocate_ptr(Size::from_bytes(new_size), new_align, kind.into())?;
                Ok(new_ptr.into())
            }
        } else {
            if new_size == 0 {
                this.deallocate_ptr(old_ptr, None, kind.into())?;
                Ok(Pointer::null())
            } else {
                let new_ptr = this.reallocate_ptr(
                    old_ptr,
                    None,
                    Size::from_bytes(new_size),
                    new_align,
                    kind.into(),
                )?;
                Ok(new_ptr.into())
            }
        }
    }

    /// Lookup the body of a function that has `link_name` as the symbol name.
    fn lookup_exported_symbol(
        &mut self,
        link_name: Symbol,
    ) -> InterpResult<'tcx, Option<(&'mir mir::Body<'tcx>, ty::Instance<'tcx>)>> {
        let this = self.eval_context_mut();
        let tcx = this.tcx.tcx;

        // If the result was cached, just return it.
        // (Cannot use `or_insert` since the code below might have to throw an error.)
        let entry = this.machine.exported_symbols_cache.entry(link_name);
        let instance = *match entry {
            Entry::Occupied(e) => e.into_mut(),
            Entry::Vacant(e) => {
                // Find it if it was not cached.
                let mut instance_and_crate: Option<(ty::Instance<'_>, CrateNum)> = None;
                // `dependency_formats` includes all the transitive informations needed to link a crate,
                // which is what we need here since we need to dig out `exported_symbols` from all transitive
                // dependencies.
                let dependency_formats = tcx.dependency_formats(());
                let dependency_format = dependency_formats
                    .iter()
                    .find(|(crate_type, _)| *crate_type == CrateType::Executable)
                    .expect("interpreting a non-executable crate");
                for cnum in iter::once(LOCAL_CRATE).chain(
                    dependency_format.1.iter().enumerate().filter_map(|(num, &linkage)| {
                        // We add 1 to the number because that's what rustc also does everywhere it
                        // calls `CrateNum::new`...
                        #[allow(clippy::integer_arithmetic)]
                        (linkage != Linkage::NotLinked).then_some(CrateNum::new(num + 1))
                    }),
                ) {
                    // We can ignore `_export_info` here: we are a Rust crate, and everything is exported
                    // from a Rust crate.
                    for &(symbol, _export_info) in tcx.exported_symbols(cnum) {
                        if let ExportedSymbol::NonGeneric(def_id) = symbol {
                            let attrs = tcx.codegen_fn_attrs(def_id);
                            let symbol_name = if let Some(export_name) = attrs.export_name {
                                export_name
                            } else if attrs.flags.contains(CodegenFnAttrFlags::NO_MANGLE) {
                                tcx.item_name(def_id)
                            } else {
                                // Skip over items without an explicitly defined symbol name.
                                continue;
                            };
                            if symbol_name == link_name {
                                if let Some((original_instance, original_cnum)) = instance_and_crate
                                {
                                    // Make sure we are consistent wrt what is 'first' and 'second'.
                                    let original_span =
                                        tcx.def_span(original_instance.def_id()).data();
                                    let span = tcx.def_span(def_id).data();
                                    if original_span < span {
                                        throw_machine_stop!(
                                            TerminationInfo::MultipleSymbolDefinitions {
                                                link_name,
                                                first: original_span,
                                                first_crate: tcx.crate_name(original_cnum),
                                                second: span,
                                                second_crate: tcx.crate_name(cnum),
                                            }
                                        );
                                    } else {
                                        throw_machine_stop!(
                                            TerminationInfo::MultipleSymbolDefinitions {
                                                link_name,
                                                first: span,
                                                first_crate: tcx.crate_name(cnum),
                                                second: original_span,
                                                second_crate: tcx.crate_name(original_cnum),
                                            }
                                        );
                                    }
                                }
                                if !matches!(tcx.def_kind(def_id), DefKind::Fn | DefKind::AssocFn) {
                                    throw_ub_format!(
                                        "attempt to call an exported symbol that is not defined as a function"
                                    );
                                }
                                instance_and_crate = Some((ty::Instance::mono(tcx, def_id), cnum));
                            }
                        }
                    }
                }

                e.insert(instance_and_crate.map(|ic| ic.0))
            }
        };
        match instance {
            None => Ok(None), // no symbol with this name
            Some(instance) => Ok(Some((this.load_mir(instance.def, None)?, instance))),
        }
    }

    /// Emulates calling a foreign item, failing if the item is not supported.
    /// This function will handle `goto_block` if needed.
    /// Returns Ok(None) if the foreign item was completely handled
    /// by this function.
    /// Returns Ok(Some(body)) if processing the foreign item
    /// is delegated to another function.
    fn emulate_foreign_item(
        &mut self,
        def_id: DefId,
        abi: Abi,
        args: &[OpTy<'tcx, Provenance>],
        dest: &PlaceTy<'tcx, Provenance>,
        ret: Option<mir::BasicBlock>,
        unwind: StackPopUnwind,
    ) -> InterpResult<'tcx, Option<(&'mir mir::Body<'tcx>, ty::Instance<'tcx>)>> {
        let this = self.eval_context_mut();
        let link_name = this.item_link_name(def_id);
        let tcx = this.tcx.tcx;

        // First: functions that diverge.
        let ret = match ret {
            None =>
                match link_name.as_str() {
                    "miri_start_panic" => {
                        // `check_shim` happens inside `handle_miri_start_panic`.
                        this.handle_miri_start_panic(abi, link_name, args, unwind)?;
                        return Ok(None);
                    }
                    // This matches calls to the foreign item `panic_impl`.
                    // The implementation is provided by the function with the `#[panic_handler]` attribute.
                    "panic_impl" => {
                        // We don't use `check_shim` here because we are just forwarding to the lang
                        // item. Argument count checking will be performed when the returned `Body` is
                        // called.
                        this.check_abi_and_shim_symbol_clash(abi, Abi::Rust, link_name)?;
                        let panic_impl_id = tcx.lang_items().panic_impl().unwrap();
                        let panic_impl_instance = ty::Instance::mono(tcx, panic_impl_id);
                        return Ok(Some((
                            this.load_mir(panic_impl_instance.def, None)?,
                            panic_impl_instance,
                        )));
                    }
                    #[rustfmt::skip]
                    | "exit"
                    | "ExitProcess"
                    => {
                        let exp_abi = if link_name.as_str() == "exit" {
                            Abi::C { unwind: false }
                        } else {
                            Abi::System { unwind: false }
                        };
                        let [code] = this.check_shim(abi, exp_abi, link_name, args)?;
                        // it's really u32 for ExitProcess, but we have to put it into the `Exit` variant anyway
                        let code = this.read_scalar(code)?.to_i32()?;
                        throw_machine_stop!(TerminationInfo::Exit(code.into()));
                    }
                    "abort" => {
                        let [] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                        throw_machine_stop!(TerminationInfo::Abort(
                            "the program aborted execution".to_owned()
                        ))
                    }
                    _ => {
                        if let Some(body) = this.lookup_exported_symbol(link_name)? {
                            return Ok(Some(body));
                        }
                        this.handle_unsupported(format!(
                            "can't call (diverging) foreign function: {}",
                            link_name
                        ))?;
                        return Ok(None);
                    }
                },
            Some(p) => p,
        };

        // Second: functions that return immediately.
        match this.emulate_foreign_item_by_name(link_name, abi, args, dest)? {
            EmulateByNameResult::NeedsJumping => {
                trace!("{:?}", this.dump_place(**dest));
                this.go_to_block(ret);
            }
            EmulateByNameResult::AlreadyJumped => (),
            EmulateByNameResult::MirBody(mir, instance) => return Ok(Some((mir, instance))),
            EmulateByNameResult::NotSupported => {
                if let Some(body) = this.lookup_exported_symbol(link_name)? {
                    return Ok(Some(body));
                }

                this.handle_unsupported(format!("can't call foreign function: {}", link_name))?;
                return Ok(None);
            }
        }

        Ok(None)
    }

    /// Emulates calling the internal __rust_* allocator functions
    fn emulate_allocator(
        &mut self,
        symbol: Symbol,
        default: impl FnOnce(&mut MiriInterpCx<'mir, 'tcx>) -> InterpResult<'tcx>,
    ) -> InterpResult<'tcx, EmulateByNameResult<'mir, 'tcx>> {
        let this = self.eval_context_mut();

        let allocator_kind = if let Some(allocator_kind) = this.tcx.allocator_kind(()) {
            allocator_kind
        } else {
            // in real code, this symbol does not exist without an allocator
            return Ok(EmulateByNameResult::NotSupported);
        };

        match allocator_kind {
            AllocatorKind::Global => {
                let (body, instance) = this
                    .lookup_exported_symbol(symbol)?
                    .expect("symbol should be present if there is a global allocator");

                Ok(EmulateByNameResult::MirBody(body, instance))
            }
            AllocatorKind::Default => {
                default(this)?;
                Ok(EmulateByNameResult::NeedsJumping)
            }
        }
    }

    /// Emulates calling a foreign item using its name.
    fn emulate_foreign_item_by_name(
        &mut self,
        link_name: Symbol,
        abi: Abi,
        args: &[OpTy<'tcx, Provenance>],
        dest: &PlaceTy<'tcx, Provenance>,
    ) -> InterpResult<'tcx, EmulateByNameResult<'mir, 'tcx>> {
        let this = self.eval_context_mut();

        // First deal with any external C functions in linked .so file.
        #[cfg(unix)]
        if this.machine.external_so_lib.as_ref().is_some() {
            // An Ok(false) here means that the function being called was not exported
            // by the specified `.so` file; we should continue and check if it corresponds to
            // a provided shim.
            if this.call_external_c_fct(link_name, dest, args)? {
                return Ok(EmulateByNameResult::NeedsJumping);
            }
        }

        // When adding a new shim, you should follow the following pattern:
        // ```
        // "shim_name" => {
        //     let [arg1, arg2, arg3] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
        //     let result = this.shim_name(arg1, arg2, arg3)?;
        //     this.write_scalar(result, dest)?;
        // }
        // ```
        // and then define `shim_name` as a helper function in an extension trait in a suitable file
        // (see e.g. `unix/fs.rs`):
        // ```
        // fn shim_name(
        //     &mut self,
        //     arg1: &OpTy<'tcx, Provenance>,
        //     arg2: &OpTy<'tcx, Provenance>,
        //     arg3: &OpTy<'tcx, Provenance>)
        // -> InterpResult<'tcx, Scalar<Provenance>> {
        //     let this = self.eval_context_mut();
        //
        //     // First thing: load all the arguments. Details depend on the shim.
        //     let arg1 = this.read_scalar(arg1)?.to_u32()?;
        //     let arg2 = this.read_pointer(arg2)?; // when you need to work with the pointer directly
        //     let arg3 = this.deref_operand(arg3)?; // when you want to load/store through the pointer at its declared type
        //
        //     // ...
        //
        //     Ok(Scalar::from_u32(42))
        // }
        // ```
        // You might find existing shims not following this pattern, most
        // likely because they predate it or because for some reason they cannot be made to fit.

        // Here we dispatch all the shims for foreign functions. If you have a platform specific
        // shim, add it to the corresponding submodule.
        match link_name.as_str() {
            // Miri-specific extern functions
            "miri_static_root" => {
                let [ptr] = this.check_shim(abi, Abi::Rust, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                let (alloc_id, offset, _) = this.ptr_get_alloc_id(ptr)?;
                if offset != Size::ZERO {
                    throw_unsup_format!("pointer passed to miri_static_root must point to beginning of an allocated block");
                }
                this.machine.static_roots.push(alloc_id);
            }

            // Obtains the size of a Miri backtrace. See the README for details.
            "miri_backtrace_size" => {
                this.handle_miri_backtrace_size(abi, link_name, args, dest)?;
            }

            // Obtains a Miri backtrace. See the README for details.
            "miri_get_backtrace" => {
                // `check_shim` happens inside `handle_miri_get_backtrace`.
                this.handle_miri_get_backtrace(abi, link_name, args, dest)?;
            }

            // Resolves a Miri backtrace frame. See the README for details.
            "miri_resolve_frame" => {
                // `check_shim` happens inside `handle_miri_resolve_frame`.
                this.handle_miri_resolve_frame(abi, link_name, args, dest)?;
            }

            // Writes the function and file names of a Miri backtrace frame into a user provided buffer. See the README for details.
            "miri_resolve_frame_names" => {
                this.handle_miri_resolve_frame_names(abi, link_name, args)?;
            }

            // Standard C allocation
            "malloc" => {
                let [size] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let size = this.read_scalar(size)?.to_machine_usize(this)?;
                let res = this.malloc(size, /*zero_init:*/ false, MiriMemoryKind::C)?;
                this.write_pointer(res, dest)?;
            }
            "calloc" => {
                let [items, len] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let items = this.read_scalar(items)?.to_machine_usize(this)?;
                let len = this.read_scalar(len)?.to_machine_usize(this)?;
                let size =
                    items.checked_mul(len).ok_or_else(|| err_ub_format!("overflow during calloc size computation"))?;
                let res = this.malloc(size, /*zero_init:*/ true, MiriMemoryKind::C)?;
                this.write_pointer(res, dest)?;
            }
            "free" => {
                let [ptr] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                this.free(ptr, MiriMemoryKind::C)?;
            }
            "realloc" => {
                let [old_ptr, new_size] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let old_ptr = this.read_pointer(old_ptr)?;
                let new_size = this.read_scalar(new_size)?.to_machine_usize(this)?;
                let res = this.realloc(old_ptr, new_size, MiriMemoryKind::C)?;
                this.write_pointer(res, dest)?;
            }

            // Rust allocation
            "__rust_alloc" => {
                let [size, align] = this.check_shim(abi, Abi::Rust, link_name, args)?;
                let size = this.read_scalar(size)?.to_machine_usize(this)?;
                let align = this.read_scalar(align)?.to_machine_usize(this)?;

                return this.emulate_allocator(Symbol::intern("__rg_alloc"), |this| {
                    Self::check_alloc_request(size, align)?;

                    let ptr = this.allocate_ptr(
                        Size::from_bytes(size),
                        Align::from_bytes(align).unwrap(),
                        MiriMemoryKind::Rust.into(),
                    )?;

                    this.write_pointer(ptr, dest)
                });
            }
            "__rust_alloc_zeroed" => {
                let [size, align] = this.check_shim(abi, Abi::Rust, link_name, args)?;
                let size = this.read_scalar(size)?.to_machine_usize(this)?;
                let align = this.read_scalar(align)?.to_machine_usize(this)?;

                return this.emulate_allocator(Symbol::intern("__rg_alloc_zeroed"), |this| {
                    Self::check_alloc_request(size, align)?;

                    let ptr = this.allocate_ptr(
                        Size::from_bytes(size),
                        Align::from_bytes(align).unwrap(),
                        MiriMemoryKind::Rust.into(),
                    )?;

                    // We just allocated this, the access is definitely in-bounds.
                    this.write_bytes_ptr(ptr.into(), iter::repeat(0u8).take(usize::try_from(size).unwrap())).unwrap();
                    this.write_pointer(ptr, dest)
                });
            }
            "__rust_dealloc" => {
                let [ptr, old_size, align] = this.check_shim(abi, Abi::Rust, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                let old_size = this.read_scalar(old_size)?.to_machine_usize(this)?;
                let align = this.read_scalar(align)?.to_machine_usize(this)?;

                return this.emulate_allocator(Symbol::intern("__rg_dealloc"), |this| {
                    // No need to check old_size/align; we anyway check that they match the allocation.
                    this.deallocate_ptr(
                        ptr,
                        Some((Size::from_bytes(old_size), Align::from_bytes(align).unwrap())),
                        MiriMemoryKind::Rust.into(),
                    )
                });
            }
            "__rust_realloc" => {
                let [ptr, old_size, align, new_size] = this.check_shim(abi, Abi::Rust, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                let old_size = this.read_scalar(old_size)?.to_machine_usize(this)?;
                let align = this.read_scalar(align)?.to_machine_usize(this)?;
                let new_size = this.read_scalar(new_size)?.to_machine_usize(this)?;
                // No need to check old_size; we anyway check that they match the allocation.

                return this.emulate_allocator(Symbol::intern("__rg_realloc"), |this| {
                    Self::check_alloc_request(new_size, align)?;

                    let align = Align::from_bytes(align).unwrap();
                    let new_ptr = this.reallocate_ptr(
                        ptr,
                        Some((Size::from_bytes(old_size), align)),
                        Size::from_bytes(new_size),
                        align,
                        MiriMemoryKind::Rust.into(),
                    )?;
                    this.write_pointer(new_ptr, dest)
                });
            }

            // C memory handling functions
            "memcmp" => {
                let [left, right, n] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let left = this.read_pointer(left)?;
                let right = this.read_pointer(right)?;
                let n = Size::from_bytes(this.read_scalar(n)?.to_machine_usize(this)?);

                let result = {
                    let left_bytes = this.read_bytes_ptr_strip_provenance(left, n)?;
                    let right_bytes = this.read_bytes_ptr_strip_provenance(right, n)?;

                    use std::cmp::Ordering::*;
                    match left_bytes.cmp(right_bytes) {
                        Less => -1i32,
                        Equal => 0,
                        Greater => 1,
                    }
                };

                this.write_scalar(Scalar::from_i32(result), dest)?;
            }
            "memrchr" => {
                let [ptr, val, num] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                let val = this.read_scalar(val)?.to_i32()?;
                let num = this.read_scalar(num)?.to_machine_usize(this)?;
                // The docs say val is "interpreted as unsigned char".
                #[allow(clippy::cast_sign_loss, clippy::cast_possible_truncation)]
                let val = val as u8;

                if let Some(idx) = this
                    .read_bytes_ptr_strip_provenance(ptr, Size::from_bytes(num))?
                    .iter()
                    .rev()
                    .position(|&c| c == val)
                {
                    let idx = u64::try_from(idx).unwrap();
                    #[allow(clippy::integer_arithmetic)] // idx < num, so this never wraps
                    let new_ptr = ptr.offset(Size::from_bytes(num - idx - 1), this)?;
                    this.write_pointer(new_ptr, dest)?;
                } else {
                    this.write_null(dest)?;
                }
            }
            "memchr" => {
                let [ptr, val, num] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                let val = this.read_scalar(val)?.to_i32()?;
                let num = this.read_scalar(num)?.to_machine_usize(this)?;
                // The docs say val is "interpreted as unsigned char".
                #[allow(clippy::cast_sign_loss, clippy::cast_possible_truncation)]
                let val = val as u8;

                let idx = this
                    .read_bytes_ptr_strip_provenance(ptr, Size::from_bytes(num))?
                    .iter()
                    .position(|&c| c == val);
                if let Some(idx) = idx {
                    let new_ptr = ptr.offset(Size::from_bytes(idx as u64), this)?;
                    this.write_pointer(new_ptr, dest)?;
                } else {
                    this.write_null(dest)?;
                }
            }
            "strlen" => {
                let [ptr] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                let n = this.read_c_str(ptr)?.len();
                this.write_scalar(Scalar::from_machine_usize(u64::try_from(n).unwrap(), this), dest)?;
            }

            // math functions (note that there are also intrinsics for some other functions)
            #[rustfmt::skip]
            | "cbrtf"
            | "coshf"
            | "sinhf"
            | "tanf"
            | "tanhf"
            | "acosf"
            | "asinf"
            | "atanf"
            | "log1pf"
            | "expm1f"
            => {
                let [f] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                // FIXME: Using host floats.
                let f = f32::from_bits(this.read_scalar(f)?.to_u32()?);
                let res = match link_name.as_str() {
                    "cbrtf" => f.cbrt(),
                    "coshf" => f.cosh(),
                    "sinhf" => f.sinh(),
                    "tanf" => f.tan(),
                    "tanhf" => f.tanh(),
                    "acosf" => f.acos(),
                    "asinf" => f.asin(),
                    "atanf" => f.atan(),
                    "log1pf" => f.ln_1p(),
                    "expm1f" => f.exp_m1(),
                    _ => bug!(),
                };
                this.write_scalar(Scalar::from_u32(res.to_bits()), dest)?;
            }
            #[rustfmt::skip]
            | "_hypotf"
            | "hypotf"
            | "atan2f"
            | "fdimf"
            => {
                let [f1, f2] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                // underscore case for windows, here and below
                // (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
                // FIXME: Using host floats.
                let f1 = f32::from_bits(this.read_scalar(f1)?.to_u32()?);
                let f2 = f32::from_bits(this.read_scalar(f2)?.to_u32()?);
                let res = match link_name.as_str() {
                    "_hypotf" | "hypotf" => f1.hypot(f2),
                    "atan2f" => f1.atan2(f2),
                    #[allow(deprecated)]
                    "fdimf" => f1.abs_sub(f2),
                    _ => bug!(),
                };
                this.write_scalar(Scalar::from_u32(res.to_bits()), dest)?;
            }
            #[rustfmt::skip]
            | "cbrt"
            | "cosh"
            | "sinh"
            | "tan"
            | "tanh"
            | "acos"
            | "asin"
            | "atan"
            | "log1p"
            | "expm1"
            => {
                let [f] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                // FIXME: Using host floats.
                let f = f64::from_bits(this.read_scalar(f)?.to_u64()?);
                let res = match link_name.as_str() {
                    "cbrt" => f.cbrt(),
                    "cosh" => f.cosh(),
                    "sinh" => f.sinh(),
                    "tan" => f.tan(),
                    "tanh" => f.tanh(),
                    "acos" => f.acos(),
                    "asin" => f.asin(),
                    "atan" => f.atan(),
                    "log1p" => f.ln_1p(),
                    "expm1" => f.exp_m1(),
                    _ => bug!(),
                };
                this.write_scalar(Scalar::from_u64(res.to_bits()), dest)?;
            }
            #[rustfmt::skip]
            | "_hypot"
            | "hypot"
            | "atan2"
            | "fdim"
            => {
                let [f1, f2] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                // FIXME: Using host floats.
                let f1 = f64::from_bits(this.read_scalar(f1)?.to_u64()?);
                let f2 = f64::from_bits(this.read_scalar(f2)?.to_u64()?);
                let res = match link_name.as_str() {
                    "_hypot" | "hypot" => f1.hypot(f2),
                    "atan2" => f1.atan2(f2),
                    #[allow(deprecated)]
                    "fdim" => f1.abs_sub(f2),
                    _ => bug!(),
                };
                this.write_scalar(Scalar::from_u64(res.to_bits()), dest)?;
            }
            #[rustfmt::skip]
            | "_ldexp"
            | "ldexp"
            | "scalbn"
            => {
                let [x, exp] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                // For radix-2 (binary) systems, `ldexp` and `scalbn` are the same.
                let x = this.read_scalar(x)?.to_f64()?;
                let exp = this.read_scalar(exp)?.to_i32()?;

                // Saturating cast to i16. Even those are outside the valid exponent range so
                // `scalbn` below will do its over/underflow handling.
                let exp = if exp > i32::from(i16::MAX) {
                    i16::MAX
                } else if exp < i32::from(i16::MIN) {
                    i16::MIN
                } else {
                    exp.try_into().unwrap()
                };

                let res = x.scalbn(exp);
                this.write_scalar(Scalar::from_f64(res), dest)?;
            }

            // Architecture-specific shims
            "llvm.x86.addcarry.64" if this.tcx.sess.target.arch == "x86_64" => {
                // Computes u8+u64+u64, returning tuple (u8,u64) comprising the output carry and truncated sum.
                let [c_in, a, b] = this.check_shim(abi, Abi::Unadjusted, link_name, args)?;
                let c_in = this.read_scalar(c_in)?.to_u8()?;
                let a = this.read_scalar(a)?.to_u64()?;
                let b = this.read_scalar(b)?.to_u64()?;

                #[allow(clippy::integer_arithmetic)] // adding two u64 and a u8 cannot wrap in a u128
                let wide_sum = u128::from(c_in) + u128::from(a) + u128::from(b);
                #[allow(clippy::integer_arithmetic)] // it's a u128, we can shift by 64
                let (c_out, sum) = ((wide_sum >> 64).truncate::<u8>(), wide_sum.truncate::<u64>());

                let c_out_field = this.place_field(dest, 0)?;
                this.write_scalar(Scalar::from_u8(c_out), &c_out_field)?;
                let sum_field = this.place_field(dest, 1)?;
                this.write_scalar(Scalar::from_u64(sum), &sum_field)?;
            }
            "llvm.x86.sse2.pause" if this.tcx.sess.target.arch == "x86" || this.tcx.sess.target.arch == "x86_64" => {
                let [] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                this.yield_active_thread();
            }
            "llvm.aarch64.isb" if this.tcx.sess.target.arch == "aarch64" => {
                let [arg] = this.check_shim(abi, Abi::Unadjusted, link_name, args)?;
                let arg = this.read_scalar(arg)?.to_i32()?;
                match arg {
                    15 => { // SY ("full system scope")
                        this.yield_active_thread();
                    }
                    _ => {
                        throw_unsup_format!("unsupported llvm.aarch64.isb argument {}", arg);
                    }
                }
            }

            // Platform-specific shims
            _ => match this.tcx.sess.target.os.as_ref() {
                target if target_os_is_unix(target) => return shims::unix::foreign_items::EvalContextExt::emulate_foreign_item_by_name(this, link_name, abi, args, dest),
                "windows" => return shims::windows::foreign_items::EvalContextExt::emulate_foreign_item_by_name(this, link_name, abi, args, dest),
                target => throw_unsup_format!("the target `{}` is not supported", target),
            }
        };
        // We only fall through to here if we did *not* hit the `_` arm above,
        // i.e., if we actually emulated the function with one of the shims.
        Ok(EmulateByNameResult::NeedsJumping)
    }

    /// Check some basic requirements for this allocation request:
    /// non-zero size, power-of-two alignment.
    fn check_alloc_request(size: u64, align: u64) -> InterpResult<'tcx> {
        if size == 0 {
            throw_ub_format!("creating allocation with size 0");
        }
        if !align.is_power_of_two() {
            throw_ub_format!("creating allocation with non-power-of-two alignment {}", align);
        }
        Ok(())
    }
}