1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
use std::cmp;

use rustc_index::vec::IndexVec;
use rustc_middle::ty::error::TypeError;

rustc_index::newtype_index! {
    pub(crate) struct ExpectedIdx {
        DEBUG_FORMAT = "ExpectedIdx({})",
    }
}

rustc_index::newtype_index! {
    pub(crate) struct ProvidedIdx {
        DEBUG_FORMAT = "ProvidedIdx({})",
    }
}

impl ExpectedIdx {
    pub fn to_provided_idx(self) -> ProvidedIdx {
        ProvidedIdx::from_usize(self.as_usize())
    }
}

// An issue that might be found in the compatibility matrix
#[derive(Debug)]
enum Issue {
    /// The given argument is the invalid type for the input
    Invalid(usize),
    /// There is a missing input
    Missing(usize),
    /// There's a superfluous argument
    Extra(usize),
    /// Two arguments should be swapped
    Swap(usize, usize),
    /// Several arguments should be reordered
    Permutation(Vec<Option<usize>>),
}

#[derive(Clone, Debug)]
pub(crate) enum Compatibility<'tcx> {
    Compatible,
    Incompatible(Option<TypeError<'tcx>>),
}

/// Similar to `Issue`, but contains some extra information
#[derive(Debug)]
pub(crate) enum Error<'tcx> {
    /// The provided argument is the invalid type for the expected input
    Invalid(ProvidedIdx, ExpectedIdx, Compatibility<'tcx>),
    /// There is a missing input
    Missing(ExpectedIdx),
    /// There's a superfluous argument
    Extra(ProvidedIdx),
    /// Two arguments should be swapped
    Swap(ProvidedIdx, ProvidedIdx, ExpectedIdx, ExpectedIdx),
    /// Several arguments should be reordered
    Permutation(Vec<(ExpectedIdx, ProvidedIdx)>),
}

pub(crate) struct ArgMatrix<'tcx> {
    /// Maps the indices in the `compatibility_matrix` rows to the indices of
    /// the *user provided* inputs
    provided_indices: Vec<ProvidedIdx>,
    /// Maps the indices in the `compatibility_matrix` columns to the indices
    /// of the *expected* args
    expected_indices: Vec<ExpectedIdx>,
    /// The first dimension (rows) are the remaining user provided inputs to
    /// match and the second dimension (cols) are the remaining expected args
    /// to match
    compatibility_matrix: Vec<Vec<Compatibility<'tcx>>>,
}

impl<'tcx> ArgMatrix<'tcx> {
    pub(crate) fn new<F: FnMut(ProvidedIdx, ExpectedIdx) -> Compatibility<'tcx>>(
        provided_count: usize,
        expected_input_count: usize,
        mut is_compatible: F,
    ) -> Self {
        let compatibility_matrix = (0..provided_count)
            .map(|i| {
                (0..expected_input_count)
                    .map(|j| is_compatible(ProvidedIdx::from_usize(i), ExpectedIdx::from_usize(j)))
                    .collect()
            })
            .collect();
        ArgMatrix {
            provided_indices: (0..provided_count).map(ProvidedIdx::from_usize).collect(),
            expected_indices: (0..expected_input_count).map(ExpectedIdx::from_usize).collect(),
            compatibility_matrix,
        }
    }

    /// Remove a given input from consideration
    fn eliminate_provided(&mut self, idx: usize) {
        self.provided_indices.remove(idx);
        self.compatibility_matrix.remove(idx);
    }

    /// Remove a given argument from consideration
    fn eliminate_expected(&mut self, idx: usize) {
        self.expected_indices.remove(idx);
        for row in &mut self.compatibility_matrix {
            row.remove(idx);
        }
    }

    /// "satisfy" an input with a given arg, removing both from consideration
    fn satisfy_input(&mut self, provided_idx: usize, expected_idx: usize) {
        self.eliminate_provided(provided_idx);
        self.eliminate_expected(expected_idx);
    }

    // Returns a `Vec` of (user input, expected arg) of matched arguments. These
    // are inputs on the remaining diagonal that match.
    fn eliminate_satisfied(&mut self) -> Vec<(ProvidedIdx, ExpectedIdx)> {
        let num_args = cmp::min(self.provided_indices.len(), self.expected_indices.len());
        let mut eliminated = vec![];
        for i in (0..num_args).rev() {
            if matches!(self.compatibility_matrix[i][i], Compatibility::Compatible) {
                eliminated.push((self.provided_indices[i], self.expected_indices[i]));
                self.satisfy_input(i, i);
            }
        }
        eliminated
    }

    // Find some issue in the compatibility matrix
    fn find_issue(&self) -> Option<Issue> {
        let mat = &self.compatibility_matrix;
        let ai = &self.expected_indices;
        let ii = &self.provided_indices;

        // Issue: 100478, when we end the iteration,
        // `next_unmatched_idx` will point to the index of the first unmatched
        let mut next_unmatched_idx = 0;
        for i in 0..cmp::max(ai.len(), ii.len()) {
            // If we eliminate the last row, any left-over arguments are considered missing
            if i >= mat.len() {
                return Some(Issue::Missing(next_unmatched_idx));
            }
            // If we eliminate the last column, any left-over inputs are extra
            if mat[i].len() == 0 {
                return Some(Issue::Extra(next_unmatched_idx));
            }

            // Make sure we don't pass the bounds of our matrix
            let is_arg = i < ai.len();
            let is_input = i < ii.len();
            if is_arg && is_input && matches!(mat[i][i], Compatibility::Compatible) {
                // This is a satisfied input, so move along
                next_unmatched_idx += 1;
                continue;
            }

            let mut useless = true;
            let mut unsatisfiable = true;
            if is_arg {
                for j in 0..ii.len() {
                    // If we find at least one input this argument could satisfy
                    // this argument isn't unsatisfiable
                    if matches!(mat[j][i], Compatibility::Compatible) {
                        unsatisfiable = false;
                        break;
                    }
                }
            }
            if is_input {
                for j in 0..ai.len() {
                    // If we find at least one argument that could satisfy this input
                    // this input isn't useless
                    if matches!(mat[i][j], Compatibility::Compatible) {
                        useless = false;
                        break;
                    }
                }
            }

            match (is_input, is_arg, useless, unsatisfiable) {
                // If an argument is unsatisfied, and the input in its position is useless
                // then the most likely explanation is that we just got the types wrong
                (true, true, true, true) => return Some(Issue::Invalid(i)),
                // Otherwise, if an input is useless, then indicate that this is an extra argument
                (true, _, true, _) => return Some(Issue::Extra(i)),
                // Otherwise, if an argument is unsatisfiable, indicate that it's missing
                (_, true, _, true) => return Some(Issue::Missing(i)),
                (true, true, _, _) => {
                    // The argument isn't useless, and the input isn't unsatisfied,
                    // so look for a parameter we might swap it with
                    // We look for swaps explicitly, instead of just falling back on permutations
                    // so that cases like (A,B,C,D) given (B,A,D,C) show up as two swaps,
                    // instead of a large permutation of 4 elements.
                    for j in 0..cmp::min(ai.len(), ii.len()) {
                        if i == j || matches!(mat[j][j], Compatibility::Compatible) {
                            continue;
                        }
                        if matches!(mat[i][j], Compatibility::Compatible)
                            && matches!(mat[j][i], Compatibility::Compatible)
                        {
                            return Some(Issue::Swap(i, j));
                        }
                    }
                }
                _ => {
                    continue;
                }
            }
        }

        // We didn't find any of the individual issues above, but
        // there might be a larger permutation of parameters, so we now check for that
        // by checking for cycles
        // We use a double option at position i in this vec to represent:
        // - None: We haven't computed anything about this argument yet
        // - Some(None): This argument definitely doesn't participate in a cycle
        // - Some(Some(x)): the i-th argument could permute to the x-th position
        let mut permutation: Vec<Option<Option<usize>>> = vec![None; mat.len()];
        let mut permutation_found = false;
        for i in 0..mat.len() {
            if permutation[i].is_some() {
                // We've already decided whether this argument is or is not in a loop
                continue;
            }

            let mut stack = vec![];
            let mut j = i;
            let mut last = i;
            let mut is_cycle = true;
            loop {
                stack.push(j);
                // Look for params this one could slot into
                let compat: Vec<_> =
                    mat[j]
                        .iter()
                        .enumerate()
                        .filter_map(|(i, c)| {
                            if matches!(c, Compatibility::Compatible) { Some(i) } else { None }
                        })
                        .collect();
                if compat.len() < 1 {
                    // try to find a cycle even when this could go into multiple slots, see #101097
                    is_cycle = false;
                    break;
                }
                j = compat[0];
                if stack.contains(&j) {
                    last = j;
                    break;
                }
            }
            if stack.len() <= 2 {
                // If we encounter a cycle of 1 or 2 elements, we'll let the
                // "satisfy" and "swap" code above handle those
                is_cycle = false;
            }
            // We've built up some chain, some of which might be a cycle
            // ex: [1,2,3,4]; last = 2; j = 2;
            // So, we want to mark 4, 3, and 2 as part of a permutation
            permutation_found = is_cycle;
            while let Some(x) = stack.pop() {
                if is_cycle {
                    permutation[x] = Some(Some(j));
                    j = x;
                    if j == last {
                        // From here on out, we're a tail leading into a cycle,
                        // not the cycle itself
                        is_cycle = false;
                    }
                } else {
                    // Some(None) ensures we save time by skipping this argument again
                    permutation[x] = Some(None);
                }
            }
        }

        if permutation_found {
            // Map unwrap to remove the first layer of Some
            let final_permutation: Vec<Option<usize>> =
                permutation.into_iter().map(|x| x.unwrap()).collect();
            return Some(Issue::Permutation(final_permutation));
        }
        return None;
    }

    // Obviously, detecting exact user intention is impossible, so the goal here is to
    // come up with as likely of a story as we can to be helpful.
    //
    // We'll iteratively removed "satisfied" input/argument pairs,
    // then check for the cases above, until we've eliminated the entire grid
    //
    // We'll want to know which arguments and inputs these rows and columns correspond to
    // even after we delete them.
    pub(crate) fn find_errors(
        mut self,
    ) -> (Vec<Error<'tcx>>, IndexVec<ExpectedIdx, Option<ProvidedIdx>>) {
        let provided_arg_count = self.provided_indices.len();

        let mut errors: Vec<Error<'tcx>> = vec![];
        // For each expected argument, the matched *actual* input
        let mut matched_inputs: IndexVec<ExpectedIdx, Option<ProvidedIdx>> =
            IndexVec::from_elem_n(None, self.expected_indices.len());

        // Before we start looking for issues, eliminate any arguments that are already satisfied,
        // so that an argument which is already spoken for by the input it's in doesn't
        // spill over into another similarly typed input
        // ex:
        //   fn some_func(_a: i32, _b: i32) {}
        //   some_func(1, "");
        // Without this elimination, the first argument causes the second argument
        // to show up as both a missing input and extra argument, rather than
        // just an invalid type.
        for (provided, expected) in self.eliminate_satisfied() {
            matched_inputs[expected] = Some(provided);
        }

        while !self.provided_indices.is_empty() || !self.expected_indices.is_empty() {
            let res = self.find_issue();
            match res {
                Some(Issue::Invalid(idx)) => {
                    let compatibility = self.compatibility_matrix[idx][idx].clone();
                    let input_idx = self.provided_indices[idx];
                    let arg_idx = self.expected_indices[idx];
                    self.satisfy_input(idx, idx);
                    errors.push(Error::Invalid(input_idx, arg_idx, compatibility));
                }
                Some(Issue::Extra(idx)) => {
                    let input_idx = self.provided_indices[idx];
                    self.eliminate_provided(idx);
                    errors.push(Error::Extra(input_idx));
                }
                Some(Issue::Missing(idx)) => {
                    let arg_idx = self.expected_indices[idx];
                    self.eliminate_expected(idx);
                    errors.push(Error::Missing(arg_idx));
                }
                Some(Issue::Swap(idx, other)) => {
                    let input_idx = self.provided_indices[idx];
                    let other_input_idx = self.provided_indices[other];
                    let arg_idx = self.expected_indices[idx];
                    let other_arg_idx = self.expected_indices[other];
                    let (min, max) = (cmp::min(idx, other), cmp::max(idx, other));
                    self.satisfy_input(min, max);
                    // Subtract 1 because we already removed the "min" row
                    self.satisfy_input(max - 1, min);
                    errors.push(Error::Swap(input_idx, other_input_idx, arg_idx, other_arg_idx));
                    matched_inputs[other_arg_idx] = Some(input_idx);
                    matched_inputs[arg_idx] = Some(other_input_idx);
                }
                Some(Issue::Permutation(args)) => {
                    let mut idxs: Vec<usize> = args.iter().filter_map(|&a| a).collect();

                    let mut real_idxs: IndexVec<ProvidedIdx, Option<(ExpectedIdx, ProvidedIdx)>> =
                        IndexVec::from_elem_n(None, provided_arg_count);
                    for (src, dst) in
                        args.iter().enumerate().filter_map(|(src, dst)| dst.map(|dst| (src, dst)))
                    {
                        let src_input_idx = self.provided_indices[src];
                        let dst_input_idx = self.provided_indices[dst];
                        let dest_arg_idx = self.expected_indices[dst];
                        real_idxs[src_input_idx] = Some((dest_arg_idx, dst_input_idx));
                        matched_inputs[dest_arg_idx] = Some(src_input_idx);
                    }
                    idxs.sort();
                    idxs.reverse();
                    for i in idxs {
                        self.satisfy_input(i, i);
                    }
                    errors.push(Error::Permutation(real_idxs.into_iter().flatten().collect()));
                }
                None => {
                    // We didn't find any issues, so we need to push the algorithm forward
                    // First, eliminate any arguments that currently satisfy their inputs
                    let eliminated = self.eliminate_satisfied();
                    assert!(!eliminated.is_empty(), "didn't eliminated any indice in this round");
                    for (inp, arg) in eliminated {
                        matched_inputs[arg] = Some(inp);
                    }
                }
            };
        }

        return (errors, matched_inputs);
    }
}