1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
use std::cmp;
use rustc_index::vec::IndexVec;
use rustc_middle::ty::error::TypeError;
rustc_index::newtype_index! {
pub(crate) struct ExpectedIdx {
DEBUG_FORMAT = "ExpectedIdx({})",
}
}
rustc_index::newtype_index! {
pub(crate) struct ProvidedIdx {
DEBUG_FORMAT = "ProvidedIdx({})",
}
}
impl ExpectedIdx {
pub fn to_provided_idx(self) -> ProvidedIdx {
ProvidedIdx::from_usize(self.as_usize())
}
}
// An issue that might be found in the compatibility matrix
#[derive(Debug)]
enum Issue {
/// The given argument is the invalid type for the input
Invalid(usize),
/// There is a missing input
Missing(usize),
/// There's a superfluous argument
Extra(usize),
/// Two arguments should be swapped
Swap(usize, usize),
/// Several arguments should be reordered
Permutation(Vec<Option<usize>>),
}
#[derive(Clone, Debug)]
pub(crate) enum Compatibility<'tcx> {
Compatible,
Incompatible(Option<TypeError<'tcx>>),
}
/// Similar to `Issue`, but contains some extra information
#[derive(Debug)]
pub(crate) enum Error<'tcx> {
/// The provided argument is the invalid type for the expected input
Invalid(ProvidedIdx, ExpectedIdx, Compatibility<'tcx>),
/// There is a missing input
Missing(ExpectedIdx),
/// There's a superfluous argument
Extra(ProvidedIdx),
/// Two arguments should be swapped
Swap(ProvidedIdx, ProvidedIdx, ExpectedIdx, ExpectedIdx),
/// Several arguments should be reordered
Permutation(Vec<(ExpectedIdx, ProvidedIdx)>),
}
pub(crate) struct ArgMatrix<'tcx> {
/// Maps the indices in the `compatibility_matrix` rows to the indices of
/// the *user provided* inputs
provided_indices: Vec<ProvidedIdx>,
/// Maps the indices in the `compatibility_matrix` columns to the indices
/// of the *expected* args
expected_indices: Vec<ExpectedIdx>,
/// The first dimension (rows) are the remaining user provided inputs to
/// match and the second dimension (cols) are the remaining expected args
/// to match
compatibility_matrix: Vec<Vec<Compatibility<'tcx>>>,
}
impl<'tcx> ArgMatrix<'tcx> {
pub(crate) fn new<F: FnMut(ProvidedIdx, ExpectedIdx) -> Compatibility<'tcx>>(
provided_count: usize,
expected_input_count: usize,
mut is_compatible: F,
) -> Self {
let compatibility_matrix = (0..provided_count)
.map(|i| {
(0..expected_input_count)
.map(|j| is_compatible(ProvidedIdx::from_usize(i), ExpectedIdx::from_usize(j)))
.collect()
})
.collect();
ArgMatrix {
provided_indices: (0..provided_count).map(ProvidedIdx::from_usize).collect(),
expected_indices: (0..expected_input_count).map(ExpectedIdx::from_usize).collect(),
compatibility_matrix,
}
}
/// Remove a given input from consideration
fn eliminate_provided(&mut self, idx: usize) {
self.provided_indices.remove(idx);
self.compatibility_matrix.remove(idx);
}
/// Remove a given argument from consideration
fn eliminate_expected(&mut self, idx: usize) {
self.expected_indices.remove(idx);
for row in &mut self.compatibility_matrix {
row.remove(idx);
}
}
/// "satisfy" an input with a given arg, removing both from consideration
fn satisfy_input(&mut self, provided_idx: usize, expected_idx: usize) {
self.eliminate_provided(provided_idx);
self.eliminate_expected(expected_idx);
}
// Returns a `Vec` of (user input, expected arg) of matched arguments. These
// are inputs on the remaining diagonal that match.
fn eliminate_satisfied(&mut self) -> Vec<(ProvidedIdx, ExpectedIdx)> {
let num_args = cmp::min(self.provided_indices.len(), self.expected_indices.len());
let mut eliminated = vec![];
for i in (0..num_args).rev() {
if matches!(self.compatibility_matrix[i][i], Compatibility::Compatible) {
eliminated.push((self.provided_indices[i], self.expected_indices[i]));
self.satisfy_input(i, i);
}
}
eliminated
}
// Find some issue in the compatibility matrix
fn find_issue(&self) -> Option<Issue> {
let mat = &self.compatibility_matrix;
let ai = &self.expected_indices;
let ii = &self.provided_indices;
// Issue: 100478, when we end the iteration,
// `next_unmatched_idx` will point to the index of the first unmatched
let mut next_unmatched_idx = 0;
for i in 0..cmp::max(ai.len(), ii.len()) {
// If we eliminate the last row, any left-over arguments are considered missing
if i >= mat.len() {
return Some(Issue::Missing(next_unmatched_idx));
}
// If we eliminate the last column, any left-over inputs are extra
if mat[i].len() == 0 {
return Some(Issue::Extra(next_unmatched_idx));
}
// Make sure we don't pass the bounds of our matrix
let is_arg = i < ai.len();
let is_input = i < ii.len();
if is_arg && is_input && matches!(mat[i][i], Compatibility::Compatible) {
// This is a satisfied input, so move along
next_unmatched_idx += 1;
continue;
}
let mut useless = true;
let mut unsatisfiable = true;
if is_arg {
for j in 0..ii.len() {
// If we find at least one input this argument could satisfy
// this argument isn't unsatisfiable
if matches!(mat[j][i], Compatibility::Compatible) {
unsatisfiable = false;
break;
}
}
}
if is_input {
for j in 0..ai.len() {
// If we find at least one argument that could satisfy this input
// this input isn't useless
if matches!(mat[i][j], Compatibility::Compatible) {
useless = false;
break;
}
}
}
match (is_input, is_arg, useless, unsatisfiable) {
// If an argument is unsatisfied, and the input in its position is useless
// then the most likely explanation is that we just got the types wrong
(true, true, true, true) => return Some(Issue::Invalid(i)),
// Otherwise, if an input is useless, then indicate that this is an extra argument
(true, _, true, _) => return Some(Issue::Extra(i)),
// Otherwise, if an argument is unsatisfiable, indicate that it's missing
(_, true, _, true) => return Some(Issue::Missing(i)),
(true, true, _, _) => {
// The argument isn't useless, and the input isn't unsatisfied,
// so look for a parameter we might swap it with
// We look for swaps explicitly, instead of just falling back on permutations
// so that cases like (A,B,C,D) given (B,A,D,C) show up as two swaps,
// instead of a large permutation of 4 elements.
for j in 0..cmp::min(ai.len(), ii.len()) {
if i == j || matches!(mat[j][j], Compatibility::Compatible) {
continue;
}
if matches!(mat[i][j], Compatibility::Compatible)
&& matches!(mat[j][i], Compatibility::Compatible)
{
return Some(Issue::Swap(i, j));
}
}
}
_ => {
continue;
}
}
}
// We didn't find any of the individual issues above, but
// there might be a larger permutation of parameters, so we now check for that
// by checking for cycles
// We use a double option at position i in this vec to represent:
// - None: We haven't computed anything about this argument yet
// - Some(None): This argument definitely doesn't participate in a cycle
// - Some(Some(x)): the i-th argument could permute to the x-th position
let mut permutation: Vec<Option<Option<usize>>> = vec![None; mat.len()];
let mut permutation_found = false;
for i in 0..mat.len() {
if permutation[i].is_some() {
// We've already decided whether this argument is or is not in a loop
continue;
}
let mut stack = vec![];
let mut j = i;
let mut last = i;
let mut is_cycle = true;
loop {
stack.push(j);
// Look for params this one could slot into
let compat: Vec<_> =
mat[j]
.iter()
.enumerate()
.filter_map(|(i, c)| {
if matches!(c, Compatibility::Compatible) { Some(i) } else { None }
})
.collect();
if compat.len() < 1 {
// try to find a cycle even when this could go into multiple slots, see #101097
is_cycle = false;
break;
}
j = compat[0];
if stack.contains(&j) {
last = j;
break;
}
}
if stack.len() <= 2 {
// If we encounter a cycle of 1 or 2 elements, we'll let the
// "satisfy" and "swap" code above handle those
is_cycle = false;
}
// We've built up some chain, some of which might be a cycle
// ex: [1,2,3,4]; last = 2; j = 2;
// So, we want to mark 4, 3, and 2 as part of a permutation
permutation_found = is_cycle;
while let Some(x) = stack.pop() {
if is_cycle {
permutation[x] = Some(Some(j));
j = x;
if j == last {
// From here on out, we're a tail leading into a cycle,
// not the cycle itself
is_cycle = false;
}
} else {
// Some(None) ensures we save time by skipping this argument again
permutation[x] = Some(None);
}
}
}
if permutation_found {
// Map unwrap to remove the first layer of Some
let final_permutation: Vec<Option<usize>> =
permutation.into_iter().map(|x| x.unwrap()).collect();
return Some(Issue::Permutation(final_permutation));
}
return None;
}
// Obviously, detecting exact user intention is impossible, so the goal here is to
// come up with as likely of a story as we can to be helpful.
//
// We'll iteratively removed "satisfied" input/argument pairs,
// then check for the cases above, until we've eliminated the entire grid
//
// We'll want to know which arguments and inputs these rows and columns correspond to
// even after we delete them.
pub(crate) fn find_errors(
mut self,
) -> (Vec<Error<'tcx>>, IndexVec<ExpectedIdx, Option<ProvidedIdx>>) {
let provided_arg_count = self.provided_indices.len();
let mut errors: Vec<Error<'tcx>> = vec![];
// For each expected argument, the matched *actual* input
let mut matched_inputs: IndexVec<ExpectedIdx, Option<ProvidedIdx>> =
IndexVec::from_elem_n(None, self.expected_indices.len());
// Before we start looking for issues, eliminate any arguments that are already satisfied,
// so that an argument which is already spoken for by the input it's in doesn't
// spill over into another similarly typed input
// ex:
// fn some_func(_a: i32, _b: i32) {}
// some_func(1, "");
// Without this elimination, the first argument causes the second argument
// to show up as both a missing input and extra argument, rather than
// just an invalid type.
for (provided, expected) in self.eliminate_satisfied() {
matched_inputs[expected] = Some(provided);
}
while !self.provided_indices.is_empty() || !self.expected_indices.is_empty() {
let res = self.find_issue();
match res {
Some(Issue::Invalid(idx)) => {
let compatibility = self.compatibility_matrix[idx][idx].clone();
let input_idx = self.provided_indices[idx];
let arg_idx = self.expected_indices[idx];
self.satisfy_input(idx, idx);
errors.push(Error::Invalid(input_idx, arg_idx, compatibility));
}
Some(Issue::Extra(idx)) => {
let input_idx = self.provided_indices[idx];
self.eliminate_provided(idx);
errors.push(Error::Extra(input_idx));
}
Some(Issue::Missing(idx)) => {
let arg_idx = self.expected_indices[idx];
self.eliminate_expected(idx);
errors.push(Error::Missing(arg_idx));
}
Some(Issue::Swap(idx, other)) => {
let input_idx = self.provided_indices[idx];
let other_input_idx = self.provided_indices[other];
let arg_idx = self.expected_indices[idx];
let other_arg_idx = self.expected_indices[other];
let (min, max) = (cmp::min(idx, other), cmp::max(idx, other));
self.satisfy_input(min, max);
// Subtract 1 because we already removed the "min" row
self.satisfy_input(max - 1, min);
errors.push(Error::Swap(input_idx, other_input_idx, arg_idx, other_arg_idx));
matched_inputs[other_arg_idx] = Some(input_idx);
matched_inputs[arg_idx] = Some(other_input_idx);
}
Some(Issue::Permutation(args)) => {
let mut idxs: Vec<usize> = args.iter().filter_map(|&a| a).collect();
let mut real_idxs: IndexVec<ProvidedIdx, Option<(ExpectedIdx, ProvidedIdx)>> =
IndexVec::from_elem_n(None, provided_arg_count);
for (src, dst) in
args.iter().enumerate().filter_map(|(src, dst)| dst.map(|dst| (src, dst)))
{
let src_input_idx = self.provided_indices[src];
let dst_input_idx = self.provided_indices[dst];
let dest_arg_idx = self.expected_indices[dst];
real_idxs[src_input_idx] = Some((dest_arg_idx, dst_input_idx));
matched_inputs[dest_arg_idx] = Some(src_input_idx);
}
idxs.sort();
idxs.reverse();
for i in idxs {
self.satisfy_input(i, i);
}
errors.push(Error::Permutation(real_idxs.into_iter().flatten().collect()));
}
None => {
// We didn't find any issues, so we need to push the algorithm forward
// First, eliminate any arguments that currently satisfy their inputs
let eliminated = self.eliminate_satisfied();
assert!(!eliminated.is_empty(), "didn't eliminated any indice in this round");
for (inp, arg) in eliminated {
matched_inputs[arg] = Some(inp);
}
}
};
}
return (errors, matched_inputs);
}
}