1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
use crate::traits::{ObligationCause, ObligationCauseCode};
use crate::ty::diagnostics::suggest_constraining_type_param;
use crate::ty::print::{FmtPrinter, Printer};
use crate::ty::{self, BoundRegionKind, Region, Ty, TyCtxt};
use hir::def::DefKind;
use rustc_errors::Applicability::{MachineApplicable, MaybeIncorrect};
use rustc_errors::{pluralize, Diagnostic, MultiSpan};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_span::symbol::{sym, Symbol};
use rustc_span::{BytePos, Span};
use rustc_target::spec::abi;

use std::borrow::Cow;
use std::fmt;

#[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable, TypeVisitable, Lift)]
pub struct ExpectedFound<T> {
    pub expected: T,
    pub found: T,
}

impl<T> ExpectedFound<T> {
    pub fn new(a_is_expected: bool, a: T, b: T) -> Self {
        if a_is_expected {
            ExpectedFound { expected: a, found: b }
        } else {
            ExpectedFound { expected: b, found: a }
        }
    }
}

// Data structures used in type unification
#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable, Lift)]
#[rustc_pass_by_value]
pub enum TypeError<'tcx> {
    Mismatch,
    ConstnessMismatch(ExpectedFound<ty::BoundConstness>),
    PolarityMismatch(ExpectedFound<ty::ImplPolarity>),
    UnsafetyMismatch(ExpectedFound<hir::Unsafety>),
    AbiMismatch(ExpectedFound<abi::Abi>),
    Mutability,
    ArgumentMutability(usize),
    TupleSize(ExpectedFound<usize>),
    FixedArraySize(ExpectedFound<u64>),
    ArgCount,
    FieldMisMatch(Symbol, Symbol),

    RegionsDoesNotOutlive(Region<'tcx>, Region<'tcx>),
    RegionsInsufficientlyPolymorphic(BoundRegionKind, Region<'tcx>),
    RegionsOverlyPolymorphic(BoundRegionKind, Region<'tcx>),
    RegionsPlaceholderMismatch,

    Sorts(ExpectedFound<Ty<'tcx>>),
    ArgumentSorts(ExpectedFound<Ty<'tcx>>, usize),
    IntMismatch(ExpectedFound<ty::IntVarValue>),
    FloatMismatch(ExpectedFound<ty::FloatTy>),
    Traits(ExpectedFound<DefId>),
    VariadicMismatch(ExpectedFound<bool>),

    /// Instantiating a type variable with the given type would have
    /// created a cycle (because it appears somewhere within that
    /// type).
    CyclicTy(Ty<'tcx>),
    CyclicConst(ty::Const<'tcx>),
    ProjectionMismatched(ExpectedFound<DefId>),
    ExistentialMismatch(
        ExpectedFound<&'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>>,
    ),
    ObjectUnsafeCoercion(DefId),
    ConstMismatch(ExpectedFound<ty::Const<'tcx>>),

    IntrinsicCast,
    /// Safe `#[target_feature]` functions are not assignable to safe function pointers.
    TargetFeatureCast(DefId),
}

impl TypeError<'_> {
    pub fn involves_regions(self) -> bool {
        match self {
            TypeError::RegionsDoesNotOutlive(_, _)
            | TypeError::RegionsInsufficientlyPolymorphic(_, _)
            | TypeError::RegionsOverlyPolymorphic(_, _)
            | TypeError::RegionsPlaceholderMismatch => true,
            _ => false,
        }
    }
}

/// Explains the source of a type err in a short, human readable way. This is meant to be placed
/// in parentheses after some larger message. You should also invoke `note_and_explain_type_err()`
/// afterwards to present additional details, particularly when it comes to lifetime-related
/// errors.
impl<'tcx> fmt::Display for TypeError<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use self::TypeError::*;
        fn report_maybe_different(
            f: &mut fmt::Formatter<'_>,
            expected: &str,
            found: &str,
        ) -> fmt::Result {
            // A naive approach to making sure that we're not reporting silly errors such as:
            // (expected closure, found closure).
            if expected == found {
                write!(f, "expected {}, found a different {}", expected, found)
            } else {
                write!(f, "expected {}, found {}", expected, found)
            }
        }

        let br_string = |br: ty::BoundRegionKind| match br {
            ty::BrNamed(_, name) => format!(" {}", name),
            _ => String::new(),
        };

        match *self {
            CyclicTy(_) => write!(f, "cyclic type of infinite size"),
            CyclicConst(_) => write!(f, "encountered a self-referencing constant"),
            Mismatch => write!(f, "types differ"),
            ConstnessMismatch(values) => {
                write!(f, "expected {} bound, found {} bound", values.expected, values.found)
            }
            PolarityMismatch(values) => {
                write!(f, "expected {} polarity, found {} polarity", values.expected, values.found)
            }
            UnsafetyMismatch(values) => {
                write!(f, "expected {} fn, found {} fn", values.expected, values.found)
            }
            AbiMismatch(values) => {
                write!(f, "expected {} fn, found {} fn", values.expected, values.found)
            }
            ArgumentMutability(_) | Mutability => write!(f, "types differ in mutability"),
            TupleSize(values) => write!(
                f,
                "expected a tuple with {} element{}, found one with {} element{}",
                values.expected,
                pluralize!(values.expected),
                values.found,
                pluralize!(values.found)
            ),
            FixedArraySize(values) => write!(
                f,
                "expected an array with a fixed size of {} element{}, found one with {} element{}",
                values.expected,
                pluralize!(values.expected),
                values.found,
                pluralize!(values.found)
            ),
            ArgCount => write!(f, "incorrect number of function parameters"),
            FieldMisMatch(adt, field) => write!(f, "field type mismatch: {}.{}", adt, field),
            RegionsDoesNotOutlive(..) => write!(f, "lifetime mismatch"),
            // Actually naming the region here is a bit confusing because context is lacking
            RegionsInsufficientlyPolymorphic(..) => {
                write!(f, "one type is more general than the other")
            }
            RegionsOverlyPolymorphic(br, _) => write!(
                f,
                "expected concrete lifetime, found bound lifetime parameter{}",
                br_string(br)
            ),
            RegionsPlaceholderMismatch => write!(f, "one type is more general than the other"),
            ArgumentSorts(values, _) | Sorts(values) => ty::tls::with(|tcx| {
                report_maybe_different(
                    f,
                    &values.expected.sort_string(tcx),
                    &values.found.sort_string(tcx),
                )
            }),
            Traits(values) => ty::tls::with(|tcx| {
                report_maybe_different(
                    f,
                    &format!("trait `{}`", tcx.def_path_str(values.expected)),
                    &format!("trait `{}`", tcx.def_path_str(values.found)),
                )
            }),
            IntMismatch(ref values) => {
                let expected = match values.expected {
                    ty::IntVarValue::IntType(ty) => ty.name_str(),
                    ty::IntVarValue::UintType(ty) => ty.name_str(),
                };
                let found = match values.found {
                    ty::IntVarValue::IntType(ty) => ty.name_str(),
                    ty::IntVarValue::UintType(ty) => ty.name_str(),
                };
                write!(f, "expected `{}`, found `{}`", expected, found)
            }
            FloatMismatch(ref values) => {
                write!(
                    f,
                    "expected `{}`, found `{}`",
                    values.expected.name_str(),
                    values.found.name_str()
                )
            }
            VariadicMismatch(ref values) => write!(
                f,
                "expected {} fn, found {} function",
                if values.expected { "variadic" } else { "non-variadic" },
                if values.found { "variadic" } else { "non-variadic" }
            ),
            ProjectionMismatched(ref values) => ty::tls::with(|tcx| {
                write!(
                    f,
                    "expected {}, found {}",
                    tcx.def_path_str(values.expected),
                    tcx.def_path_str(values.found)
                )
            }),
            ExistentialMismatch(ref values) => report_maybe_different(
                f,
                &format!("trait `{}`", values.expected),
                &format!("trait `{}`", values.found),
            ),
            ConstMismatch(ref values) => {
                write!(f, "expected `{}`, found `{}`", values.expected, values.found)
            }
            IntrinsicCast => write!(f, "cannot coerce intrinsics to function pointers"),
            TargetFeatureCast(_) => write!(
                f,
                "cannot coerce functions with `#[target_feature]` to safe function pointers"
            ),
            ObjectUnsafeCoercion(_) => write!(f, "coercion to object-unsafe trait object"),
        }
    }
}

impl<'tcx> TypeError<'tcx> {
    pub fn must_include_note(self) -> bool {
        use self::TypeError::*;
        match self {
            CyclicTy(_) | CyclicConst(_) | UnsafetyMismatch(_) | ConstnessMismatch(_)
            | PolarityMismatch(_) | Mismatch | AbiMismatch(_) | FixedArraySize(_)
            | ArgumentSorts(..) | Sorts(_) | IntMismatch(_) | FloatMismatch(_)
            | VariadicMismatch(_) | TargetFeatureCast(_) => false,

            Mutability
            | ArgumentMutability(_)
            | TupleSize(_)
            | ArgCount
            | FieldMisMatch(..)
            | RegionsDoesNotOutlive(..)
            | RegionsInsufficientlyPolymorphic(..)
            | RegionsOverlyPolymorphic(..)
            | RegionsPlaceholderMismatch
            | Traits(_)
            | ProjectionMismatched(_)
            | ExistentialMismatch(_)
            | ConstMismatch(_)
            | IntrinsicCast
            | ObjectUnsafeCoercion(_) => true,
        }
    }
}

impl<'tcx> Ty<'tcx> {
    pub fn sort_string(self, tcx: TyCtxt<'_>) -> Cow<'static, str> {
        match *self.kind() {
            ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Str | ty::Never => {
                format!("`{}`", self).into()
            }
            ty::Tuple(ref tys) if tys.is_empty() => format!("`{}`", self).into(),

            ty::Adt(def, _) => format!("{} `{}`", def.descr(), tcx.def_path_str(def.did())).into(),
            ty::Foreign(def_id) => format!("extern type `{}`", tcx.def_path_str(def_id)).into(),
            ty::Array(t, n) => {
                if t.is_simple_ty() {
                    return format!("array `{}`", self).into();
                }

                let n = tcx.lift(n).unwrap();
                if let ty::ConstKind::Value(v) = n.kind() {
                    if let Some(n) = v.try_to_machine_usize(tcx) {
                        return format!("array of {} element{}", n, pluralize!(n)).into();
                    }
                }
                "array".into()
            }
            ty::Slice(ty) if ty.is_simple_ty() => format!("slice `{}`", self).into(),
            ty::Slice(_) => "slice".into(),
            ty::RawPtr(tymut) => {
                let tymut_string = match tymut.mutbl {
                    hir::Mutability::Mut => tymut.to_string(),
                    hir::Mutability::Not => format!("const {}", tymut.ty),
                };

                if tymut_string != "_" && (tymut.ty.is_simple_text() || tymut_string.len() < "const raw pointer".len()) {
                    format!("`*{}`", tymut_string).into()
                } else {
                    // Unknown type name, it's long or has type arguments
                    "raw pointer".into()
                }
            },
            ty::Ref(_, ty, mutbl) => {
                let tymut = ty::TypeAndMut { ty, mutbl };
                let tymut_string = tymut.to_string();

                if tymut_string != "_"
                    && (ty.is_simple_text() || tymut_string.len() < "mutable reference".len())
                {
                    format!("`&{}`", tymut_string).into()
                } else {
                    // Unknown type name, it's long or has type arguments
                    match mutbl {
                        hir::Mutability::Mut => "mutable reference",
                        _ => "reference",
                    }
                    .into()
                }
            }
            ty::FnDef(..) => "fn item".into(),
            ty::FnPtr(_) => "fn pointer".into(),
            ty::Dynamic(ref inner, ..) if let Some(principal) = inner.principal() => {
                format!("trait object `dyn {}`", tcx.def_path_str(principal.def_id())).into()
            }
            ty::Dynamic(..) => "trait object".into(),
            ty::Closure(..) => "closure".into(),
            ty::Generator(def_id, ..) => tcx.generator_kind(def_id).unwrap().descr().into(),
            ty::GeneratorWitness(..) => "generator witness".into(),
            ty::Tuple(..) => "tuple".into(),
            ty::Infer(ty::TyVar(_)) => "inferred type".into(),
            ty::Infer(ty::IntVar(_)) => "integer".into(),
            ty::Infer(ty::FloatVar(_)) => "floating-point number".into(),
            ty::Placeholder(..) => "placeholder type".into(),
            ty::Bound(..) => "bound type".into(),
            ty::Infer(ty::FreshTy(_)) => "fresh type".into(),
            ty::Infer(ty::FreshIntTy(_)) => "fresh integral type".into(),
            ty::Infer(ty::FreshFloatTy(_)) => "fresh floating-point type".into(),
            ty::Projection(_) => "associated type".into(),
            ty::Param(p) => format!("type parameter `{}`", p).into(),
            ty::Opaque(..) => "opaque type".into(),
            ty::Error(_) => "type error".into(),
        }
    }

    pub fn prefix_string(self, tcx: TyCtxt<'_>) -> Cow<'static, str> {
        match *self.kind() {
            ty::Infer(_)
            | ty::Error(_)
            | ty::Bool
            | ty::Char
            | ty::Int(_)
            | ty::Uint(_)
            | ty::Float(_)
            | ty::Str
            | ty::Never => "type".into(),
            ty::Tuple(ref tys) if tys.is_empty() => "unit type".into(),
            ty::Adt(def, _) => def.descr().into(),
            ty::Foreign(_) => "extern type".into(),
            ty::Array(..) => "array".into(),
            ty::Slice(_) => "slice".into(),
            ty::RawPtr(_) => "raw pointer".into(),
            ty::Ref(.., mutbl) => match mutbl {
                hir::Mutability::Mut => "mutable reference",
                _ => "reference",
            }
            .into(),
            ty::FnDef(..) => "fn item".into(),
            ty::FnPtr(_) => "fn pointer".into(),
            ty::Dynamic(..) => "trait object".into(),
            ty::Closure(..) => "closure".into(),
            ty::Generator(def_id, ..) => tcx.generator_kind(def_id).unwrap().descr().into(),
            ty::GeneratorWitness(..) => "generator witness".into(),
            ty::Tuple(..) => "tuple".into(),
            ty::Placeholder(..) => "higher-ranked type".into(),
            ty::Bound(..) => "bound type variable".into(),
            ty::Projection(_) => "associated type".into(),
            ty::Param(_) => "type parameter".into(),
            ty::Opaque(..) => "opaque type".into(),
        }
    }
}

impl<'tcx> TyCtxt<'tcx> {
    pub fn note_and_explain_type_err(
        self,
        diag: &mut Diagnostic,
        err: TypeError<'tcx>,
        cause: &ObligationCause<'tcx>,
        sp: Span,
        body_owner_def_id: DefId,
    ) {
        use self::TypeError::*;
        debug!("note_and_explain_type_err err={:?} cause={:?}", err, cause);
        match err {
            ArgumentSorts(values, _) | Sorts(values) => {
                match (values.expected.kind(), values.found.kind()) {
                    (ty::Closure(..), ty::Closure(..)) => {
                        diag.note("no two closures, even if identical, have the same type");
                        diag.help("consider boxing your closure and/or using it as a trait object");
                    }
                    (ty::Opaque(..), ty::Opaque(..)) => {
                        // Issue #63167
                        diag.note("distinct uses of `impl Trait` result in different opaque types");
                    }
                    (ty::Float(_), ty::Infer(ty::IntVar(_)))
                        if let Ok(
                            // Issue #53280
                            snippet,
                        ) = self.sess.source_map().span_to_snippet(sp) =>
                    {
                        if snippet.chars().all(|c| c.is_digit(10) || c == '-' || c == '_') {
                            diag.span_suggestion(
                                sp,
                                "use a float literal",
                                format!("{}.0", snippet),
                                MachineApplicable,
                            );
                        }
                    }
                    (ty::Param(expected), ty::Param(found)) => {
                        let generics = self.generics_of(body_owner_def_id);
                        let e_span = self.def_span(generics.type_param(expected, self).def_id);
                        if !sp.contains(e_span) {
                            diag.span_label(e_span, "expected type parameter");
                        }
                        let f_span = self.def_span(generics.type_param(found, self).def_id);
                        if !sp.contains(f_span) {
                            diag.span_label(f_span, "found type parameter");
                        }
                        diag.note(
                            "a type parameter was expected, but a different one was found; \
                             you might be missing a type parameter or trait bound",
                        );
                        diag.note(
                            "for more information, visit \
                             https://doc.rust-lang.org/book/ch10-02-traits.html\
                             #traits-as-parameters",
                        );
                    }
                    (ty::Projection(_), ty::Projection(_)) => {
                        diag.note("an associated type was expected, but a different one was found");
                    }
                    (ty::Param(p), ty::Projection(proj)) | (ty::Projection(proj), ty::Param(p)) => {
                        let generics = self.generics_of(body_owner_def_id);
                        let p_span = self.def_span(generics.type_param(p, self).def_id);
                        if !sp.contains(p_span) {
                            diag.span_label(p_span, "this type parameter");
                        }
                        let hir = self.hir();
                        let mut note = true;
                        if let Some(generics) = generics
                            .type_param(p, self)
                            .def_id
                            .as_local()
                            .map(|id| hir.local_def_id_to_hir_id(id))
                            .and_then(|id| self.hir().find(self.hir().get_parent_node(id)))
                            .as_ref()
                            .and_then(|node| node.generics())
                        {
                            // Synthesize the associated type restriction `Add<Output = Expected>`.
                            // FIXME: extract this logic for use in other diagnostics.
                            let (trait_ref, assoc_substs) = proj.trait_ref_and_own_substs(self);
                            let path =
                                self.def_path_str_with_substs(trait_ref.def_id, trait_ref.substs);
                            let item_name = self.item_name(proj.item_def_id);
                            let item_args = self.format_generic_args(assoc_substs);

                            let path = if path.ends_with('>') {
                                format!(
                                    "{}, {}{} = {}>",
                                    &path[..path.len() - 1],
                                    item_name,
                                    item_args,
                                    p
                                )
                            } else {
                                format!("{}<{}{} = {}>", path, item_name, item_args, p)
                            };
                            note = !suggest_constraining_type_param(
                                self,
                                generics,
                                diag,
                                &format!("{}", proj.self_ty()),
                                &path,
                                None,
                            );
                        }
                        if note {
                            diag.note("you might be missing a type parameter or trait bound");
                        }
                    }
                    (ty::Param(p), ty::Dynamic(..) | ty::Opaque(..))
                    | (ty::Dynamic(..) | ty::Opaque(..), ty::Param(p)) => {
                        let generics = self.generics_of(body_owner_def_id);
                        let p_span = self.def_span(generics.type_param(p, self).def_id);
                        if !sp.contains(p_span) {
                            diag.span_label(p_span, "this type parameter");
                        }
                        diag.help("type parameters must be constrained to match other types");
                        if self.sess.teach(&diag.get_code().unwrap()) {
                            diag.help(
                                "given a type parameter `T` and a method `foo`:
```
trait Trait<T> { fn foo(&self) -> T; }
```
the only ways to implement method `foo` are:
- constrain `T` with an explicit type:
```
impl Trait<String> for X {
    fn foo(&self) -> String { String::new() }
}
```
- add a trait bound to `T` and call a method on that trait that returns `Self`:
```
impl<T: std::default::Default> Trait<T> for X {
    fn foo(&self) -> T { <T as std::default::Default>::default() }
}
```
- change `foo` to return an argument of type `T`:
```
impl<T> Trait<T> for X {
    fn foo(&self, x: T) -> T { x }
}
```",
                            );
                        }
                        diag.note(
                            "for more information, visit \
                             https://doc.rust-lang.org/book/ch10-02-traits.html\
                             #traits-as-parameters",
                        );
                    }
                    (ty::Param(p), ty::Closure(..) | ty::Generator(..)) => {
                        let generics = self.generics_of(body_owner_def_id);
                        let p_span = self.def_span(generics.type_param(p, self).def_id);
                        if !sp.contains(p_span) {
                            diag.span_label(p_span, "this type parameter");
                        }
                        diag.help(&format!(
                            "every closure has a distinct type and so could not always match the \
                             caller-chosen type of parameter `{}`",
                            p
                        ));
                    }
                    (ty::Param(p), _) | (_, ty::Param(p)) => {
                        let generics = self.generics_of(body_owner_def_id);
                        let p_span = self.def_span(generics.type_param(p, self).def_id);
                        if !sp.contains(p_span) {
                            diag.span_label(p_span, "this type parameter");
                        }
                    }
                    (ty::Projection(proj_ty), _) if self.def_kind(proj_ty.item_def_id) != DefKind::ImplTraitPlaceholder => {
                        self.expected_projection(
                            diag,
                            proj_ty,
                            values,
                            body_owner_def_id,
                            cause.code(),
                        );
                    }
                    (_, ty::Projection(proj_ty)) if self.def_kind(proj_ty.item_def_id) != DefKind::ImplTraitPlaceholder => {
                        let msg = format!(
                            "consider constraining the associated type `{}` to `{}`",
                            values.found, values.expected,
                        );
                        if !(self.suggest_constraining_opaque_associated_type(
                            diag,
                            &msg,
                            proj_ty,
                            values.expected,
                        ) || self.suggest_constraint(
                            diag,
                            &msg,
                            body_owner_def_id,
                            proj_ty,
                            values.expected,
                        )) {
                            diag.help(&msg);
                            diag.note(
                                "for more information, visit \
                                https://doc.rust-lang.org/book/ch19-03-advanced-traits.html",
                            );
                        }
                    }
                    _ => {}
                }
                debug!(
                    "note_and_explain_type_err expected={:?} ({:?}) found={:?} ({:?})",
                    values.expected,
                    values.expected.kind(),
                    values.found,
                    values.found.kind(),
                );
            }
            CyclicTy(ty) => {
                // Watch out for various cases of cyclic types and try to explain.
                if ty.is_closure() || ty.is_generator() {
                    diag.note(
                        "closures cannot capture themselves or take themselves as argument;\n\
                         this error may be the result of a recent compiler bug-fix,\n\
                         see issue #46062 <https://github.com/rust-lang/rust/issues/46062>\n\
                         for more information",
                    );
                }
            }
            TargetFeatureCast(def_id) => {
                let target_spans =
                    self.get_attrs(def_id, sym::target_feature).map(|attr| attr.span);
                diag.note(
                    "functions with `#[target_feature]` can only be coerced to `unsafe` function pointers"
                );
                diag.span_labels(target_spans, "`#[target_feature]` added here");
            }
            _ => {}
        }
    }

    fn suggest_constraint(
        self,
        diag: &mut Diagnostic,
        msg: &str,
        body_owner_def_id: DefId,
        proj_ty: &ty::ProjectionTy<'tcx>,
        ty: Ty<'tcx>,
    ) -> bool {
        let assoc = self.associated_item(proj_ty.item_def_id);
        let (trait_ref, assoc_substs) = proj_ty.trait_ref_and_own_substs(self);
        if let Some(item) = self.hir().get_if_local(body_owner_def_id) {
            if let Some(hir_generics) = item.generics() {
                // Get the `DefId` for the type parameter corresponding to `A` in `<A as T>::Foo`.
                // This will also work for `impl Trait`.
                let def_id = if let ty::Param(param_ty) = proj_ty.self_ty().kind() {
                    let generics = self.generics_of(body_owner_def_id);
                    generics.type_param(param_ty, self).def_id
                } else {
                    return false;
                };
                let Some(def_id) = def_id.as_local() else {
                    return false;
                };

                // First look in the `where` clause, as this might be
                // `fn foo<T>(x: T) where T: Trait`.
                for pred in hir_generics.bounds_for_param(def_id) {
                    if self.constrain_generic_bound_associated_type_structured_suggestion(
                        diag,
                        &trait_ref,
                        pred.bounds,
                        &assoc,
                        assoc_substs,
                        ty,
                        msg,
                        false,
                    ) {
                        return true;
                    }
                }
            }
        }
        false
    }

    /// An associated type was expected and a different type was found.
    ///
    /// We perform a few different checks to see what we can suggest:
    ///
    ///  - In the current item, look for associated functions that return the expected type and
    ///    suggest calling them. (Not a structured suggestion.)
    ///  - If any of the item's generic bounds can be constrained, we suggest constraining the
    ///    associated type to the found type.
    ///  - If the associated type has a default type and was expected inside of a `trait`, we
    ///    mention that this is disallowed.
    ///  - If all other things fail, and the error is not because of a mismatch between the `trait`
    ///    and the `impl`, we provide a generic `help` to constrain the assoc type or call an assoc
    ///    fn that returns the type.
    fn expected_projection(
        self,
        diag: &mut Diagnostic,
        proj_ty: &ty::ProjectionTy<'tcx>,
        values: ExpectedFound<Ty<'tcx>>,
        body_owner_def_id: DefId,
        cause_code: &ObligationCauseCode<'_>,
    ) {
        let msg = format!(
            "consider constraining the associated type `{}` to `{}`",
            values.expected, values.found
        );
        let body_owner = self.hir().get_if_local(body_owner_def_id);
        let current_method_ident = body_owner.and_then(|n| n.ident()).map(|i| i.name);

        // We don't want to suggest calling an assoc fn in a scope where that isn't feasible.
        let callable_scope = matches!(
            body_owner,
            Some(
                hir::Node::Item(hir::Item { kind: hir::ItemKind::Fn(..), .. })
                    | hir::Node::TraitItem(hir::TraitItem { kind: hir::TraitItemKind::Fn(..), .. })
                    | hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }),
            )
        );
        let impl_comparison =
            matches!(cause_code, ObligationCauseCode::CompareImplItemObligation { .. });
        let assoc = self.associated_item(proj_ty.item_def_id);
        if !callable_scope || impl_comparison {
            // We do not want to suggest calling functions when the reason of the
            // type error is a comparison of an `impl` with its `trait` or when the
            // scope is outside of a `Body`.
        } else {
            // If we find a suitable associated function that returns the expected type, we don't
            // want the more general suggestion later in this method about "consider constraining
            // the associated type or calling a method that returns the associated type".
            let point_at_assoc_fn = self.point_at_methods_that_satisfy_associated_type(
                diag,
                assoc.container_id(self),
                current_method_ident,
                proj_ty.item_def_id,
                values.expected,
            );
            // Possibly suggest constraining the associated type to conform to the
            // found type.
            if self.suggest_constraint(diag, &msg, body_owner_def_id, proj_ty, values.found)
                || point_at_assoc_fn
            {
                return;
            }
        }

        self.suggest_constraining_opaque_associated_type(diag, &msg, proj_ty, values.found);

        if self.point_at_associated_type(diag, body_owner_def_id, values.found) {
            return;
        }

        if !impl_comparison {
            // Generic suggestion when we can't be more specific.
            if callable_scope {
                diag.help(&format!(
                    "{} or calling a method that returns `{}`",
                    msg, values.expected
                ));
            } else {
                diag.help(&msg);
            }
            diag.note(
                "for more information, visit \
                 https://doc.rust-lang.org/book/ch19-03-advanced-traits.html",
            );
        }
        if self.sess.teach(&diag.get_code().unwrap()) {
            diag.help(
                "given an associated type `T` and a method `foo`:
```
trait Trait {
type T;
fn foo(&self) -> Self::T;
}
```
the only way of implementing method `foo` is to constrain `T` with an explicit associated type:
```
impl Trait for X {
type T = String;
fn foo(&self) -> Self::T { String::new() }
}
```",
            );
        }
    }

    /// When the expected `impl Trait` is not defined in the current item, it will come from
    /// a return type. This can occur when dealing with `TryStream` (#71035).
    fn suggest_constraining_opaque_associated_type(
        self,
        diag: &mut Diagnostic,
        msg: &str,
        proj_ty: &ty::ProjectionTy<'tcx>,
        ty: Ty<'tcx>,
    ) -> bool {
        let assoc = self.associated_item(proj_ty.item_def_id);
        if let ty::Opaque(def_id, _) = *proj_ty.self_ty().kind() {
            let opaque_local_def_id = def_id.as_local();
            let opaque_hir_ty = if let Some(opaque_local_def_id) = opaque_local_def_id {
                match &self.hir().expect_item(opaque_local_def_id).kind {
                    hir::ItemKind::OpaqueTy(opaque_hir_ty) => opaque_hir_ty,
                    _ => bug!("The HirId comes from a `ty::Opaque`"),
                }
            } else {
                return false;
            };

            let (trait_ref, assoc_substs) = proj_ty.trait_ref_and_own_substs(self);

            self.constrain_generic_bound_associated_type_structured_suggestion(
                diag,
                &trait_ref,
                opaque_hir_ty.bounds,
                assoc,
                assoc_substs,
                ty,
                msg,
                true,
            )
        } else {
            false
        }
    }

    fn point_at_methods_that_satisfy_associated_type(
        self,
        diag: &mut Diagnostic,
        assoc_container_id: DefId,
        current_method_ident: Option<Symbol>,
        proj_ty_item_def_id: DefId,
        expected: Ty<'tcx>,
    ) -> bool {
        let items = self.associated_items(assoc_container_id);
        // Find all the methods in the trait that could be called to construct the
        // expected associated type.
        // FIXME: consider suggesting the use of associated `const`s.
        let methods: Vec<(Span, String)> = items
            .items
            .iter()
            .filter(|(name, item)| {
                ty::AssocKind::Fn == item.kind && Some(**name) != current_method_ident
            })
            .filter_map(|(_, item)| {
                let method = self.fn_sig(item.def_id);
                match *method.output().skip_binder().kind() {
                    ty::Projection(ty::ProjectionTy { item_def_id, .. })
                        if item_def_id == proj_ty_item_def_id =>
                    {
                        Some((
                            self.def_span(item.def_id),
                            format!("consider calling `{}`", self.def_path_str(item.def_id)),
                        ))
                    }
                    _ => None,
                }
            })
            .collect();
        if !methods.is_empty() {
            // Use a single `help:` to show all the methods in the trait that can
            // be used to construct the expected associated type.
            let mut span: MultiSpan =
                methods.iter().map(|(sp, _)| *sp).collect::<Vec<Span>>().into();
            let msg = format!(
                "{some} method{s} {are} available that return{r} `{ty}`",
                some = if methods.len() == 1 { "a" } else { "some" },
                s = pluralize!(methods.len()),
                are = pluralize!("is", methods.len()),
                r = if methods.len() == 1 { "s" } else { "" },
                ty = expected
            );
            for (sp, label) in methods.into_iter() {
                span.push_span_label(sp, label);
            }
            diag.span_help(span, &msg);
            return true;
        }
        false
    }

    fn point_at_associated_type(
        self,
        diag: &mut Diagnostic,
        body_owner_def_id: DefId,
        found: Ty<'tcx>,
    ) -> bool {
        let Some(hir_id) = body_owner_def_id.as_local() else {
            return false;
        };
        let hir_id = self.hir().local_def_id_to_hir_id(hir_id);
        // When `body_owner` is an `impl` or `trait` item, look in its associated types for
        // `expected` and point at it.
        let parent_id = self.hir().get_parent_item(hir_id);
        let item = self.hir().find_by_def_id(parent_id.def_id);
        debug!("expected_projection parent item {:?}", item);
        match item {
            Some(hir::Node::Item(hir::Item { kind: hir::ItemKind::Trait(.., items), .. })) => {
                // FIXME: account for `#![feature(specialization)]`
                for item in &items[..] {
                    match item.kind {
                        hir::AssocItemKind::Type => {
                            // FIXME: account for returning some type in a trait fn impl that has
                            // an assoc type as a return type (#72076).
                            if let hir::Defaultness::Default { has_value: true } =
                                self.impl_defaultness(item.id.def_id)
                            {
                                if self.type_of(item.id.def_id) == found {
                                    diag.span_label(
                                        item.span,
                                        "associated type defaults can't be assumed inside the \
                                            trait defining them",
                                    );
                                    return true;
                                }
                            }
                        }
                        _ => {}
                    }
                }
            }
            Some(hir::Node::Item(hir::Item {
                kind: hir::ItemKind::Impl(hir::Impl { items, .. }),
                ..
            })) => {
                for item in &items[..] {
                    if let hir::AssocItemKind::Type = item.kind {
                        if self.type_of(item.id.def_id) == found {
                            diag.span_label(item.span, "expected this associated type");
                            return true;
                        }
                    }
                }
            }
            _ => {}
        }
        false
    }

    /// Given a slice of `hir::GenericBound`s, if any of them corresponds to the `trait_ref`
    /// requirement, provide a structured suggestion to constrain it to a given type `ty`.
    ///
    /// `is_bound_surely_present` indicates whether we know the bound we're looking for is
    /// inside `bounds`. If that's the case then we can consider `bounds` containing only one
    /// trait bound as the one we're looking for. This can help in cases where the associated
    /// type is defined on a supertrait of the one present in the bounds.
    fn constrain_generic_bound_associated_type_structured_suggestion(
        self,
        diag: &mut Diagnostic,
        trait_ref: &ty::TraitRef<'tcx>,
        bounds: hir::GenericBounds<'_>,
        assoc: &ty::AssocItem,
        assoc_substs: &[ty::GenericArg<'tcx>],
        ty: Ty<'tcx>,
        msg: &str,
        is_bound_surely_present: bool,
    ) -> bool {
        // FIXME: we would want to call `resolve_vars_if_possible` on `ty` before suggesting.

        let trait_bounds = bounds.iter().filter_map(|bound| match bound {
            hir::GenericBound::Trait(ptr, hir::TraitBoundModifier::None) => Some(ptr),
            _ => None,
        });

        let matching_trait_bounds = trait_bounds
            .clone()
            .filter(|ptr| ptr.trait_ref.trait_def_id() == Some(trait_ref.def_id))
            .collect::<Vec<_>>();

        let span = match &matching_trait_bounds[..] {
            &[ptr] => ptr.span,
            &[] if is_bound_surely_present => match &trait_bounds.collect::<Vec<_>>()[..] {
                &[ptr] => ptr.span,
                _ => return false,
            },
            _ => return false,
        };

        self.constrain_associated_type_structured_suggestion(
            diag,
            span,
            assoc,
            assoc_substs,
            ty,
            msg,
        )
    }

    /// Given a span corresponding to a bound, provide a structured suggestion to set an
    /// associated type to a given type `ty`.
    fn constrain_associated_type_structured_suggestion(
        self,
        diag: &mut Diagnostic,
        span: Span,
        assoc: &ty::AssocItem,
        assoc_substs: &[ty::GenericArg<'tcx>],
        ty: Ty<'tcx>,
        msg: &str,
    ) -> bool {
        if let Ok(has_params) =
            self.sess.source_map().span_to_snippet(span).map(|snippet| snippet.ends_with('>'))
        {
            let (span, sugg) = if has_params {
                let pos = span.hi() - BytePos(1);
                let span = Span::new(pos, pos, span.ctxt(), span.parent());
                (span, format!(", {} = {}", assoc.ident(self), ty))
            } else {
                let item_args = self.format_generic_args(assoc_substs);
                (span.shrink_to_hi(), format!("<{}{} = {}>", assoc.ident(self), item_args, ty))
            };
            diag.span_suggestion_verbose(span, msg, sugg, MaybeIncorrect);
            return true;
        }
        false
    }

    fn format_generic_args(self, args: &[ty::GenericArg<'tcx>]) -> String {
        FmtPrinter::new(self, hir::def::Namespace::TypeNS)
            .path_generic_args(Ok, args)
            .expect("could not write to `String`.")
            .into_buffer()
    }
}