1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
use crate::thir::cx::region::Scope;
use crate::thir::cx::Cx;
use crate::thir::util::UserAnnotatedTyHelpers;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_hir as hir;
use rustc_hir::def::{CtorKind, CtorOf, DefKind, Res};
use rustc_index::vec::Idx;
use rustc_middle::hir::place::Place as HirPlace;
use rustc_middle::hir::place::PlaceBase as HirPlaceBase;
use rustc_middle::hir::place::ProjectionKind as HirProjectionKind;
use rustc_middle::middle::region;
use rustc_middle::mir::{self, BinOp, BorrowKind, Field, UnOp};
use rustc_middle::thir::*;
use rustc_middle::ty::adjustment::{
    Adjust, Adjustment, AutoBorrow, AutoBorrowMutability, PointerCast,
};
use rustc_middle::ty::subst::{InternalSubsts, SubstsRef};
use rustc_middle::ty::{
    self, AdtKind, InlineConstSubsts, InlineConstSubstsParts, ScalarInt, Ty, UpvarSubsts, UserType,
};
use rustc_span::def_id::DefId;
use rustc_span::Span;
use rustc_target::abi::VariantIdx;

impl<'tcx> Cx<'tcx> {
    pub(crate) fn mirror_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) -> ExprId {
        // `mirror_expr` is recursing very deep. Make sure the stack doesn't overflow.
        ensure_sufficient_stack(|| self.mirror_expr_inner(expr))
    }

    pub(crate) fn mirror_exprs(&mut self, exprs: &'tcx [hir::Expr<'tcx>]) -> Box<[ExprId]> {
        exprs.iter().map(|expr| self.mirror_expr_inner(expr)).collect()
    }

    #[instrument(level = "trace", skip(self, hir_expr))]
    pub(super) fn mirror_expr_inner(&mut self, hir_expr: &'tcx hir::Expr<'tcx>) -> ExprId {
        let temp_lifetime =
            self.rvalue_scopes.temporary_scope(self.region_scope_tree, hir_expr.hir_id.local_id);
        let expr_scope =
            region::Scope { id: hir_expr.hir_id.local_id, data: region::ScopeData::Node };

        trace!(?hir_expr.hir_id, ?hir_expr.span);

        let mut expr = self.make_mirror_unadjusted(hir_expr);

        let adjustment_span = match self.adjustment_span {
            Some((hir_id, span)) if hir_id == hir_expr.hir_id => Some(span),
            _ => None,
        };

        trace!(?expr.ty);

        // Now apply adjustments, if any.
        for adjustment in self.typeck_results.expr_adjustments(hir_expr) {
            trace!(?expr, ?adjustment);
            let span = expr.span;
            expr =
                self.apply_adjustment(hir_expr, expr, adjustment, adjustment_span.unwrap_or(span));
        }

        trace!(?expr.ty, "after adjustments");

        // Next, wrap this up in the expr's scope.
        expr = Expr {
            temp_lifetime,
            ty: expr.ty,
            span: hir_expr.span,
            kind: ExprKind::Scope {
                region_scope: expr_scope,
                value: self.thir.exprs.push(expr),
                lint_level: LintLevel::Explicit(hir_expr.hir_id),
            },
        };

        // Finally, create a destruction scope, if any.
        if let Some(region_scope) =
            self.region_scope_tree.opt_destruction_scope(hir_expr.hir_id.local_id)
        {
            expr = Expr {
                temp_lifetime,
                ty: expr.ty,
                span: hir_expr.span,
                kind: ExprKind::Scope {
                    region_scope,
                    value: self.thir.exprs.push(expr),
                    lint_level: LintLevel::Inherited,
                },
            };
        }

        // OK, all done!
        self.thir.exprs.push(expr)
    }

    fn apply_adjustment(
        &mut self,
        hir_expr: &'tcx hir::Expr<'tcx>,
        mut expr: Expr<'tcx>,
        adjustment: &Adjustment<'tcx>,
        mut span: Span,
    ) -> Expr<'tcx> {
        let Expr { temp_lifetime, .. } = expr;

        // Adjust the span from the block, to the last expression of the
        // block. This is a better span when returning a mutable reference
        // with too short a lifetime. The error message will use the span
        // from the assignment to the return place, which should only point
        // at the returned value, not the entire function body.
        //
        // fn return_short_lived<'a>(x: &'a mut i32) -> &'static mut i32 {
        //      x
        //   // ^ error message points at this expression.
        // }
        let mut adjust_span = |expr: &mut Expr<'tcx>| {
            if let ExprKind::Block { block } = expr.kind {
                if let Some(last_expr) = self.thir[block].expr {
                    span = self.thir[last_expr].span;
                    expr.span = span;
                }
            }
        };

        let kind = match adjustment.kind {
            Adjust::Pointer(PointerCast::Unsize) => {
                adjust_span(&mut expr);
                ExprKind::Pointer { cast: PointerCast::Unsize, source: self.thir.exprs.push(expr) }
            }
            Adjust::Pointer(cast) => ExprKind::Pointer { cast, source: self.thir.exprs.push(expr) },
            Adjust::NeverToAny => ExprKind::NeverToAny { source: self.thir.exprs.push(expr) },
            Adjust::Deref(None) => {
                adjust_span(&mut expr);
                ExprKind::Deref { arg: self.thir.exprs.push(expr) }
            }
            Adjust::Deref(Some(deref)) => {
                // We don't need to do call adjust_span here since
                // deref coercions always start with a built-in deref.
                let call = deref.method_call(self.tcx(), expr.ty);

                expr = Expr {
                    temp_lifetime,
                    ty: self
                        .tcx
                        .mk_ref(deref.region, ty::TypeAndMut { ty: expr.ty, mutbl: deref.mutbl }),
                    span,
                    kind: ExprKind::Borrow {
                        borrow_kind: deref.mutbl.to_borrow_kind(),
                        arg: self.thir.exprs.push(expr),
                    },
                };

                let expr = Box::new([self.thir.exprs.push(expr)]);

                self.overloaded_place(hir_expr, adjustment.target, Some(call), expr, deref.span)
            }
            Adjust::Borrow(AutoBorrow::Ref(_, m)) => ExprKind::Borrow {
                borrow_kind: m.to_borrow_kind(),
                arg: self.thir.exprs.push(expr),
            },
            Adjust::Borrow(AutoBorrow::RawPtr(mutability)) => {
                ExprKind::AddressOf { mutability, arg: self.thir.exprs.push(expr) }
            }
        };

        Expr { temp_lifetime, ty: adjustment.target, span, kind }
    }

    /// Lowers a cast expression.
    ///
    /// Dealing with user type annotations is left to the caller.
    fn mirror_expr_cast(
        &mut self,
        source: &'tcx hir::Expr<'tcx>,
        temp_lifetime: Option<Scope>,
        span: Span,
    ) -> ExprKind<'tcx> {
        let tcx = self.tcx;

        // Check to see if this cast is a "coercion cast", where the cast is actually done
        // using a coercion (or is a no-op).
        if self.typeck_results().is_coercion_cast(source.hir_id) {
            // Convert the lexpr to a vexpr.
            ExprKind::Use { source: self.mirror_expr(source) }
        } else if self.typeck_results().expr_ty(source).is_region_ptr() {
            // Special cased so that we can type check that the element
            // type of the source matches the pointed to type of the
            // destination.
            ExprKind::Pointer {
                source: self.mirror_expr(source),
                cast: PointerCast::ArrayToPointer,
            }
        } else {
            // check whether this is casting an enum variant discriminant
            // to prevent cycles, we refer to the discriminant initializer
            // which is always an integer and thus doesn't need to know the
            // enum's layout (or its tag type) to compute it during const eval
            // Example:
            // enum Foo {
            //     A,
            //     B = A as isize + 4,
            // }
            // The correct solution would be to add symbolic computations to miri,
            // so we wouldn't have to compute and store the actual value

            let hir::ExprKind::Path(ref qpath) = source.kind else {
                return ExprKind::Cast { source: self.mirror_expr(source)};
            };

            let res = self.typeck_results().qpath_res(qpath, source.hir_id);
            let ty = self.typeck_results().node_type(source.hir_id);
            let ty::Adt(adt_def, substs) = ty.kind() else {
                return ExprKind::Cast { source: self.mirror_expr(source)};
            };

            let Res::Def(DefKind::Ctor(CtorOf::Variant, CtorKind::Const), variant_ctor_id) = res else {
                return ExprKind::Cast { source: self.mirror_expr(source)};
            };

            let idx = adt_def.variant_index_with_ctor_id(variant_ctor_id);
            let (discr_did, discr_offset) = adt_def.discriminant_def_for_variant(idx);

            use rustc_middle::ty::util::IntTypeExt;
            let ty = adt_def.repr().discr_type();
            let discr_ty = ty.to_ty(tcx);

            let param_env_ty = self.param_env.and(discr_ty);
            let size = tcx
                .layout_of(param_env_ty)
                .unwrap_or_else(|e| {
                    panic!("could not compute layout for {:?}: {:?}", param_env_ty, e)
                })
                .size;

            let lit = ScalarInt::try_from_uint(discr_offset as u128, size).unwrap();
            let kind = ExprKind::NonHirLiteral { lit, user_ty: None };
            let offset = self.thir.exprs.push(Expr { temp_lifetime, ty: discr_ty, span, kind });

            let source = match discr_did {
                // in case we are offsetting from a computed discriminant
                // and not the beginning of discriminants (which is always `0`)
                Some(did) => {
                    let kind = ExprKind::NamedConst { def_id: did, substs, user_ty: None };
                    let lhs =
                        self.thir.exprs.push(Expr { temp_lifetime, ty: discr_ty, span, kind });
                    let bin = ExprKind::Binary { op: BinOp::Add, lhs, rhs: offset };
                    self.thir.exprs.push(Expr {
                        temp_lifetime,
                        ty: discr_ty,
                        span: span,
                        kind: bin,
                    })
                }
                None => offset,
            };

            ExprKind::Cast { source }
        }
    }

    fn make_mirror_unadjusted(&mut self, expr: &'tcx hir::Expr<'tcx>) -> Expr<'tcx> {
        let tcx = self.tcx;
        let expr_ty = self.typeck_results().expr_ty(expr);
        let expr_span = expr.span;
        let temp_lifetime =
            self.rvalue_scopes.temporary_scope(self.region_scope_tree, expr.hir_id.local_id);

        let kind = match expr.kind {
            // Here comes the interesting stuff:
            hir::ExprKind::MethodCall(segment, receiver, ref args, fn_span) => {
                // Rewrite a.b(c) into UFCS form like Trait::b(a, c)
                let expr = self.method_callee(expr, segment.ident.span, None);
                // When we apply adjustments to the receiver, use the span of
                // the overall method call for better diagnostics. args[0]
                // is guaranteed to exist, since a method call always has a receiver.
                let old_adjustment_span =
                    self.adjustment_span.replace((receiver.hir_id, expr_span));
                info!("Using method span: {:?}", expr.span);
                let args = std::iter::once(receiver)
                    .chain(args.iter())
                    .map(|expr| self.mirror_expr(expr))
                    .collect();
                self.adjustment_span = old_adjustment_span;
                ExprKind::Call {
                    ty: expr.ty,
                    fun: self.thir.exprs.push(expr),
                    args,
                    from_hir_call: true,
                    fn_span,
                }
            }

            hir::ExprKind::Call(ref fun, ref args) => {
                if self.typeck_results().is_method_call(expr) {
                    // The callee is something implementing Fn, FnMut, or FnOnce.
                    // Find the actual method implementation being called and
                    // build the appropriate UFCS call expression with the
                    // callee-object as expr parameter.

                    // rewrite f(u, v) into FnOnce::call_once(f, (u, v))

                    let method = self.method_callee(expr, fun.span, None);

                    let arg_tys = args.iter().map(|e| self.typeck_results().expr_ty_adjusted(e));
                    let tupled_args = Expr {
                        ty: tcx.mk_tup(arg_tys),
                        temp_lifetime,
                        span: expr.span,
                        kind: ExprKind::Tuple { fields: self.mirror_exprs(args) },
                    };
                    let tupled_args = self.thir.exprs.push(tupled_args);

                    ExprKind::Call {
                        ty: method.ty,
                        fun: self.thir.exprs.push(method),
                        args: Box::new([self.mirror_expr(fun), tupled_args]),
                        from_hir_call: true,
                        fn_span: expr.span,
                    }
                } else {
                    let adt_data =
                        if let hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) = fun.kind {
                            // Tuple-like ADTs are represented as ExprKind::Call. We convert them here.
                            expr_ty.ty_adt_def().and_then(|adt_def| match path.res {
                                Res::Def(DefKind::Ctor(_, CtorKind::Fn), ctor_id) => {
                                    Some((adt_def, adt_def.variant_index_with_ctor_id(ctor_id)))
                                }
                                Res::SelfCtor(..) => Some((adt_def, VariantIdx::new(0))),
                                _ => None,
                            })
                        } else {
                            None
                        };
                    if let Some((adt_def, index)) = adt_data {
                        let substs = self.typeck_results().node_substs(fun.hir_id);
                        let user_provided_types = self.typeck_results().user_provided_types();
                        let user_ty =
                            user_provided_types.get(fun.hir_id).copied().map(|mut u_ty| {
                                if let UserType::TypeOf(ref mut did, _) = &mut u_ty.value {
                                    *did = adt_def.did();
                                }
                                Box::new(u_ty)
                            });
                        debug!("make_mirror_unadjusted: (call) user_ty={:?}", user_ty);

                        let field_refs = args
                            .iter()
                            .enumerate()
                            .map(|(idx, e)| FieldExpr {
                                name: Field::new(idx),
                                expr: self.mirror_expr(e),
                            })
                            .collect();
                        ExprKind::Adt(Box::new(AdtExpr {
                            adt_def,
                            substs,
                            variant_index: index,
                            fields: field_refs,
                            user_ty,
                            base: None,
                        }))
                    } else {
                        ExprKind::Call {
                            ty: self.typeck_results().node_type(fun.hir_id),
                            fun: self.mirror_expr(fun),
                            args: self.mirror_exprs(args),
                            from_hir_call: true,
                            fn_span: expr.span,
                        }
                    }
                }
            }

            hir::ExprKind::AddrOf(hir::BorrowKind::Ref, mutbl, ref arg) => {
                ExprKind::Borrow { borrow_kind: mutbl.to_borrow_kind(), arg: self.mirror_expr(arg) }
            }

            hir::ExprKind::AddrOf(hir::BorrowKind::Raw, mutability, ref arg) => {
                ExprKind::AddressOf { mutability, arg: self.mirror_expr(arg) }
            }

            hir::ExprKind::Block(ref blk, _) => ExprKind::Block { block: self.mirror_block(blk) },

            hir::ExprKind::Assign(ref lhs, ref rhs, _) => {
                ExprKind::Assign { lhs: self.mirror_expr(lhs), rhs: self.mirror_expr(rhs) }
            }

            hir::ExprKind::AssignOp(op, ref lhs, ref rhs) => {
                if self.typeck_results().is_method_call(expr) {
                    let lhs = self.mirror_expr(lhs);
                    let rhs = self.mirror_expr(rhs);
                    self.overloaded_operator(expr, Box::new([lhs, rhs]))
                } else {
                    ExprKind::AssignOp {
                        op: bin_op(op.node),
                        lhs: self.mirror_expr(lhs),
                        rhs: self.mirror_expr(rhs),
                    }
                }
            }

            hir::ExprKind::Lit(ref lit) => ExprKind::Literal { lit, neg: false },

            hir::ExprKind::Binary(op, ref lhs, ref rhs) => {
                if self.typeck_results().is_method_call(expr) {
                    let lhs = self.mirror_expr(lhs);
                    let rhs = self.mirror_expr(rhs);
                    self.overloaded_operator(expr, Box::new([lhs, rhs]))
                } else {
                    // FIXME overflow
                    match op.node {
                        hir::BinOpKind::And => ExprKind::LogicalOp {
                            op: LogicalOp::And,
                            lhs: self.mirror_expr(lhs),
                            rhs: self.mirror_expr(rhs),
                        },
                        hir::BinOpKind::Or => ExprKind::LogicalOp {
                            op: LogicalOp::Or,
                            lhs: self.mirror_expr(lhs),
                            rhs: self.mirror_expr(rhs),
                        },
                        _ => {
                            let op = bin_op(op.node);
                            ExprKind::Binary {
                                op,
                                lhs: self.mirror_expr(lhs),
                                rhs: self.mirror_expr(rhs),
                            }
                        }
                    }
                }
            }

            hir::ExprKind::Index(ref lhs, ref index) => {
                if self.typeck_results().is_method_call(expr) {
                    let lhs = self.mirror_expr(lhs);
                    let index = self.mirror_expr(index);
                    self.overloaded_place(expr, expr_ty, None, Box::new([lhs, index]), expr.span)
                } else {
                    ExprKind::Index { lhs: self.mirror_expr(lhs), index: self.mirror_expr(index) }
                }
            }

            hir::ExprKind::Unary(hir::UnOp::Deref, ref arg) => {
                if self.typeck_results().is_method_call(expr) {
                    let arg = self.mirror_expr(arg);
                    self.overloaded_place(expr, expr_ty, None, Box::new([arg]), expr.span)
                } else {
                    ExprKind::Deref { arg: self.mirror_expr(arg) }
                }
            }

            hir::ExprKind::Unary(hir::UnOp::Not, ref arg) => {
                if self.typeck_results().is_method_call(expr) {
                    let arg = self.mirror_expr(arg);
                    self.overloaded_operator(expr, Box::new([arg]))
                } else {
                    ExprKind::Unary { op: UnOp::Not, arg: self.mirror_expr(arg) }
                }
            }

            hir::ExprKind::Unary(hir::UnOp::Neg, ref arg) => {
                if self.typeck_results().is_method_call(expr) {
                    let arg = self.mirror_expr(arg);
                    self.overloaded_operator(expr, Box::new([arg]))
                } else if let hir::ExprKind::Lit(ref lit) = arg.kind {
                    ExprKind::Literal { lit, neg: true }
                } else {
                    ExprKind::Unary { op: UnOp::Neg, arg: self.mirror_expr(arg) }
                }
            }

            hir::ExprKind::Struct(ref qpath, ref fields, ref base) => match expr_ty.kind() {
                ty::Adt(adt, substs) => match adt.adt_kind() {
                    AdtKind::Struct | AdtKind::Union => {
                        let user_provided_types = self.typeck_results().user_provided_types();
                        let user_ty = user_provided_types.get(expr.hir_id).copied().map(Box::new);
                        debug!("make_mirror_unadjusted: (struct/union) user_ty={:?}", user_ty);
                        ExprKind::Adt(Box::new(AdtExpr {
                            adt_def: *adt,
                            variant_index: VariantIdx::new(0),
                            substs,
                            user_ty,
                            fields: self.field_refs(fields),
                            base: base.as_ref().map(|base| FruInfo {
                                base: self.mirror_expr(base),
                                field_types: self.typeck_results().fru_field_types()[expr.hir_id]
                                    .iter()
                                    .copied()
                                    .collect(),
                            }),
                        }))
                    }
                    AdtKind::Enum => {
                        let res = self.typeck_results().qpath_res(qpath, expr.hir_id);
                        match res {
                            Res::Def(DefKind::Variant, variant_id) => {
                                assert!(base.is_none());

                                let index = adt.variant_index_with_id(variant_id);
                                let user_provided_types =
                                    self.typeck_results().user_provided_types();
                                let user_ty =
                                    user_provided_types.get(expr.hir_id).copied().map(Box::new);
                                debug!("make_mirror_unadjusted: (variant) user_ty={:?}", user_ty);
                                ExprKind::Adt(Box::new(AdtExpr {
                                    adt_def: *adt,
                                    variant_index: index,
                                    substs,
                                    user_ty,
                                    fields: self.field_refs(fields),
                                    base: None,
                                }))
                            }
                            _ => {
                                span_bug!(expr.span, "unexpected res: {:?}", res);
                            }
                        }
                    }
                },
                _ => {
                    span_bug!(expr.span, "unexpected type for struct literal: {:?}", expr_ty);
                }
            },

            hir::ExprKind::Closure { .. } => {
                let closure_ty = self.typeck_results().expr_ty(expr);
                let (def_id, substs, movability) = match *closure_ty.kind() {
                    ty::Closure(def_id, substs) => (def_id, UpvarSubsts::Closure(substs), None),
                    ty::Generator(def_id, substs, movability) => {
                        (def_id, UpvarSubsts::Generator(substs), Some(movability))
                    }
                    _ => {
                        span_bug!(expr.span, "closure expr w/o closure type: {:?}", closure_ty);
                    }
                };
                let def_id = def_id.expect_local();

                let upvars = self
                    .typeck_results
                    .closure_min_captures_flattened(def_id)
                    .zip(substs.upvar_tys())
                    .map(|(captured_place, ty)| {
                        let upvars = self.capture_upvar(expr, captured_place, ty);
                        self.thir.exprs.push(upvars)
                    })
                    .collect();

                // Convert the closure fake reads, if any, from hir `Place` to ExprRef
                let fake_reads = match self.typeck_results.closure_fake_reads.get(&def_id) {
                    Some(fake_reads) => fake_reads
                        .iter()
                        .map(|(place, cause, hir_id)| {
                            let expr = self.convert_captured_hir_place(expr, place.clone());
                            (self.thir.exprs.push(expr), *cause, *hir_id)
                        })
                        .collect(),
                    None => Vec::new(),
                };

                ExprKind::Closure(Box::new(ClosureExpr {
                    closure_id: def_id,
                    substs,
                    upvars,
                    movability,
                    fake_reads,
                }))
            }

            hir::ExprKind::Path(ref qpath) => {
                let res = self.typeck_results().qpath_res(qpath, expr.hir_id);
                self.convert_path_expr(expr, res)
            }

            hir::ExprKind::InlineAsm(ref asm) => ExprKind::InlineAsm(Box::new(InlineAsmExpr {
                template: asm.template,
                operands: asm
                    .operands
                    .iter()
                    .map(|(op, _op_sp)| match *op {
                        hir::InlineAsmOperand::In { reg, ref expr } => {
                            InlineAsmOperand::In { reg, expr: self.mirror_expr(expr) }
                        }
                        hir::InlineAsmOperand::Out { reg, late, ref expr } => {
                            InlineAsmOperand::Out {
                                reg,
                                late,
                                expr: expr.as_ref().map(|expr| self.mirror_expr(expr)),
                            }
                        }
                        hir::InlineAsmOperand::InOut { reg, late, ref expr } => {
                            InlineAsmOperand::InOut { reg, late, expr: self.mirror_expr(expr) }
                        }
                        hir::InlineAsmOperand::SplitInOut {
                            reg,
                            late,
                            ref in_expr,
                            ref out_expr,
                        } => InlineAsmOperand::SplitInOut {
                            reg,
                            late,
                            in_expr: self.mirror_expr(in_expr),
                            out_expr: out_expr.as_ref().map(|expr| self.mirror_expr(expr)),
                        },
                        hir::InlineAsmOperand::Const { ref anon_const } => {
                            let anon_const_def_id = tcx.hir().local_def_id(anon_const.hir_id);
                            let value = mir::ConstantKind::from_anon_const(
                                tcx,
                                anon_const_def_id,
                                self.param_env,
                            );
                            let span = tcx.hir().span(anon_const.hir_id);

                            InlineAsmOperand::Const { value, span }
                        }
                        hir::InlineAsmOperand::SymFn { ref anon_const } => {
                            let anon_const_def_id = tcx.hir().local_def_id(anon_const.hir_id);
                            let value = mir::ConstantKind::from_anon_const(
                                tcx,
                                anon_const_def_id,
                                self.param_env,
                            );
                            let span = tcx.hir().span(anon_const.hir_id);

                            InlineAsmOperand::SymFn { value, span }
                        }
                        hir::InlineAsmOperand::SymStatic { path: _, def_id } => {
                            InlineAsmOperand::SymStatic { def_id }
                        }
                    })
                    .collect(),
                options: asm.options,
                line_spans: asm.line_spans,
            })),

            hir::ExprKind::ConstBlock(ref anon_const) => {
                let ty = self.typeck_results().node_type(anon_const.hir_id);
                let did = tcx.hir().local_def_id(anon_const.hir_id).to_def_id();
                let typeck_root_def_id = tcx.typeck_root_def_id(did);
                let parent_substs =
                    tcx.erase_regions(InternalSubsts::identity_for_item(tcx, typeck_root_def_id));
                let substs =
                    InlineConstSubsts::new(tcx, InlineConstSubstsParts { parent_substs, ty })
                        .substs;

                ExprKind::ConstBlock { did, substs }
            }
            // Now comes the rote stuff:
            hir::ExprKind::Repeat(ref v, _) => {
                let ty = self.typeck_results().expr_ty(expr);
                let ty::Array(_, count) = ty.kind() else {
                    span_bug!(expr.span, "unexpected repeat expr ty: {:?}", ty);
                };

                ExprKind::Repeat { value: self.mirror_expr(v), count: *count }
            }
            hir::ExprKind::Ret(ref v) => {
                ExprKind::Return { value: v.as_ref().map(|v| self.mirror_expr(v)) }
            }
            hir::ExprKind::Break(dest, ref value) => match dest.target_id {
                Ok(target_id) => ExprKind::Break {
                    label: region::Scope { id: target_id.local_id, data: region::ScopeData::Node },
                    value: value.as_ref().map(|value| self.mirror_expr(value)),
                },
                Err(err) => bug!("invalid loop id for break: {}", err),
            },
            hir::ExprKind::Continue(dest) => match dest.target_id {
                Ok(loop_id) => ExprKind::Continue {
                    label: region::Scope { id: loop_id.local_id, data: region::ScopeData::Node },
                },
                Err(err) => bug!("invalid loop id for continue: {}", err),
            },
            hir::ExprKind::Let(let_expr) => ExprKind::Let {
                expr: self.mirror_expr(let_expr.init),
                pat: self.pattern_from_hir(let_expr.pat),
            },
            hir::ExprKind::If(cond, then, else_opt) => ExprKind::If {
                if_then_scope: region::Scope {
                    id: then.hir_id.local_id,
                    data: region::ScopeData::IfThen,
                },
                cond: self.mirror_expr(cond),
                then: self.mirror_expr(then),
                else_opt: else_opt.map(|el| self.mirror_expr(el)),
            },
            hir::ExprKind::Match(ref discr, ref arms, _) => ExprKind::Match {
                scrutinee: self.mirror_expr(discr),
                arms: arms.iter().map(|a| self.convert_arm(a)).collect(),
            },
            hir::ExprKind::Loop(ref body, ..) => {
                let block_ty = self.typeck_results().node_type(body.hir_id);
                let temp_lifetime = self
                    .rvalue_scopes
                    .temporary_scope(self.region_scope_tree, body.hir_id.local_id);
                let block = self.mirror_block(body);
                let body = self.thir.exprs.push(Expr {
                    ty: block_ty,
                    temp_lifetime,
                    span: self.thir[block].span,
                    kind: ExprKind::Block { block },
                });
                ExprKind::Loop { body }
            }
            hir::ExprKind::Field(ref source, ..) => ExprKind::Field {
                lhs: self.mirror_expr(source),
                variant_index: VariantIdx::new(0),
                name: Field::new(tcx.field_index(expr.hir_id, self.typeck_results)),
            },
            hir::ExprKind::Cast(ref source, ref cast_ty) => {
                // Check for a user-given type annotation on this `cast`
                let user_provided_types = self.typeck_results.user_provided_types();
                let user_ty = user_provided_types.get(cast_ty.hir_id);

                debug!(
                    "cast({:?}) has ty w/ hir_id {:?} and user provided ty {:?}",
                    expr, cast_ty.hir_id, user_ty,
                );

                let cast = self.mirror_expr_cast(*source, temp_lifetime, expr.span);

                if let Some(user_ty) = user_ty {
                    // NOTE: Creating a new Expr and wrapping a Cast inside of it may be
                    //       inefficient, revisit this when performance becomes an issue.
                    let cast_expr = self.thir.exprs.push(Expr {
                        temp_lifetime,
                        ty: expr_ty,
                        span: expr.span,
                        kind: cast,
                    });
                    debug!("make_mirror_unadjusted: (cast) user_ty={:?}", user_ty);

                    ExprKind::ValueTypeAscription {
                        source: cast_expr,
                        user_ty: Some(Box::new(*user_ty)),
                    }
                } else {
                    cast
                }
            }
            hir::ExprKind::Type(ref source, ref ty) => {
                let user_provided_types = self.typeck_results.user_provided_types();
                let user_ty = user_provided_types.get(ty.hir_id).copied().map(Box::new);
                debug!("make_mirror_unadjusted: (type) user_ty={:?}", user_ty);
                let mirrored = self.mirror_expr(source);
                if source.is_syntactic_place_expr() {
                    ExprKind::PlaceTypeAscription { source: mirrored, user_ty }
                } else {
                    ExprKind::ValueTypeAscription { source: mirrored, user_ty }
                }
            }
            hir::ExprKind::DropTemps(ref source) => {
                ExprKind::Use { source: self.mirror_expr(source) }
            }
            hir::ExprKind::Box(ref value) => ExprKind::Box { value: self.mirror_expr(value) },
            hir::ExprKind::Array(ref fields) => {
                ExprKind::Array { fields: self.mirror_exprs(fields) }
            }
            hir::ExprKind::Tup(ref fields) => ExprKind::Tuple { fields: self.mirror_exprs(fields) },

            hir::ExprKind::Yield(ref v, _) => ExprKind::Yield { value: self.mirror_expr(v) },
            hir::ExprKind::Err => unreachable!(),
        };

        Expr { temp_lifetime, ty: expr_ty, span: expr.span, kind }
    }

    fn user_substs_applied_to_res(
        &mut self,
        hir_id: hir::HirId,
        res: Res,
    ) -> Option<Box<ty::CanonicalUserType<'tcx>>> {
        debug!("user_substs_applied_to_res: res={:?}", res);
        let user_provided_type = match res {
            // A reference to something callable -- e.g., a fn, method, or
            // a tuple-struct or tuple-variant. This has the type of a
            // `Fn` but with the user-given substitutions.
            Res::Def(DefKind::Fn, _)
            | Res::Def(DefKind::AssocFn, _)
            | Res::Def(DefKind::Ctor(_, CtorKind::Fn), _)
            | Res::Def(DefKind::Const, _)
            | Res::Def(DefKind::AssocConst, _) => {
                self.typeck_results().user_provided_types().get(hir_id).copied().map(Box::new)
            }

            // A unit struct/variant which is used as a value (e.g.,
            // `None`). This has the type of the enum/struct that defines
            // this variant -- but with the substitutions given by the
            // user.
            Res::Def(DefKind::Ctor(_, CtorKind::Const), _) => {
                self.user_substs_applied_to_ty_of_hir_id(hir_id).map(Box::new)
            }

            // `Self` is used in expression as a tuple struct constructor or a unit struct constructor
            Res::SelfCtor(_) => self.user_substs_applied_to_ty_of_hir_id(hir_id).map(Box::new),

            _ => bug!("user_substs_applied_to_res: unexpected res {:?} at {:?}", res, hir_id),
        };
        debug!("user_substs_applied_to_res: user_provided_type={:?}", user_provided_type);
        user_provided_type
    }

    fn method_callee(
        &mut self,
        expr: &hir::Expr<'_>,
        span: Span,
        overloaded_callee: Option<(DefId, SubstsRef<'tcx>)>,
    ) -> Expr<'tcx> {
        let temp_lifetime =
            self.rvalue_scopes.temporary_scope(self.region_scope_tree, expr.hir_id.local_id);
        let (def_id, substs, user_ty) = match overloaded_callee {
            Some((def_id, substs)) => (def_id, substs, None),
            None => {
                let (kind, def_id) =
                    self.typeck_results().type_dependent_def(expr.hir_id).unwrap_or_else(|| {
                        span_bug!(expr.span, "no type-dependent def for method callee")
                    });
                let user_ty = self.user_substs_applied_to_res(expr.hir_id, Res::Def(kind, def_id));
                debug!("method_callee: user_ty={:?}", user_ty);
                (def_id, self.typeck_results().node_substs(expr.hir_id), user_ty)
            }
        };
        let ty = self.tcx().mk_fn_def(def_id, substs);
        Expr { temp_lifetime, ty, span, kind: ExprKind::ZstLiteral { user_ty } }
    }

    fn convert_arm(&mut self, arm: &'tcx hir::Arm<'tcx>) -> ArmId {
        let arm = Arm {
            pattern: self.pattern_from_hir(&arm.pat),
            guard: arm.guard.as_ref().map(|g| match g {
                hir::Guard::If(ref e) => Guard::If(self.mirror_expr(e)),
                hir::Guard::IfLet(ref l) => {
                    Guard::IfLet(self.pattern_from_hir(l.pat), self.mirror_expr(l.init))
                }
            }),
            body: self.mirror_expr(arm.body),
            lint_level: LintLevel::Explicit(arm.hir_id),
            scope: region::Scope { id: arm.hir_id.local_id, data: region::ScopeData::Node },
            span: arm.span,
        };
        self.thir.arms.push(arm)
    }

    fn convert_path_expr(&mut self, expr: &'tcx hir::Expr<'tcx>, res: Res) -> ExprKind<'tcx> {
        let substs = self.typeck_results().node_substs(expr.hir_id);
        match res {
            // A regular function, constructor function or a constant.
            Res::Def(DefKind::Fn, _)
            | Res::Def(DefKind::AssocFn, _)
            | Res::Def(DefKind::Ctor(_, CtorKind::Fn), _)
            | Res::SelfCtor(_) => {
                let user_ty = self.user_substs_applied_to_res(expr.hir_id, res);
                ExprKind::ZstLiteral { user_ty }
            }

            Res::Def(DefKind::ConstParam, def_id) => {
                let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
                let item_id = self.tcx.hir().get_parent_node(hir_id);
                let item_def_id = self.tcx.hir().local_def_id(item_id);
                let generics = self.tcx.generics_of(item_def_id);
                let index = generics.param_def_id_to_index[&def_id];
                let name = self.tcx.hir().name(hir_id);
                let param = ty::ParamConst::new(index, name);

                ExprKind::ConstParam { param, def_id }
            }

            Res::Def(DefKind::Const, def_id) | Res::Def(DefKind::AssocConst, def_id) => {
                let user_ty = self.user_substs_applied_to_res(expr.hir_id, res);
                ExprKind::NamedConst { def_id, substs, user_ty }
            }

            Res::Def(DefKind::Ctor(_, CtorKind::Const), def_id) => {
                let user_provided_types = self.typeck_results.user_provided_types();
                let user_ty = user_provided_types.get(expr.hir_id).copied().map(Box::new);
                debug!("convert_path_expr: user_ty={:?}", user_ty);
                let ty = self.typeck_results().node_type(expr.hir_id);
                match ty.kind() {
                    // A unit struct/variant which is used as a value.
                    // We return a completely different ExprKind here to account for this special case.
                    ty::Adt(adt_def, substs) => ExprKind::Adt(Box::new(AdtExpr {
                        adt_def: *adt_def,
                        variant_index: adt_def.variant_index_with_ctor_id(def_id),
                        substs,
                        user_ty,
                        fields: Box::new([]),
                        base: None,
                    })),
                    _ => bug!("unexpected ty: {:?}", ty),
                }
            }

            // We encode uses of statics as a `*&STATIC` where the `&STATIC` part is
            // a constant reference (or constant raw pointer for `static mut`) in MIR
            Res::Def(DefKind::Static(_), id) => {
                let ty = self.tcx.static_ptr_ty(id);
                let temp_lifetime = self
                    .rvalue_scopes
                    .temporary_scope(self.region_scope_tree, expr.hir_id.local_id);
                let kind = if self.tcx.is_thread_local_static(id) {
                    ExprKind::ThreadLocalRef(id)
                } else {
                    let alloc_id = self.tcx.create_static_alloc(id);
                    ExprKind::StaticRef { alloc_id, ty, def_id: id }
                };
                ExprKind::Deref {
                    arg: self.thir.exprs.push(Expr { ty, temp_lifetime, span: expr.span, kind }),
                }
            }

            Res::Local(var_hir_id) => self.convert_var(var_hir_id),

            _ => span_bug!(expr.span, "res `{:?}` not yet implemented", res),
        }
    }

    fn convert_var(&mut self, var_hir_id: hir::HirId) -> ExprKind<'tcx> {
        // We want upvars here not captures.
        // Captures will be handled in MIR.
        let is_upvar = self
            .tcx
            .upvars_mentioned(self.body_owner)
            .map_or(false, |upvars| upvars.contains_key(&var_hir_id));

        debug!(
            "convert_var({:?}): is_upvar={}, body_owner={:?}",
            var_hir_id, is_upvar, self.body_owner
        );

        if is_upvar {
            ExprKind::UpvarRef {
                closure_def_id: self.body_owner,
                var_hir_id: LocalVarId(var_hir_id),
            }
        } else {
            ExprKind::VarRef { id: LocalVarId(var_hir_id) }
        }
    }

    fn overloaded_operator(
        &mut self,
        expr: &'tcx hir::Expr<'tcx>,
        args: Box<[ExprId]>,
    ) -> ExprKind<'tcx> {
        let fun = self.method_callee(expr, expr.span, None);
        let fun = self.thir.exprs.push(fun);
        ExprKind::Call {
            ty: self.thir[fun].ty,
            fun,
            args,
            from_hir_call: false,
            fn_span: expr.span,
        }
    }

    fn overloaded_place(
        &mut self,
        expr: &'tcx hir::Expr<'tcx>,
        place_ty: Ty<'tcx>,
        overloaded_callee: Option<(DefId, SubstsRef<'tcx>)>,
        args: Box<[ExprId]>,
        span: Span,
    ) -> ExprKind<'tcx> {
        // For an overloaded *x or x[y] expression of type T, the method
        // call returns an &T and we must add the deref so that the types
        // line up (this is because `*x` and `x[y]` represent places):

        // Reconstruct the output assuming it's a reference with the
        // same region and mutability as the receiver. This holds for
        // `Deref(Mut)::Deref(_mut)` and `Index(Mut)::index(_mut)`.
        let ty::Ref(region, _, mutbl) = *self.thir[args[0]].ty.kind() else {
            span_bug!(span, "overloaded_place: receiver is not a reference");
        };
        let ref_ty = self.tcx.mk_ref(region, ty::TypeAndMut { ty: place_ty, mutbl });

        // construct the complete expression `foo()` for the overloaded call,
        // which will yield the &T type
        let temp_lifetime =
            self.rvalue_scopes.temporary_scope(self.region_scope_tree, expr.hir_id.local_id);
        let fun = self.method_callee(expr, span, overloaded_callee);
        let fun = self.thir.exprs.push(fun);
        let fun_ty = self.thir[fun].ty;
        let ref_expr = self.thir.exprs.push(Expr {
            temp_lifetime,
            ty: ref_ty,
            span,
            kind: ExprKind::Call { ty: fun_ty, fun, args, from_hir_call: false, fn_span: span },
        });

        // construct and return a deref wrapper `*foo()`
        ExprKind::Deref { arg: ref_expr }
    }

    fn convert_captured_hir_place(
        &mut self,
        closure_expr: &'tcx hir::Expr<'tcx>,
        place: HirPlace<'tcx>,
    ) -> Expr<'tcx> {
        let temp_lifetime = self
            .rvalue_scopes
            .temporary_scope(self.region_scope_tree, closure_expr.hir_id.local_id);
        let var_ty = place.base_ty;

        // The result of capture analysis in `rustc_hir_analysis/check/upvar.rs`represents a captured path
        // as it's seen for use within the closure and not at the time of closure creation.
        //
        // That is we see expect to see it start from a captured upvar and not something that is local
        // to the closure's parent.
        let var_hir_id = match place.base {
            HirPlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
            base => bug!("Expected an upvar, found {:?}", base),
        };

        let mut captured_place_expr = Expr {
            temp_lifetime,
            ty: var_ty,
            span: closure_expr.span,
            kind: self.convert_var(var_hir_id),
        };

        for proj in place.projections.iter() {
            let kind = match proj.kind {
                HirProjectionKind::Deref => {
                    ExprKind::Deref { arg: self.thir.exprs.push(captured_place_expr) }
                }
                HirProjectionKind::Field(field, variant_index) => ExprKind::Field {
                    lhs: self.thir.exprs.push(captured_place_expr),
                    variant_index,
                    name: Field::new(field as usize),
                },
                HirProjectionKind::Index | HirProjectionKind::Subslice => {
                    // We don't capture these projections, so we can ignore them here
                    continue;
                }
            };

            captured_place_expr =
                Expr { temp_lifetime, ty: proj.ty, span: closure_expr.span, kind };
        }

        captured_place_expr
    }

    fn capture_upvar(
        &mut self,
        closure_expr: &'tcx hir::Expr<'tcx>,
        captured_place: &'tcx ty::CapturedPlace<'tcx>,
        upvar_ty: Ty<'tcx>,
    ) -> Expr<'tcx> {
        let upvar_capture = captured_place.info.capture_kind;
        let captured_place_expr =
            self.convert_captured_hir_place(closure_expr, captured_place.place.clone());
        let temp_lifetime = self
            .rvalue_scopes
            .temporary_scope(self.region_scope_tree, closure_expr.hir_id.local_id);

        match upvar_capture {
            ty::UpvarCapture::ByValue => captured_place_expr,
            ty::UpvarCapture::ByRef(upvar_borrow) => {
                let borrow_kind = match upvar_borrow {
                    ty::BorrowKind::ImmBorrow => BorrowKind::Shared,
                    ty::BorrowKind::UniqueImmBorrow => BorrowKind::Unique,
                    ty::BorrowKind::MutBorrow => BorrowKind::Mut { allow_two_phase_borrow: false },
                };
                Expr {
                    temp_lifetime,
                    ty: upvar_ty,
                    span: closure_expr.span,
                    kind: ExprKind::Borrow {
                        borrow_kind,
                        arg: self.thir.exprs.push(captured_place_expr),
                    },
                }
            }
        }
    }

    /// Converts a list of named fields (i.e., for struct-like struct/enum ADTs) into FieldExpr.
    fn field_refs(&mut self, fields: &'tcx [hir::ExprField<'tcx>]) -> Box<[FieldExpr]> {
        fields
            .iter()
            .map(|field| FieldExpr {
                name: Field::new(self.tcx.field_index(field.hir_id, self.typeck_results)),
                expr: self.mirror_expr(field.expr),
            })
            .collect()
    }
}

trait ToBorrowKind {
    fn to_borrow_kind(&self) -> BorrowKind;
}

impl ToBorrowKind for AutoBorrowMutability {
    fn to_borrow_kind(&self) -> BorrowKind {
        use rustc_middle::ty::adjustment::AllowTwoPhase;
        match *self {
            AutoBorrowMutability::Mut { allow_two_phase_borrow } => BorrowKind::Mut {
                allow_two_phase_borrow: match allow_two_phase_borrow {
                    AllowTwoPhase::Yes => true,
                    AllowTwoPhase::No => false,
                },
            },
            AutoBorrowMutability::Not => BorrowKind::Shared,
        }
    }
}

impl ToBorrowKind for hir::Mutability {
    fn to_borrow_kind(&self) -> BorrowKind {
        match *self {
            hir::Mutability::Mut => BorrowKind::Mut { allow_two_phase_borrow: false },
            hir::Mutability::Not => BorrowKind::Shared,
        }
    }
}

fn bin_op(op: hir::BinOpKind) -> BinOp {
    match op {
        hir::BinOpKind::Add => BinOp::Add,
        hir::BinOpKind::Sub => BinOp::Sub,
        hir::BinOpKind::Mul => BinOp::Mul,
        hir::BinOpKind::Div => BinOp::Div,
        hir::BinOpKind::Rem => BinOp::Rem,
        hir::BinOpKind::BitXor => BinOp::BitXor,
        hir::BinOpKind::BitAnd => BinOp::BitAnd,
        hir::BinOpKind::BitOr => BinOp::BitOr,
        hir::BinOpKind::Shl => BinOp::Shl,
        hir::BinOpKind::Shr => BinOp::Shr,
        hir::BinOpKind::Eq => BinOp::Eq,
        hir::BinOpKind::Lt => BinOp::Lt,
        hir::BinOpKind::Le => BinOp::Le,
        hir::BinOpKind::Ne => BinOp::Ne,
        hir::BinOpKind::Ge => BinOp::Ge,
        hir::BinOpKind::Gt => BinOp::Gt,
        _ => bug!("no equivalent for ast binop {:?}", op),
    }
}