1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
//! Simplifying Candidates
//!
//! *Simplifying* a match pair `place @ pattern` means breaking it down
//! into bindings or other, simpler match pairs. For example:
//!
//! - `place @ (P1, P2)` can be simplified to `[place.0 @ P1, place.1 @ P2]`
//! - `place @ x` can be simplified to `[]` by binding `x` to `place`
//!
//! The `simplify_candidate` routine just repeatedly applies these
//! sort of simplifications until there is nothing left to
//! simplify. Match pairs cannot be simplified if they require some
//! sort of test: for example, testing which variant an enum is, or
//! testing a value against a constant.

use crate::build::expr::as_place::PlaceBuilder;
use crate::build::matches::{Ascription, Binding, Candidate, MatchPair};
use crate::build::Builder;
use rustc_hir::RangeEnd;
use rustc_middle::thir::{self, *};
use rustc_middle::ty;
use rustc_middle::ty::layout::IntegerExt;
use rustc_target::abi::{Integer, Size};

use std::mem;

impl<'a, 'tcx> Builder<'a, 'tcx> {
    /// Simplify a candidate so that all match pairs require a test.
    ///
    /// This method will also split a candidate, in which the only
    /// match-pair is an or-pattern, into multiple candidates.
    /// This is so that
    ///
    /// match x {
    ///     0 | 1 => { ... },
    ///     2 | 3 => { ... },
    /// }
    ///
    /// only generates a single switch. If this happens this method returns
    /// `true`.
    #[instrument(skip(self, candidate), level = "debug")]
    pub(super) fn simplify_candidate<'pat>(
        &mut self,
        candidate: &mut Candidate<'pat, 'tcx>,
    ) -> bool {
        // repeatedly simplify match pairs until fixed point is reached
        debug!("{candidate:#?}");

        // existing_bindings and new_bindings exists to keep the semantics in order.
        // Reversing the binding order for bindings after `@` changes the binding order in places
        // it shouldn't be changed, for example `let (Some(a), Some(b)) = (x, y)`
        //
        // To avoid this, the binding occurs in the following manner:
        // * the bindings for one iteration of the following loop occurs in order (i.e. left to
        // right)
        // * the bindings from the previous iteration of the loop is prepended to the bindings from
        // the current iteration (in the implementation this is done by mem::swap and extend)
        // * after all iterations, these new bindings are then appended to the bindings that were
        // preexisting (i.e. `candidate.binding` when the function was called).
        //
        // example:
        // candidate.bindings = [1, 2, 3]
        // binding in iter 1: [4, 5]
        // binding in iter 2: [6, 7]
        //
        // final binding: [1, 2, 3, 6, 7, 4, 5]
        let mut existing_bindings = mem::take(&mut candidate.bindings);
        let mut new_bindings = Vec::new();
        loop {
            let match_pairs = mem::take(&mut candidate.match_pairs);

            if let [MatchPair { pattern: Pat { kind: PatKind::Or { pats }, .. }, place }] =
                &*match_pairs
            {
                existing_bindings.extend_from_slice(&new_bindings);
                mem::swap(&mut candidate.bindings, &mut existing_bindings);
                candidate.subcandidates =
                    self.create_or_subcandidates(candidate, place.clone(), pats);
                return true;
            }

            let mut changed = false;
            for match_pair in match_pairs {
                match self.simplify_match_pair(match_pair, candidate) {
                    Ok(()) => {
                        changed = true;
                    }
                    Err(match_pair) => {
                        candidate.match_pairs.push(match_pair);
                    }
                }
            }
            // Avoid issue #69971: the binding order should be right to left if there are more
            // bindings after `@` to please the borrow checker
            // Ex
            // struct NonCopyStruct {
            //     copy_field: u32,
            // }
            //
            // fn foo1(x: NonCopyStruct) {
            //     let y @ NonCopyStruct { copy_field: z } = x;
            //     // the above should turn into
            //     let z = x.copy_field;
            //     let y = x;
            // }
            candidate.bindings.extend_from_slice(&new_bindings);
            mem::swap(&mut candidate.bindings, &mut new_bindings);
            candidate.bindings.clear();

            if !changed {
                existing_bindings.extend_from_slice(&new_bindings);
                mem::swap(&mut candidate.bindings, &mut existing_bindings);
                // Move or-patterns to the end, because they can result in us
                // creating additional candidates, so we want to test them as
                // late as possible.
                candidate
                    .match_pairs
                    .sort_by_key(|pair| matches!(pair.pattern.kind, PatKind::Or { .. }));
                debug!(simplified = ?candidate, "simplify_candidate");
                return false; // if we were not able to simplify any, done.
            }
        }
    }

    /// Given `candidate` that has a single or-pattern for its match-pairs,
    /// creates a fresh candidate for each of its input subpatterns passed via
    /// `pats`.
    fn create_or_subcandidates<'pat>(
        &mut self,
        candidate: &Candidate<'pat, 'tcx>,
        place: PlaceBuilder<'tcx>,
        pats: &'pat [Box<Pat<'tcx>>],
    ) -> Vec<Candidate<'pat, 'tcx>> {
        pats.iter()
            .map(|box pat| {
                let mut candidate = Candidate::new(place.clone(), pat, candidate.has_guard, self);
                self.simplify_candidate(&mut candidate);
                candidate
            })
            .collect()
    }

    /// Tries to simplify `match_pair`, returning `Ok(())` if
    /// successful. If successful, new match pairs and bindings will
    /// have been pushed into the candidate. If no simplification is
    /// possible, `Err` is returned and no changes are made to
    /// candidate.
    fn simplify_match_pair<'pat>(
        &mut self,
        match_pair: MatchPair<'pat, 'tcx>,
        candidate: &mut Candidate<'pat, 'tcx>,
    ) -> Result<(), MatchPair<'pat, 'tcx>> {
        let tcx = self.tcx;
        match match_pair.pattern.kind {
            PatKind::AscribeUserType {
                ref subpattern,
                ascription: thir::Ascription { ref annotation, variance },
            } => {
                // Apply the type ascription to the value at `match_pair.place`, which is the
                if let Ok(place_resolved) = match_pair.place.clone().try_upvars_resolved(self) {
                    candidate.ascriptions.push(Ascription {
                        annotation: annotation.clone(),
                        source: place_resolved.into_place(self),
                        variance,
                    });
                }

                candidate.match_pairs.push(MatchPair::new(match_pair.place, subpattern, self));

                Ok(())
            }

            PatKind::Wild => {
                // nothing left to do
                Ok(())
            }

            PatKind::Binding {
                name: _,
                mutability: _,
                mode,
                var,
                ty: _,
                ref subpattern,
                is_primary: _,
            } => {
                if let Ok(place_resolved) = match_pair.place.clone().try_upvars_resolved(self) {
                    candidate.bindings.push(Binding {
                        span: match_pair.pattern.span,
                        source: place_resolved.into_place(self),
                        var_id: var,
                        binding_mode: mode,
                    });
                }

                if let Some(subpattern) = subpattern.as_ref() {
                    // this is the `x @ P` case; have to keep matching against `P` now
                    candidate.match_pairs.push(MatchPair::new(match_pair.place, subpattern, self));
                }

                Ok(())
            }

            PatKind::Constant { .. } => {
                // FIXME normalize patterns when possible
                Err(match_pair)
            }

            PatKind::Range(box PatRange { lo, hi, end }) => {
                let (range, bias) = match *lo.ty().kind() {
                    ty::Char => {
                        (Some(('\u{0000}' as u128, '\u{10FFFF}' as u128, Size::from_bits(32))), 0)
                    }
                    ty::Int(ity) => {
                        let size = Integer::from_int_ty(&tcx, ity).size();
                        let max = size.truncate(u128::MAX);
                        let bias = 1u128 << (size.bits() - 1);
                        (Some((0, max, size)), bias)
                    }
                    ty::Uint(uty) => {
                        let size = Integer::from_uint_ty(&tcx, uty).size();
                        let max = size.truncate(u128::MAX);
                        (Some((0, max, size)), 0)
                    }
                    _ => (None, 0),
                };
                if let Some((min, max, sz)) = range {
                    // We want to compare ranges numerically, but the order of the bitwise
                    // representation of signed integers does not match their numeric order. Thus,
                    // to correct the ordering, we need to shift the range of signed integers to
                    // correct the comparison. This is achieved by XORing with a bias (see
                    // pattern/_match.rs for another pertinent example of this pattern).
                    //
                    // Also, for performance, it's important to only do the second `try_to_bits` if
                    // necessary.
                    let lo = lo.try_to_bits(sz).unwrap() ^ bias;
                    if lo <= min {
                        let hi = hi.try_to_bits(sz).unwrap() ^ bias;
                        if hi > max || hi == max && end == RangeEnd::Included {
                            // Irrefutable pattern match.
                            return Ok(());
                        }
                    }
                }
                Err(match_pair)
            }

            PatKind::Slice { ref prefix, ref slice, ref suffix } => {
                if prefix.is_empty() && slice.is_some() && suffix.is_empty() {
                    // irrefutable
                    self.prefix_slice_suffix(
                        &mut candidate.match_pairs,
                        &match_pair.place,
                        prefix,
                        slice,
                        suffix,
                    );
                    Ok(())
                } else {
                    Err(match_pair)
                }
            }

            PatKind::Variant { adt_def, substs, variant_index, ref subpatterns } => {
                let irrefutable = adt_def.variants().iter_enumerated().all(|(i, v)| {
                    i == variant_index || {
                        self.tcx.features().exhaustive_patterns
                            && !v
                                .uninhabited_from(
                                    self.tcx,
                                    substs,
                                    adt_def.adt_kind(),
                                    self.param_env,
                                )
                                .is_empty()
                    }
                }) && (adt_def.did().is_local()
                    || !adt_def.is_variant_list_non_exhaustive());
                if irrefutable {
                    let place_builder = match_pair.place.downcast(adt_def, variant_index);
                    candidate
                        .match_pairs
                        .extend(self.field_match_pairs(place_builder, subpatterns));
                    Ok(())
                } else {
                    Err(match_pair)
                }
            }

            PatKind::Array { ref prefix, ref slice, ref suffix } => {
                self.prefix_slice_suffix(
                    &mut candidate.match_pairs,
                    &match_pair.place,
                    prefix,
                    slice,
                    suffix,
                );
                Ok(())
            }

            PatKind::Leaf { ref subpatterns } => {
                // tuple struct, match subpats (if any)
                candidate.match_pairs.extend(self.field_match_pairs(match_pair.place, subpatterns));
                Ok(())
            }

            PatKind::Deref { ref subpattern } => {
                let place_builder = match_pair.place.deref();
                candidate.match_pairs.push(MatchPair::new(place_builder, subpattern, self));
                Ok(())
            }

            PatKind::Or { .. } => Err(match_pair),
        }
    }
}