1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
mod _impl;
mod arg_matrix;
mod checks;
mod suggestions;

pub use _impl::*;
pub use suggestions::*;

use crate::astconv::AstConv;
use crate::check::coercion::DynamicCoerceMany;
use crate::check::{Diverges, EnclosingBreakables, Inherited, UnsafetyState};

use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_infer::infer;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
use rustc_middle::ty::subst::GenericArgKind;
use rustc_middle::ty::visit::TypeVisitable;
use rustc_middle::ty::{self, Const, Ty, TyCtxt};
use rustc_session::Session;
use rustc_span::symbol::Ident;
use rustc_span::{self, Span};
use rustc_trait_selection::traits::{ObligationCause, ObligationCauseCode};

use std::cell::{Cell, RefCell};
use std::ops::Deref;

/// The `FnCtxt` stores type-checking context needed to type-check bodies of
/// functions, closures, and `const`s, including performing type inference
/// with [`InferCtxt`].
///
/// This is in contrast to [`ItemCtxt`], which is used to type-check item *signatures*
/// and thus does not perform type inference.
///
/// See [`ItemCtxt`]'s docs for more.
///
/// [`ItemCtxt`]: crate::collect::ItemCtxt
/// [`InferCtxt`]: infer::InferCtxt
pub struct FnCtxt<'a, 'tcx> {
    pub(super) body_id: hir::HirId,

    /// The parameter environment used for proving trait obligations
    /// in this function. This can change when we descend into
    /// closures (as they bring new things into scope), hence it is
    /// not part of `Inherited` (as of the time of this writing,
    /// closures do not yet change the environment, but they will
    /// eventually).
    pub(super) param_env: ty::ParamEnv<'tcx>,

    /// Number of errors that had been reported when we started
    /// checking this function. On exit, if we find that *more* errors
    /// have been reported, we will skip regionck and other work that
    /// expects the types within the function to be consistent.
    // FIXME(matthewjasper) This should not exist, and it's not correct
    // if type checking is run in parallel.
    err_count_on_creation: usize,

    /// If `Some`, this stores coercion information for returned
    /// expressions. If `None`, this is in a context where return is
    /// inappropriate, such as a const expression.
    ///
    /// This is a `RefCell<DynamicCoerceMany>`, which means that we
    /// can track all the return expressions and then use them to
    /// compute a useful coercion from the set, similar to a match
    /// expression or other branching context. You can use methods
    /// like `expected_ty` to access the declared return type (if
    /// any).
    pub(super) ret_coercion: Option<RefCell<DynamicCoerceMany<'tcx>>>,

    /// Used exclusively to reduce cost of advanced evaluation used for
    /// more helpful diagnostics.
    pub(super) in_tail_expr: bool,

    /// First span of a return site that we find. Used in error messages.
    pub(super) ret_coercion_span: Cell<Option<Span>>,

    pub(super) resume_yield_tys: Option<(Ty<'tcx>, Ty<'tcx>)>,

    pub(super) ps: Cell<UnsafetyState>,

    /// Whether the last checked node generates a divergence (e.g.,
    /// `return` will set this to `Always`). In general, when entering
    /// an expression or other node in the tree, the initial value
    /// indicates whether prior parts of the containing expression may
    /// have diverged. It is then typically set to `Maybe` (and the
    /// old value remembered) for processing the subparts of the
    /// current expression. As each subpart is processed, they may set
    /// the flag to `Always`, etc. Finally, at the end, we take the
    /// result and "union" it with the original value, so that when we
    /// return the flag indicates if any subpart of the parent
    /// expression (up to and including this part) has diverged. So,
    /// if you read it after evaluating a subexpression `X`, the value
    /// you get indicates whether any subexpression that was
    /// evaluating up to and including `X` diverged.
    ///
    /// We currently use this flag only for diagnostic purposes:
    ///
    /// - To warn about unreachable code: if, after processing a
    ///   sub-expression but before we have applied the effects of the
    ///   current node, we see that the flag is set to `Always`, we
    ///   can issue a warning. This corresponds to something like
    ///   `foo(return)`; we warn on the `foo()` expression. (We then
    ///   update the flag to `WarnedAlways` to suppress duplicate
    ///   reports.) Similarly, if we traverse to a fresh statement (or
    ///   tail expression) from an `Always` setting, we will issue a
    ///   warning. This corresponds to something like `{return;
    ///   foo();}` or `{return; 22}`, where we would warn on the
    ///   `foo()` or `22`.
    ///
    /// An expression represents dead code if, after checking it,
    /// the diverges flag is set to something other than `Maybe`.
    pub(super) diverges: Cell<Diverges>,

    /// Whether any child nodes have any type errors.
    pub(super) has_errors: Cell<bool>,

    pub(super) enclosing_breakables: RefCell<EnclosingBreakables<'tcx>>,

    pub(super) inh: &'a Inherited<'a, 'tcx>,

    /// True if the function or closure's return type is known before
    /// entering the function/closure, i.e. if the return type is
    /// either given explicitly or inferred from, say, an `Fn*` trait
    /// bound. Used for diagnostic purposes only.
    pub(super) return_type_pre_known: bool,

    /// True if the return type has an Opaque type
    pub(super) return_type_has_opaque: bool,
}

impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
    pub fn new(
        inh: &'a Inherited<'a, 'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        body_id: hir::HirId,
    ) -> FnCtxt<'a, 'tcx> {
        FnCtxt {
            body_id,
            param_env,
            err_count_on_creation: inh.tcx.sess.err_count(),
            ret_coercion: None,
            in_tail_expr: false,
            ret_coercion_span: Cell::new(None),
            resume_yield_tys: None,
            ps: Cell::new(UnsafetyState::function(hir::Unsafety::Normal, hir::CRATE_HIR_ID)),
            diverges: Cell::new(Diverges::Maybe),
            has_errors: Cell::new(false),
            enclosing_breakables: RefCell::new(EnclosingBreakables {
                stack: Vec::new(),
                by_id: Default::default(),
            }),
            inh,
            return_type_pre_known: true,
            return_type_has_opaque: false,
        }
    }

    pub fn cause(&self, span: Span, code: ObligationCauseCode<'tcx>) -> ObligationCause<'tcx> {
        ObligationCause::new(span, self.body_id, code)
    }

    pub fn misc(&self, span: Span) -> ObligationCause<'tcx> {
        self.cause(span, ObligationCauseCode::MiscObligation)
    }

    pub fn sess(&self) -> &Session {
        &self.tcx.sess
    }

    pub fn errors_reported_since_creation(&self) -> bool {
        self.tcx.sess.err_count() > self.err_count_on_creation
    }
}

impl<'a, 'tcx> Deref for FnCtxt<'a, 'tcx> {
    type Target = Inherited<'a, 'tcx>;
    fn deref(&self) -> &Self::Target {
        &self.inh
    }
}

impl<'a, 'tcx> AstConv<'tcx> for FnCtxt<'a, 'tcx> {
    fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn item_def_id(&self) -> Option<DefId> {
        None
    }

    fn get_type_parameter_bounds(
        &self,
        _: Span,
        def_id: DefId,
        _: Ident,
    ) -> ty::GenericPredicates<'tcx> {
        let tcx = self.tcx;
        let item_def_id = tcx.hir().ty_param_owner(def_id.expect_local());
        let generics = tcx.generics_of(item_def_id);
        let index = generics.param_def_id_to_index[&def_id];
        ty::GenericPredicates {
            parent: None,
            predicates: tcx.arena.alloc_from_iter(
                self.param_env.caller_bounds().iter().filter_map(|predicate| {
                    match predicate.kind().skip_binder() {
                        ty::PredicateKind::Trait(data) if data.self_ty().is_param(index) => {
                            // HACK(eddyb) should get the original `Span`.
                            let span = tcx.def_span(def_id);
                            Some((predicate, span))
                        }
                        _ => None,
                    }
                }),
            ),
        }
    }

    fn re_infer(&self, def: Option<&ty::GenericParamDef>, span: Span) -> Option<ty::Region<'tcx>> {
        let v = match def {
            Some(def) => infer::EarlyBoundRegion(span, def.name),
            None => infer::MiscVariable(span),
        };
        Some(self.next_region_var(v))
    }

    fn allow_ty_infer(&self) -> bool {
        true
    }

    fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
        if let Some(param) = param {
            if let GenericArgKind::Type(ty) = self.var_for_def(span, param).unpack() {
                return ty;
            }
            unreachable!()
        } else {
            self.next_ty_var(TypeVariableOrigin {
                kind: TypeVariableOriginKind::TypeInference,
                span,
            })
        }
    }

    fn ct_infer(
        &self,
        ty: Ty<'tcx>,
        param: Option<&ty::GenericParamDef>,
        span: Span,
    ) -> Const<'tcx> {
        if let Some(param) = param {
            if let GenericArgKind::Const(ct) = self.var_for_def(span, param).unpack() {
                return ct;
            }
            unreachable!()
        } else {
            self.next_const_var(
                ty,
                ConstVariableOrigin { kind: ConstVariableOriginKind::ConstInference, span },
            )
        }
    }

    fn projected_ty_from_poly_trait_ref(
        &self,
        span: Span,
        item_def_id: DefId,
        item_segment: &hir::PathSegment<'_>,
        poly_trait_ref: ty::PolyTraitRef<'tcx>,
    ) -> Ty<'tcx> {
        let trait_ref = self.replace_bound_vars_with_fresh_vars(
            span,
            infer::LateBoundRegionConversionTime::AssocTypeProjection(item_def_id),
            poly_trait_ref,
        );

        let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
            self,
            span,
            item_def_id,
            item_segment,
            trait_ref.substs,
        );

        self.tcx().mk_projection(item_def_id, item_substs)
    }

    fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
        if ty.has_escaping_bound_vars() {
            ty // FIXME: normalization and escaping regions
        } else {
            self.normalize_associated_types_in(span, ty)
        }
    }

    fn set_tainted_by_errors(&self) {
        self.infcx.set_tainted_by_errors()
    }

    fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, _span: Span) {
        self.write_ty(hir_id, ty)
    }
}