1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
use std::collections::{hash_map::Entry, VecDeque};
use std::num::NonZeroU32;
use std::ops::Not;

use log::trace;

use rustc_data_structures::fx::FxHashMap;
use rustc_index::vec::{Idx, IndexVec};

use super::vector_clock::VClock;
use crate::*;

/// We cannot use the `newtype_index!` macro because we have to use 0 as a
/// sentinel value meaning that the identifier is not assigned. This is because
/// the pthreads static initializers initialize memory with zeros (see the
/// `src/shims/sync.rs` file).
macro_rules! declare_id {
    ($name: ident) => {
        /// 0 is used to indicate that the id was not yet assigned and,
        /// therefore, is not a valid identifier.
        #[derive(Clone, Copy, Debug, PartialOrd, Ord, PartialEq, Eq, Hash)]
        pub struct $name(NonZeroU32);

        impl $name {
            // Panics if `id == 0`.
            pub fn from_u32(id: u32) -> Self {
                Self(NonZeroU32::new(id).unwrap())
            }
        }

        impl Idx for $name {
            fn new(idx: usize) -> Self {
                // We use 0 as a sentinel value (see the comment above) and,
                // therefore, need to shift by one when converting from an index
                // into a vector.
                let shifted_idx = u32::try_from(idx).unwrap().checked_add(1).unwrap();
                $name(NonZeroU32::new(shifted_idx).unwrap())
            }
            fn index(self) -> usize {
                // See the comment in `Self::new`.
                // (This cannot underflow because self is NonZeroU32.)
                usize::try_from(self.0.get() - 1).unwrap()
            }
        }

        impl $name {
            pub fn to_u32_scalar(&self) -> Scalar<Provenance> {
                Scalar::from_u32(self.0.get())
            }
        }
    };
}

declare_id!(MutexId);

/// The mutex state.
#[derive(Default, Debug)]
struct Mutex {
    /// The thread that currently owns the lock.
    owner: Option<ThreadId>,
    /// How many times the mutex was locked by the owner.
    lock_count: usize,
    /// The queue of threads waiting for this mutex.
    queue: VecDeque<ThreadId>,
    /// Data race handle, this tracks the happens-before
    /// relationship between each mutex access. It is
    /// released to during unlock and acquired from during
    /// locking, and therefore stores the clock of the last
    /// thread to release this mutex.
    data_race: VClock,
}

declare_id!(RwLockId);

/// The read-write lock state.
#[derive(Default, Debug)]
struct RwLock {
    /// The writer thread that currently owns the lock.
    writer: Option<ThreadId>,
    /// The readers that currently own the lock and how many times they acquired
    /// the lock.
    readers: FxHashMap<ThreadId, usize>,
    /// The queue of writer threads waiting for this lock.
    writer_queue: VecDeque<ThreadId>,
    /// The queue of reader threads waiting for this lock.
    reader_queue: VecDeque<ThreadId>,
    /// Data race handle for writers, tracks the happens-before
    /// ordering between each write access to a rwlock and is updated
    /// after a sequence of concurrent readers to track the happens-
    /// before ordering between the set of previous readers and
    /// the current writer.
    /// Contains the clock of the last thread to release a writer
    /// lock or the joined clock of the set of last threads to release
    /// shared reader locks.
    data_race: VClock,
    /// Data race handle for readers, this is temporary storage
    /// for the combined happens-before ordering for between all
    /// concurrent readers and the next writer, and the value
    /// is stored to the main data_race variable once all
    /// readers are finished.
    /// Has to be stored separately since reader lock acquires
    /// must load the clock of the last write and must not
    /// add happens-before orderings between shared reader
    /// locks.
    data_race_reader: VClock,
}

declare_id!(CondvarId);

/// A thread waiting on a conditional variable.
#[derive(Debug)]
struct CondvarWaiter {
    /// The thread that is waiting on this variable.
    thread: ThreadId,
    /// The mutex on which the thread is waiting.
    mutex: MutexId,
}

/// The conditional variable state.
#[derive(Default, Debug)]
struct Condvar {
    waiters: VecDeque<CondvarWaiter>,
    /// Tracks the happens-before relationship
    /// between a cond-var signal and a cond-var
    /// wait during a non-suprious signal event.
    /// Contains the clock of the last thread to
    /// perform a futex-signal.
    data_race: VClock,
}

/// The futex state.
#[derive(Default, Debug)]
struct Futex {
    waiters: VecDeque<FutexWaiter>,
    /// Tracks the happens-before relationship
    /// between a futex-wake and a futex-wait
    /// during a non-spurious wake event.
    /// Contains the clock of the last thread to
    /// perform a futex-wake.
    data_race: VClock,
}

/// A thread waiting on a futex.
#[derive(Debug)]
struct FutexWaiter {
    /// The thread that is waiting on this futex.
    thread: ThreadId,
    /// The bitset used by FUTEX_*_BITSET, or u32::MAX for other operations.
    bitset: u32,
}

/// The state of all synchronization variables.
#[derive(Default, Debug)]
pub(crate) struct SynchronizationState {
    mutexes: IndexVec<MutexId, Mutex>,
    rwlocks: IndexVec<RwLockId, RwLock>,
    condvars: IndexVec<CondvarId, Condvar>,
    futexes: FxHashMap<u64, Futex>,
}

// Private extension trait for local helper methods
impl<'mir, 'tcx: 'mir> EvalContextExtPriv<'mir, 'tcx> for crate::MiriInterpCx<'mir, 'tcx> {}
trait EvalContextExtPriv<'mir, 'tcx: 'mir>: crate::MiriInterpCxExt<'mir, 'tcx> {
    /// Take a reader out of the queue waiting for the lock.
    /// Returns `true` if some thread got the rwlock.
    #[inline]
    fn rwlock_dequeue_and_lock_reader(&mut self, id: RwLockId) -> bool {
        let this = self.eval_context_mut();
        if let Some(reader) = this.machine.threads.sync.rwlocks[id].reader_queue.pop_front() {
            this.unblock_thread(reader);
            this.rwlock_reader_lock(id, reader);
            true
        } else {
            false
        }
    }

    /// Take the writer out of the queue waiting for the lock.
    /// Returns `true` if some thread got the rwlock.
    #[inline]
    fn rwlock_dequeue_and_lock_writer(&mut self, id: RwLockId) -> bool {
        let this = self.eval_context_mut();
        if let Some(writer) = this.machine.threads.sync.rwlocks[id].writer_queue.pop_front() {
            this.unblock_thread(writer);
            this.rwlock_writer_lock(id, writer);
            true
        } else {
            false
        }
    }

    /// Take a thread out of the queue waiting for the mutex, and lock
    /// the mutex for it. Returns `true` if some thread has the mutex now.
    #[inline]
    fn mutex_dequeue_and_lock(&mut self, id: MutexId) -> bool {
        let this = self.eval_context_mut();
        if let Some(thread) = this.machine.threads.sync.mutexes[id].queue.pop_front() {
            this.unblock_thread(thread);
            this.mutex_lock(id, thread);
            true
        } else {
            false
        }
    }
}

// Public interface to synchronization primitives. Please note that in most
// cases, the function calls are infallible and it is the client's (shim
// implementation's) responsibility to detect and deal with erroneous
// situations.
impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriInterpCx<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriInterpCxExt<'mir, 'tcx> {
    #[inline]
    /// Create state for a new mutex.
    fn mutex_create(&mut self) -> MutexId {
        let this = self.eval_context_mut();
        this.machine.threads.sync.mutexes.push(Default::default())
    }

    #[inline]
    /// Provides the closure with the next MutexId. Creates that mutex if the closure returns None,
    /// otherwise returns the value from the closure
    fn mutex_get_or_create<F>(&mut self, existing: F) -> InterpResult<'tcx, MutexId>
    where
        F: FnOnce(&mut MiriInterpCx<'mir, 'tcx>, MutexId) -> InterpResult<'tcx, Option<MutexId>>,
    {
        let this = self.eval_context_mut();
        let next_index = this.machine.threads.sync.mutexes.next_index();
        if let Some(old) = existing(this, next_index)? {
            Ok(old)
        } else {
            let new_index = this.machine.threads.sync.mutexes.push(Default::default());
            assert_eq!(next_index, new_index);
            Ok(new_index)
        }
    }

    #[inline]
    /// Get the id of the thread that currently owns this lock.
    fn mutex_get_owner(&mut self, id: MutexId) -> ThreadId {
        let this = self.eval_context_ref();
        this.machine.threads.sync.mutexes[id].owner.unwrap()
    }

    #[inline]
    /// Check if locked.
    fn mutex_is_locked(&self, id: MutexId) -> bool {
        let this = self.eval_context_ref();
        this.machine.threads.sync.mutexes[id].owner.is_some()
    }

    /// Lock by setting the mutex owner and increasing the lock count.
    fn mutex_lock(&mut self, id: MutexId, thread: ThreadId) {
        let this = self.eval_context_mut();
        let mutex = &mut this.machine.threads.sync.mutexes[id];
        if let Some(current_owner) = mutex.owner {
            assert_eq!(thread, current_owner, "mutex already locked by another thread");
            assert!(
                mutex.lock_count > 0,
                "invariant violation: lock_count == 0 iff the thread is unlocked"
            );
        } else {
            mutex.owner = Some(thread);
        }
        mutex.lock_count = mutex.lock_count.checked_add(1).unwrap();
        if let Some(data_race) = &this.machine.data_race {
            data_race.validate_lock_acquire(&mutex.data_race, thread);
        }
    }

    /// Try unlocking by decreasing the lock count and returning the old lock
    /// count. If the lock count reaches 0, release the lock and potentially
    /// give to a new owner. If the lock was not locked by `expected_owner`,
    /// return `None`.
    fn mutex_unlock(&mut self, id: MutexId, expected_owner: ThreadId) -> Option<usize> {
        let this = self.eval_context_mut();
        let mutex = &mut this.machine.threads.sync.mutexes[id];
        if let Some(current_owner) = mutex.owner {
            // Mutex is locked.
            if current_owner != expected_owner {
                // Only the owner can unlock the mutex.
                return None;
            }
            let old_lock_count = mutex.lock_count;
            mutex.lock_count = old_lock_count
                .checked_sub(1)
                .expect("invariant violation: lock_count == 0 iff the thread is unlocked");
            if mutex.lock_count == 0 {
                mutex.owner = None;
                // The mutex is completely unlocked. Try transfering ownership
                // to another thread.
                if let Some(data_race) = &this.machine.data_race {
                    data_race.validate_lock_release(&mut mutex.data_race, current_owner);
                }
                this.mutex_dequeue_and_lock(id);
            }
            Some(old_lock_count)
        } else {
            // Mutex is not locked.
            None
        }
    }

    #[inline]
    /// Put the thread into the queue waiting for the mutex.
    fn mutex_enqueue_and_block(&mut self, id: MutexId, thread: ThreadId) {
        let this = self.eval_context_mut();
        assert!(this.mutex_is_locked(id), "queing on unlocked mutex");
        this.machine.threads.sync.mutexes[id].queue.push_back(thread);
        this.block_thread(thread);
    }

    #[inline]
    /// Create state for a new read write lock.
    fn rwlock_create(&mut self) -> RwLockId {
        let this = self.eval_context_mut();
        this.machine.threads.sync.rwlocks.push(Default::default())
    }

    #[inline]
    /// Provides the closure with the next RwLockId. Creates that RwLock if the closure returns None,
    /// otherwise returns the value from the closure
    fn rwlock_get_or_create<F>(&mut self, existing: F) -> InterpResult<'tcx, RwLockId>
    where
        F: FnOnce(&mut MiriInterpCx<'mir, 'tcx>, RwLockId) -> InterpResult<'tcx, Option<RwLockId>>,
    {
        let this = self.eval_context_mut();
        let next_index = this.machine.threads.sync.rwlocks.next_index();
        if let Some(old) = existing(this, next_index)? {
            Ok(old)
        } else {
            let new_index = this.machine.threads.sync.rwlocks.push(Default::default());
            assert_eq!(next_index, new_index);
            Ok(new_index)
        }
    }

    #[inline]
    /// Check if locked.
    fn rwlock_is_locked(&self, id: RwLockId) -> bool {
        let this = self.eval_context_ref();
        let rwlock = &this.machine.threads.sync.rwlocks[id];
        trace!(
            "rwlock_is_locked: {:?} writer is {:?} and there are {} reader threads (some of which could hold multiple read locks)",
            id,
            rwlock.writer,
            rwlock.readers.len(),
        );
        rwlock.writer.is_some() || rwlock.readers.is_empty().not()
    }

    #[inline]
    /// Check if write locked.
    fn rwlock_is_write_locked(&self, id: RwLockId) -> bool {
        let this = self.eval_context_ref();
        let rwlock = &this.machine.threads.sync.rwlocks[id];
        trace!("rwlock_is_write_locked: {:?} writer is {:?}", id, rwlock.writer);
        rwlock.writer.is_some()
    }

    /// Read-lock the lock by adding the `reader` the list of threads that own
    /// this lock.
    fn rwlock_reader_lock(&mut self, id: RwLockId, reader: ThreadId) {
        let this = self.eval_context_mut();
        assert!(!this.rwlock_is_write_locked(id), "the lock is write locked");
        trace!("rwlock_reader_lock: {:?} now also held (one more time) by {:?}", id, reader);
        let rwlock = &mut this.machine.threads.sync.rwlocks[id];
        let count = rwlock.readers.entry(reader).or_insert(0);
        *count = count.checked_add(1).expect("the reader counter overflowed");
        if let Some(data_race) = &this.machine.data_race {
            data_race.validate_lock_acquire(&rwlock.data_race, reader);
        }
    }

    /// Try read-unlock the lock for `reader` and potentially give the lock to a new owner.
    /// Returns `true` if succeeded, `false` if this `reader` did not hold the lock.
    fn rwlock_reader_unlock(&mut self, id: RwLockId, reader: ThreadId) -> bool {
        let this = self.eval_context_mut();
        let rwlock = &mut this.machine.threads.sync.rwlocks[id];
        match rwlock.readers.entry(reader) {
            Entry::Occupied(mut entry) => {
                let count = entry.get_mut();
                assert!(*count > 0, "rwlock locked with count == 0");
                *count -= 1;
                if *count == 0 {
                    trace!("rwlock_reader_unlock: {:?} no longer held by {:?}", id, reader);
                    entry.remove();
                } else {
                    trace!("rwlock_reader_unlock: {:?} held one less time by {:?}", id, reader);
                }
            }
            Entry::Vacant(_) => return false, // we did not even own this lock
        }
        if let Some(data_race) = &this.machine.data_race {
            data_race.validate_lock_release_shared(&mut rwlock.data_race_reader, reader);
        }

        // The thread was a reader. If the lock is not held any more, give it to a writer.
        if this.rwlock_is_locked(id).not() {
            // All the readers are finished, so set the writer data-race handle to the value
            //  of the union of all reader data race handles, since the set of readers
            //  happen-before the writers
            let rwlock = &mut this.machine.threads.sync.rwlocks[id];
            rwlock.data_race.clone_from(&rwlock.data_race_reader);
            this.rwlock_dequeue_and_lock_writer(id);
        }
        true
    }

    #[inline]
    /// Put the reader in the queue waiting for the lock and block it.
    fn rwlock_enqueue_and_block_reader(&mut self, id: RwLockId, reader: ThreadId) {
        let this = self.eval_context_mut();
        assert!(this.rwlock_is_write_locked(id), "read-queueing on not write locked rwlock");
        this.machine.threads.sync.rwlocks[id].reader_queue.push_back(reader);
        this.block_thread(reader);
    }

    #[inline]
    /// Lock by setting the writer that owns the lock.
    fn rwlock_writer_lock(&mut self, id: RwLockId, writer: ThreadId) {
        let this = self.eval_context_mut();
        assert!(!this.rwlock_is_locked(id), "the rwlock is already locked");
        trace!("rwlock_writer_lock: {:?} now held by {:?}", id, writer);
        let rwlock = &mut this.machine.threads.sync.rwlocks[id];
        rwlock.writer = Some(writer);
        if let Some(data_race) = &this.machine.data_race {
            data_race.validate_lock_acquire(&rwlock.data_race, writer);
        }
    }

    #[inline]
    /// Try to unlock by removing the writer.
    fn rwlock_writer_unlock(&mut self, id: RwLockId, expected_writer: ThreadId) -> bool {
        let this = self.eval_context_mut();
        let rwlock = &mut this.machine.threads.sync.rwlocks[id];
        if let Some(current_writer) = rwlock.writer {
            if current_writer != expected_writer {
                // Only the owner can unlock the rwlock.
                return false;
            }
            rwlock.writer = None;
            trace!("rwlock_writer_unlock: {:?} unlocked by {:?}", id, expected_writer);
            // Release memory to both reader and writer vector clocks
            //  since this writer happens-before both the union of readers once they are finished
            //  and the next writer
            if let Some(data_race) = &this.machine.data_race {
                data_race.validate_lock_release(&mut rwlock.data_race, current_writer);
                data_race.validate_lock_release(&mut rwlock.data_race_reader, current_writer);
            }
            // The thread was a writer.
            //
            // We are prioritizing writers here against the readers. As a
            // result, not only readers can starve writers, but also writers can
            // starve readers.
            if this.rwlock_dequeue_and_lock_writer(id) {
                // Someone got the write lock, nice.
            } else {
                // Give the lock to all readers.
                while this.rwlock_dequeue_and_lock_reader(id) {
                    // Rinse and repeat.
                }
            }
            true
        } else {
            false
        }
    }

    #[inline]
    /// Put the writer in the queue waiting for the lock.
    fn rwlock_enqueue_and_block_writer(&mut self, id: RwLockId, writer: ThreadId) {
        let this = self.eval_context_mut();
        assert!(this.rwlock_is_locked(id), "write-queueing on unlocked rwlock");
        this.machine.threads.sync.rwlocks[id].writer_queue.push_back(writer);
        this.block_thread(writer);
    }

    #[inline]
    /// Create state for a new conditional variable.
    fn condvar_create(&mut self) -> CondvarId {
        let this = self.eval_context_mut();
        this.machine.threads.sync.condvars.push(Default::default())
    }

    #[inline]
    /// Provides the closure with the next CondvarId. Creates that Condvar if the closure returns None,
    /// otherwise returns the value from the closure
    fn condvar_get_or_create<F>(&mut self, existing: F) -> InterpResult<'tcx, CondvarId>
    where
        F: FnOnce(
            &mut MiriInterpCx<'mir, 'tcx>,
            CondvarId,
        ) -> InterpResult<'tcx, Option<CondvarId>>,
    {
        let this = self.eval_context_mut();
        let next_index = this.machine.threads.sync.condvars.next_index();
        if let Some(old) = existing(this, next_index)? {
            Ok(old)
        } else {
            let new_index = this.machine.threads.sync.condvars.push(Default::default());
            assert_eq!(next_index, new_index);
            Ok(new_index)
        }
    }

    #[inline]
    /// Is the conditional variable awaited?
    fn condvar_is_awaited(&mut self, id: CondvarId) -> bool {
        let this = self.eval_context_mut();
        !this.machine.threads.sync.condvars[id].waiters.is_empty()
    }

    /// Mark that the thread is waiting on the conditional variable.
    fn condvar_wait(&mut self, id: CondvarId, thread: ThreadId, mutex: MutexId) {
        let this = self.eval_context_mut();
        let waiters = &mut this.machine.threads.sync.condvars[id].waiters;
        assert!(waiters.iter().all(|waiter| waiter.thread != thread), "thread is already waiting");
        waiters.push_back(CondvarWaiter { thread, mutex });
    }

    /// Wake up some thread (if there is any) sleeping on the conditional
    /// variable.
    fn condvar_signal(&mut self, id: CondvarId) -> Option<(ThreadId, MutexId)> {
        let this = self.eval_context_mut();
        let current_thread = this.get_active_thread();
        let condvar = &mut this.machine.threads.sync.condvars[id];
        let data_race = &this.machine.data_race;

        // Each condvar signal happens-before the end of the condvar wake
        if let Some(data_race) = data_race {
            data_race.validate_lock_release(&mut condvar.data_race, current_thread);
        }
        condvar.waiters.pop_front().map(|waiter| {
            if let Some(data_race) = data_race {
                data_race.validate_lock_acquire(&condvar.data_race, waiter.thread);
            }
            (waiter.thread, waiter.mutex)
        })
    }

    #[inline]
    /// Remove the thread from the queue of threads waiting on this conditional variable.
    fn condvar_remove_waiter(&mut self, id: CondvarId, thread: ThreadId) {
        let this = self.eval_context_mut();
        this.machine.threads.sync.condvars[id].waiters.retain(|waiter| waiter.thread != thread);
    }

    fn futex_wait(&mut self, addr: u64, thread: ThreadId, bitset: u32) {
        let this = self.eval_context_mut();
        let futex = &mut this.machine.threads.sync.futexes.entry(addr).or_default();
        let waiters = &mut futex.waiters;
        assert!(waiters.iter().all(|waiter| waiter.thread != thread), "thread is already waiting");
        waiters.push_back(FutexWaiter { thread, bitset });
    }

    fn futex_wake(&mut self, addr: u64, bitset: u32) -> Option<ThreadId> {
        let this = self.eval_context_mut();
        let current_thread = this.get_active_thread();
        let futex = &mut this.machine.threads.sync.futexes.get_mut(&addr)?;
        let data_race = &this.machine.data_race;

        // Each futex-wake happens-before the end of the futex wait
        if let Some(data_race) = data_race {
            data_race.validate_lock_release(&mut futex.data_race, current_thread);
        }

        // Wake up the first thread in the queue that matches any of the bits in the bitset.
        futex.waiters.iter().position(|w| w.bitset & bitset != 0).map(|i| {
            let waiter = futex.waiters.remove(i).unwrap();
            if let Some(data_race) = data_race {
                data_race.validate_lock_acquire(&futex.data_race, waiter.thread);
            }
            waiter.thread
        })
    }

    fn futex_remove_waiter(&mut self, addr: u64, thread: ThreadId) {
        let this = self.eval_context_mut();
        if let Some(futex) = this.machine.threads.sync.futexes.get_mut(&addr) {
            futex.waiters.retain(|waiter| waiter.thread != thread);
        }
    }
}