1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
/*!

# typeck: check phase

Within the check phase of type check, we check each item one at a time
(bodies of function expressions are checked as part of the containing
function). Inference is used to supply types wherever they are unknown.

By far the most complex case is checking the body of a function. This
can be broken down into several distinct phases:

- gather: creates type variables to represent the type of each local
  variable and pattern binding.

- main: the main pass does the lion's share of the work: it
  determines the types of all expressions, resolves
  methods, checks for most invalid conditions, and so forth.  In
  some cases, where a type is unknown, it may create a type or region
  variable and use that as the type of an expression.

  In the process of checking, various constraints will be placed on
  these type variables through the subtyping relationships requested
  through the `demand` module.  The `infer` module is in charge
  of resolving those constraints.

- regionck: after main is complete, the regionck pass goes over all
  types looking for regions and making sure that they did not escape
  into places where they are not in scope.  This may also influence the
  final assignments of the various region variables if there is some
  flexibility.

- writeback: writes the final types within a function body, replacing
  type variables with their final inferred types.  These final types
  are written into the `tcx.node_types` table, which should *never* contain
  any reference to a type variable.

## Intermediate types

While type checking a function, the intermediate types for the
expressions, blocks, and so forth contained within the function are
stored in `fcx.node_types` and `fcx.node_substs`.  These types
may contain unresolved type variables.  After type checking is
complete, the functions in the writeback module are used to take the
types from this table, resolve them, and then write them into their
permanent home in the type context `tcx`.

This means that during inferencing you should use `fcx.write_ty()`
and `fcx.expr_ty()` / `fcx.node_ty()` to write/obtain the types of
nodes within the function.

The types of top-level items, which never contain unbound type
variables, are stored directly into the `tcx` typeck_results.

N.B., a type variable is not the same thing as a type parameter.  A
type variable is an instance of a type parameter. That is,
given a generic function `fn foo<T>(t: T)`, while checking the
function `foo`, the type `ty_param(0)` refers to the type `T`, which
is treated in abstract. However, when `foo()` is called, `T` will be
substituted for a fresh type variable `N`.  This variable will
eventually be resolved to some concrete type (which might itself be
a type parameter).

*/

pub mod _match;
mod autoderef;
mod callee;
pub mod cast;
mod check;
mod closure;
pub mod coercion;
mod compare_method;
pub mod demand;
mod diverges;
pub mod dropck;
mod expectation;
mod expr;
mod fallback;
mod fn_ctxt;
mod gather_locals;
mod generator_interior;
mod inherited;
pub mod intrinsic;
mod intrinsicck;
pub mod method;
mod op;
mod pat;
mod place_op;
mod region;
pub mod rvalue_scopes;
mod upvar;
pub mod wfcheck;
pub mod writeback;

use check::{check_abi, check_fn, check_mod_item_types};
pub use diverges::Diverges;
pub use expectation::Expectation;
pub use fn_ctxt::*;
pub use inherited::{Inherited, InheritedBuilder};

use crate::astconv::AstConv;
use crate::check::gather_locals::GatherLocalsVisitor;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::{
    pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, MultiSpan,
};
use rustc_hir as hir;
use rustc_hir::def::Res;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::intravisit::Visitor;
use rustc_hir::{HirIdMap, ImplicitSelfKind, Node};
use rustc_index::bit_set::BitSet;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::{self, Ty, TyCtxt, UserType};
use rustc_middle::ty::{InternalSubsts, SubstsRef};
use rustc_session::config;
use rustc_session::parse::feature_err;
use rustc_session::Session;
use rustc_span::source_map::DUMMY_SP;
use rustc_span::symbol::{kw, Ident};
use rustc_span::{self, BytePos, Span, Symbol};
use rustc_target::abi::VariantIdx;
use rustc_target::spec::abi::Abi;
use rustc_trait_selection::traits;
use rustc_trait_selection::traits::error_reporting::recursive_type_with_infinite_size_error;
use rustc_trait_selection::traits::error_reporting::suggestions::ReturnsVisitor;
use std::cell::RefCell;
use std::num::NonZeroU32;

use crate::require_c_abi_if_c_variadic;
use crate::util::common::indenter;

use self::coercion::DynamicCoerceMany;
use self::compare_method::collect_trait_impl_trait_tys;
use self::region::region_scope_tree;
pub use self::Expectation::*;

#[macro_export]
macro_rules! type_error_struct {
    ($session:expr, $span:expr, $typ:expr, $code:ident, $($message:tt)*) => ({
        let mut err = rustc_errors::struct_span_err!($session, $span, $code, $($message)*);

        if $typ.references_error() {
            err.downgrade_to_delayed_bug();
        }

        err
    })
}

/// The type of a local binding, including the revealed type for anon types.
#[derive(Copy, Clone, Debug)]
pub struct LocalTy<'tcx> {
    decl_ty: Ty<'tcx>,
    revealed_ty: Ty<'tcx>,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Needs {
    MutPlace,
    None,
}

impl Needs {
    fn maybe_mut_place(m: hir::Mutability) -> Self {
        match m {
            hir::Mutability::Mut => Needs::MutPlace,
            hir::Mutability::Not => Needs::None,
        }
    }
}

#[derive(Copy, Clone)]
pub struct UnsafetyState {
    pub def: hir::HirId,
    pub unsafety: hir::Unsafety,
    from_fn: bool,
}

impl UnsafetyState {
    pub fn function(unsafety: hir::Unsafety, def: hir::HirId) -> UnsafetyState {
        UnsafetyState { def, unsafety, from_fn: true }
    }

    pub fn recurse(self, blk: &hir::Block<'_>) -> UnsafetyState {
        use hir::BlockCheckMode;
        match self.unsafety {
            // If this unsafe, then if the outer function was already marked as
            // unsafe we shouldn't attribute the unsafe'ness to the block. This
            // way the block can be warned about instead of ignoring this
            // extraneous block (functions are never warned about).
            hir::Unsafety::Unsafe if self.from_fn => self,

            unsafety => {
                let (unsafety, def) = match blk.rules {
                    BlockCheckMode::UnsafeBlock(..) => (hir::Unsafety::Unsafe, blk.hir_id),
                    BlockCheckMode::DefaultBlock => (unsafety, self.def),
                };
                UnsafetyState { def, unsafety, from_fn: false }
            }
        }
    }
}

#[derive(Debug, Copy, Clone)]
pub enum PlaceOp {
    Deref,
    Index,
}

pub struct BreakableCtxt<'tcx> {
    may_break: bool,

    // this is `null` for loops where break with a value is illegal,
    // such as `while`, `for`, and `while let`
    coerce: Option<DynamicCoerceMany<'tcx>>,
}

pub struct EnclosingBreakables<'tcx> {
    stack: Vec<BreakableCtxt<'tcx>>,
    by_id: HirIdMap<usize>,
}

impl<'tcx> EnclosingBreakables<'tcx> {
    fn find_breakable(&mut self, target_id: hir::HirId) -> &mut BreakableCtxt<'tcx> {
        self.opt_find_breakable(target_id).unwrap_or_else(|| {
            bug!("could not find enclosing breakable with id {}", target_id);
        })
    }

    fn opt_find_breakable(&mut self, target_id: hir::HirId) -> Option<&mut BreakableCtxt<'tcx>> {
        match self.by_id.get(&target_id) {
            Some(ix) => Some(&mut self.stack[*ix]),
            None => None,
        }
    }
}

pub fn provide(providers: &mut Providers) {
    method::provide(providers);
    wfcheck::provide(providers);
    *providers = Providers {
        typeck_item_bodies,
        typeck_const_arg,
        typeck,
        diagnostic_only_typeck,
        has_typeck_results,
        adt_destructor,
        used_trait_imports,
        check_mod_item_types,
        region_scope_tree,
        collect_trait_impl_trait_tys,
        ..*providers
    };
}

fn adt_destructor(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::Destructor> {
    tcx.calculate_dtor(def_id, dropck::check_drop_impl)
}

/// If this `DefId` is a "primary tables entry", returns
/// `Some((body_id, body_ty, fn_sig))`. Otherwise, returns `None`.
///
/// If this function returns `Some`, then `typeck_results(def_id)` will
/// succeed; if it returns `None`, then `typeck_results(def_id)` may or
/// may not succeed. In some cases where this function returns `None`
/// (notably closures), `typeck_results(def_id)` would wind up
/// redirecting to the owning function.
fn primary_body_of(
    tcx: TyCtxt<'_>,
    id: hir::HirId,
) -> Option<(hir::BodyId, Option<&hir::Ty<'_>>, Option<&hir::FnSig<'_>>)> {
    match tcx.hir().get(id) {
        Node::Item(item) => match item.kind {
            hir::ItemKind::Const(ty, body) | hir::ItemKind::Static(ty, _, body) => {
                Some((body, Some(ty), None))
            }
            hir::ItemKind::Fn(ref sig, .., body) => Some((body, None, Some(sig))),
            _ => None,
        },
        Node::TraitItem(item) => match item.kind {
            hir::TraitItemKind::Const(ty, Some(body)) => Some((body, Some(ty), None)),
            hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Provided(body)) => {
                Some((body, None, Some(sig)))
            }
            _ => None,
        },
        Node::ImplItem(item) => match item.kind {
            hir::ImplItemKind::Const(ty, body) => Some((body, Some(ty), None)),
            hir::ImplItemKind::Fn(ref sig, body) => Some((body, None, Some(sig))),
            _ => None,
        },
        Node::AnonConst(constant) => Some((constant.body, None, None)),
        _ => None,
    }
}

fn has_typeck_results(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
    // Closures' typeck results come from their outermost function,
    // as they are part of the same "inference environment".
    let typeck_root_def_id = tcx.typeck_root_def_id(def_id);
    if typeck_root_def_id != def_id {
        return tcx.has_typeck_results(typeck_root_def_id);
    }

    if let Some(def_id) = def_id.as_local() {
        let id = tcx.hir().local_def_id_to_hir_id(def_id);
        primary_body_of(tcx, id).is_some()
    } else {
        false
    }
}

fn used_trait_imports(tcx: TyCtxt<'_>, def_id: LocalDefId) -> &FxHashSet<LocalDefId> {
    &*tcx.typeck(def_id).used_trait_imports
}

fn typeck_const_arg<'tcx>(
    tcx: TyCtxt<'tcx>,
    (did, param_did): (LocalDefId, DefId),
) -> &ty::TypeckResults<'tcx> {
    let fallback = move || tcx.type_of(param_did);
    typeck_with_fallback(tcx, did, fallback)
}

fn typeck<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &ty::TypeckResults<'tcx> {
    if let Some(param_did) = tcx.opt_const_param_of(def_id) {
        tcx.typeck_const_arg((def_id, param_did))
    } else {
        let fallback = move || tcx.type_of(def_id.to_def_id());
        typeck_with_fallback(tcx, def_id, fallback)
    }
}

/// Used only to get `TypeckResults` for type inference during error recovery.
/// Currently only used for type inference of `static`s and `const`s to avoid type cycle errors.
fn diagnostic_only_typeck<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &ty::TypeckResults<'tcx> {
    let fallback = move || {
        let span = tcx.hir().span(tcx.hir().local_def_id_to_hir_id(def_id));
        tcx.ty_error_with_message(span, "diagnostic only typeck table used")
    };
    typeck_with_fallback(tcx, def_id, fallback)
}

fn typeck_with_fallback<'tcx>(
    tcx: TyCtxt<'tcx>,
    def_id: LocalDefId,
    fallback: impl Fn() -> Ty<'tcx> + 'tcx,
) -> &'tcx ty::TypeckResults<'tcx> {
    // Closures' typeck results come from their outermost function,
    // as they are part of the same "inference environment".
    let typeck_root_def_id = tcx.typeck_root_def_id(def_id.to_def_id()).expect_local();
    if typeck_root_def_id != def_id {
        return tcx.typeck(typeck_root_def_id);
    }

    let id = tcx.hir().local_def_id_to_hir_id(def_id);
    let span = tcx.hir().span(id);

    // Figure out what primary body this item has.
    let (body_id, body_ty, fn_sig) = primary_body_of(tcx, id).unwrap_or_else(|| {
        span_bug!(span, "can't type-check body of {:?}", def_id);
    });
    let body = tcx.hir().body(body_id);

    let typeck_results = Inherited::build(tcx, def_id).enter(|inh| {
        let param_env = tcx.param_env(def_id);
        let mut fcx = if let Some(hir::FnSig { header, decl, .. }) = fn_sig {
            let fn_sig = if crate::collect::get_infer_ret_ty(&decl.output).is_some() {
                let fcx = FnCtxt::new(&inh, param_env, body.value.hir_id);
                <dyn AstConv<'_>>::ty_of_fn(&fcx, id, header.unsafety, header.abi, decl, None, None)
            } else {
                tcx.fn_sig(def_id)
            };

            check_abi(tcx, id, span, fn_sig.abi());

            // Compute the function signature from point of view of inside the fn.
            let fn_sig = tcx.liberate_late_bound_regions(def_id.to_def_id(), fn_sig);
            let fn_sig = inh.normalize_associated_types_in(
                body.value.span,
                body_id.hir_id,
                param_env,
                fn_sig,
            );
            check_fn(&inh, param_env, fn_sig, decl, id, body, None, true).0
        } else {
            let fcx = FnCtxt::new(&inh, param_env, body.value.hir_id);
            let expected_type = body_ty
                .and_then(|ty| match ty.kind {
                    hir::TyKind::Infer => Some(<dyn AstConv<'_>>::ast_ty_to_ty(&fcx, ty)),
                    _ => None,
                })
                .unwrap_or_else(|| match tcx.hir().get(id) {
                    Node::AnonConst(_) => match tcx.hir().get(tcx.hir().get_parent_node(id)) {
                        Node::Expr(&hir::Expr {
                            kind: hir::ExprKind::ConstBlock(ref anon_const),
                            ..
                        }) if anon_const.hir_id == id => fcx.next_ty_var(TypeVariableOrigin {
                            kind: TypeVariableOriginKind::TypeInference,
                            span,
                        }),
                        Node::Ty(&hir::Ty {
                            kind: hir::TyKind::Typeof(ref anon_const), ..
                        }) if anon_const.hir_id == id => fcx.next_ty_var(TypeVariableOrigin {
                            kind: TypeVariableOriginKind::TypeInference,
                            span,
                        }),
                        Node::Expr(&hir::Expr { kind: hir::ExprKind::InlineAsm(asm), .. })
                        | Node::Item(&hir::Item { kind: hir::ItemKind::GlobalAsm(asm), .. }) => {
                            let operand_ty = asm
                                .operands
                                .iter()
                                .filter_map(|(op, _op_sp)| match op {
                                    hir::InlineAsmOperand::Const { anon_const }
                                        if anon_const.hir_id == id =>
                                    {
                                        // Inline assembly constants must be integers.
                                        Some(fcx.next_int_var())
                                    }
                                    hir::InlineAsmOperand::SymFn { anon_const }
                                        if anon_const.hir_id == id =>
                                    {
                                        Some(fcx.next_ty_var(TypeVariableOrigin {
                                            kind: TypeVariableOriginKind::MiscVariable,
                                            span,
                                        }))
                                    }
                                    _ => None,
                                })
                                .next();
                            operand_ty.unwrap_or_else(fallback)
                        }
                        _ => fallback(),
                    },
                    _ => fallback(),
                });

            let expected_type = fcx.normalize_associated_types_in(body.value.span, expected_type);
            fcx.require_type_is_sized(expected_type, body.value.span, traits::ConstSized);

            // Gather locals in statics (because of block expressions).
            GatherLocalsVisitor::new(&fcx).visit_body(body);

            fcx.check_expr_coercable_to_type(&body.value, expected_type, None);

            fcx.write_ty(id, expected_type);

            fcx
        };

        let fallback_has_occurred = fcx.type_inference_fallback();

        // Even though coercion casts provide type hints, we check casts after fallback for
        // backwards compatibility. This makes fallback a stronger type hint than a cast coercion.
        fcx.check_casts();
        fcx.select_obligations_where_possible(fallback_has_occurred, |_| {});

        // Closure and generator analysis may run after fallback
        // because they don't constrain other type variables.
        // Closure analysis only runs on closures. Therefore they only need to fulfill non-const predicates (as of now)
        let prev_constness = fcx.param_env.constness();
        fcx.param_env = fcx.param_env.without_const();
        fcx.closure_analyze(body);
        fcx.param_env = fcx.param_env.with_constness(prev_constness);
        assert!(fcx.deferred_call_resolutions.borrow().is_empty());
        // Before the generator analysis, temporary scopes shall be marked to provide more
        // precise information on types to be captured.
        fcx.resolve_rvalue_scopes(def_id.to_def_id());
        fcx.resolve_generator_interiors(def_id.to_def_id());

        for (ty, span, code) in fcx.deferred_sized_obligations.borrow_mut().drain(..) {
            let ty = fcx.normalize_ty(span, ty);
            fcx.require_type_is_sized(ty, span, code);
        }

        fcx.select_all_obligations_or_error();

        if !fcx.infcx.is_tainted_by_errors() {
            fcx.check_transmutes();
        }

        fcx.check_asms();

        fcx.infcx.skip_region_resolution();

        fcx.resolve_type_vars_in_body(body)
    });

    // Consistency check our TypeckResults instance can hold all ItemLocalIds
    // it will need to hold.
    assert_eq!(typeck_results.hir_owner, id.owner);

    typeck_results
}

/// When `check_fn` is invoked on a generator (i.e., a body that
/// includes yield), it returns back some information about the yield
/// points.
struct GeneratorTypes<'tcx> {
    /// Type of generator argument / values returned by `yield`.
    resume_ty: Ty<'tcx>,

    /// Type of value that is yielded.
    yield_ty: Ty<'tcx>,

    /// Types that are captured (see `GeneratorInterior` for more).
    interior: Ty<'tcx>,

    /// Indicates if the generator is movable or static (immovable).
    movability: hir::Movability,
}

/// Given a `DefId` for an opaque type in return position, find its parent item's return
/// expressions.
fn get_owner_return_paths<'tcx>(
    tcx: TyCtxt<'tcx>,
    def_id: LocalDefId,
) -> Option<(LocalDefId, ReturnsVisitor<'tcx>)> {
    let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
    let parent_id = tcx.hir().get_parent_item(hir_id).def_id;
    tcx.hir().find_by_def_id(parent_id).and_then(|node| node.body_id()).map(|body_id| {
        let body = tcx.hir().body(body_id);
        let mut visitor = ReturnsVisitor::default();
        visitor.visit_body(body);
        (parent_id, visitor)
    })
}

// Forbid defining intrinsics in Rust code,
// as they must always be defined by the compiler.
fn fn_maybe_err(tcx: TyCtxt<'_>, sp: Span, abi: Abi) {
    if let Abi::RustIntrinsic | Abi::PlatformIntrinsic = abi {
        tcx.sess.span_err(sp, "intrinsic must be in `extern \"rust-intrinsic\" { ... }` block");
    }
}

fn maybe_check_static_with_link_section(tcx: TyCtxt<'_>, id: LocalDefId) {
    // Only restricted on wasm target for now
    if !tcx.sess.target.is_like_wasm {
        return;
    }

    // If `#[link_section]` is missing, then nothing to verify
    let attrs = tcx.codegen_fn_attrs(id);
    if attrs.link_section.is_none() {
        return;
    }

    // For the wasm32 target statics with `#[link_section]` are placed into custom
    // sections of the final output file, but this isn't link custom sections of
    // other executable formats. Namely we can only embed a list of bytes,
    // nothing with provenance (pointers to anything else). If any provenance
    // show up, reject it here.
    // `#[link_section]` may contain arbitrary, or even undefined bytes, but it is
    // the consumer's responsibility to ensure all bytes that have been read
    // have defined values.
    if let Ok(alloc) = tcx.eval_static_initializer(id.to_def_id())
        && alloc.inner().provenance().len() != 0
    {
        let msg = "statics with a custom `#[link_section]` must be a \
                        simple list of bytes on the wasm target with no \
                        extra levels of indirection such as references";
        tcx.sess.span_err(tcx.def_span(id), msg);
    }
}

fn report_forbidden_specialization(
    tcx: TyCtxt<'_>,
    impl_item: &hir::ImplItemRef,
    parent_impl: DefId,
) {
    let mut err = struct_span_err!(
        tcx.sess,
        impl_item.span,
        E0520,
        "`{}` specializes an item from a parent `impl`, but \
         that item is not marked `default`",
        impl_item.ident
    );
    err.span_label(impl_item.span, format!("cannot specialize default item `{}`", impl_item.ident));

    match tcx.span_of_impl(parent_impl) {
        Ok(span) => {
            err.span_label(span, "parent `impl` is here");
            err.note(&format!(
                "to specialize, `{}` in the parent `impl` must be marked `default`",
                impl_item.ident
            ));
        }
        Err(cname) => {
            err.note(&format!("parent implementation is in crate `{cname}`"));
        }
    }

    err.emit();
}

fn missing_items_err(
    tcx: TyCtxt<'_>,
    impl_span: Span,
    missing_items: &[&ty::AssocItem],
    full_impl_span: Span,
) {
    let missing_items_msg = missing_items
        .iter()
        .map(|trait_item| trait_item.name.to_string())
        .collect::<Vec<_>>()
        .join("`, `");

    let mut err = struct_span_err!(
        tcx.sess,
        impl_span,
        E0046,
        "not all trait items implemented, missing: `{missing_items_msg}`",
    );
    err.span_label(impl_span, format!("missing `{missing_items_msg}` in implementation"));

    // `Span` before impl block closing brace.
    let hi = full_impl_span.hi() - BytePos(1);
    // Point at the place right before the closing brace of the relevant `impl` to suggest
    // adding the associated item at the end of its body.
    let sugg_sp = full_impl_span.with_lo(hi).with_hi(hi);
    // Obtain the level of indentation ending in `sugg_sp`.
    let padding =
        tcx.sess.source_map().indentation_before(sugg_sp).unwrap_or_else(|| String::new());

    for trait_item in missing_items {
        let snippet = suggestion_signature(trait_item, tcx);
        let code = format!("{}{}\n{}", padding, snippet, padding);
        let msg = format!("implement the missing item: `{snippet}`");
        let appl = Applicability::HasPlaceholders;
        if let Some(span) = tcx.hir().span_if_local(trait_item.def_id) {
            err.span_label(span, format!("`{}` from trait", trait_item.name));
            err.tool_only_span_suggestion(sugg_sp, &msg, code, appl);
        } else {
            err.span_suggestion_hidden(sugg_sp, &msg, code, appl);
        }
    }
    err.emit();
}

fn missing_items_must_implement_one_of_err(
    tcx: TyCtxt<'_>,
    impl_span: Span,
    missing_items: &[Ident],
    annotation_span: Option<Span>,
) {
    let missing_items_msg =
        missing_items.iter().map(Ident::to_string).collect::<Vec<_>>().join("`, `");

    let mut err = struct_span_err!(
        tcx.sess,
        impl_span,
        E0046,
        "not all trait items implemented, missing one of: `{missing_items_msg}`",
    );
    err.span_label(impl_span, format!("missing one of `{missing_items_msg}` in implementation"));

    if let Some(annotation_span) = annotation_span {
        err.span_note(annotation_span, "required because of this annotation");
    }

    err.emit();
}

fn default_body_is_unstable(
    tcx: TyCtxt<'_>,
    impl_span: Span,
    item_did: DefId,
    feature: Symbol,
    reason: Option<Symbol>,
    issue: Option<NonZeroU32>,
) {
    let missing_item_name = &tcx.associated_item(item_did).name;
    let use_of_unstable_library_feature_note = match reason {
        Some(r) => format!("use of unstable library feature '{feature}': {r}"),
        None => format!("use of unstable library feature '{feature}'"),
    };

    let mut err = struct_span_err!(
        tcx.sess,
        impl_span,
        E0046,
        "not all trait items implemented, missing: `{missing_item_name}`",
    );
    err.note(format!("default implementation of `{missing_item_name}` is unstable"));
    err.note(use_of_unstable_library_feature_note);
    rustc_session::parse::add_feature_diagnostics_for_issue(
        &mut err,
        &tcx.sess.parse_sess,
        feature,
        rustc_feature::GateIssue::Library(issue),
    );
    err.emit();
}

/// Re-sugar `ty::GenericPredicates` in a way suitable to be used in structured suggestions.
fn bounds_from_generic_predicates<'tcx>(
    tcx: TyCtxt<'tcx>,
    predicates: ty::GenericPredicates<'tcx>,
) -> (String, String) {
    let mut types: FxHashMap<Ty<'tcx>, Vec<DefId>> = FxHashMap::default();
    let mut projections = vec![];
    for (predicate, _) in predicates.predicates {
        debug!("predicate {:?}", predicate);
        let bound_predicate = predicate.kind();
        match bound_predicate.skip_binder() {
            ty::PredicateKind::Trait(trait_predicate) => {
                let entry = types.entry(trait_predicate.self_ty()).or_default();
                let def_id = trait_predicate.def_id();
                if Some(def_id) != tcx.lang_items().sized_trait() {
                    // Type params are `Sized` by default, do not add that restriction to the list
                    // if it is a positive requirement.
                    entry.push(trait_predicate.def_id());
                }
            }
            ty::PredicateKind::Projection(projection_pred) => {
                projections.push(bound_predicate.rebind(projection_pred));
            }
            _ => {}
        }
    }
    let generics = if types.is_empty() {
        "".to_string()
    } else {
        format!(
            "<{}>",
            types
                .keys()
                .filter_map(|t| match t.kind() {
                    ty::Param(_) => Some(t.to_string()),
                    // Avoid suggesting the following:
                    // fn foo<T, <T as Trait>::Bar>(_: T) where T: Trait, <T as Trait>::Bar: Other {}
                    _ => None,
                })
                .collect::<Vec<_>>()
                .join(", ")
        )
    };
    let mut where_clauses = vec![];
    for (ty, bounds) in types {
        where_clauses
            .extend(bounds.into_iter().map(|bound| format!("{}: {}", ty, tcx.def_path_str(bound))));
    }
    for projection in &projections {
        let p = projection.skip_binder();
        // FIXME: this is not currently supported syntax, we should be looking at the `types` and
        // insert the associated types where they correspond, but for now let's be "lazy" and
        // propose this instead of the following valid resugaring:
        // `T: Trait, Trait::Assoc = K` → `T: Trait<Assoc = K>`
        where_clauses.push(format!(
            "{} = {}",
            tcx.def_path_str(p.projection_ty.item_def_id),
            p.term,
        ));
    }
    let where_clauses = if where_clauses.is_empty() {
        String::new()
    } else {
        format!(" where {}", where_clauses.join(", "))
    };
    (generics, where_clauses)
}

/// Return placeholder code for the given function.
fn fn_sig_suggestion<'tcx>(
    tcx: TyCtxt<'tcx>,
    sig: ty::FnSig<'tcx>,
    ident: Ident,
    predicates: ty::GenericPredicates<'tcx>,
    assoc: &ty::AssocItem,
) -> String {
    let args = sig
        .inputs()
        .iter()
        .enumerate()
        .map(|(i, ty)| {
            Some(match ty.kind() {
                ty::Param(_) if assoc.fn_has_self_parameter && i == 0 => "self".to_string(),
                ty::Ref(reg, ref_ty, mutability) if i == 0 => {
                    let reg = format!("{reg} ");
                    let reg = match &reg[..] {
                        "'_ " | " " => "",
                        reg => reg,
                    };
                    if assoc.fn_has_self_parameter {
                        match ref_ty.kind() {
                            ty::Param(param) if param.name == kw::SelfUpper => {
                                format!("&{}{}self", reg, mutability.prefix_str())
                            }

                            _ => format!("self: {ty}"),
                        }
                    } else {
                        format!("_: {ty}")
                    }
                }
                _ => {
                    if assoc.fn_has_self_parameter && i == 0 {
                        format!("self: {ty}")
                    } else {
                        format!("_: {ty}")
                    }
                }
            })
        })
        .chain(std::iter::once(if sig.c_variadic { Some("...".to_string()) } else { None }))
        .flatten()
        .collect::<Vec<String>>()
        .join(", ");
    let output = sig.output();
    let output = if !output.is_unit() { format!(" -> {output}") } else { String::new() };

    let unsafety = sig.unsafety.prefix_str();
    let (generics, where_clauses) = bounds_from_generic_predicates(tcx, predicates);

    // FIXME: this is not entirely correct, as the lifetimes from borrowed params will
    // not be present in the `fn` definition, not will we account for renamed
    // lifetimes between the `impl` and the `trait`, but this should be good enough to
    // fill in a significant portion of the missing code, and other subsequent
    // suggestions can help the user fix the code.
    format!("{unsafety}fn {ident}{generics}({args}){output}{where_clauses} {{ todo!() }}")
}

/// Return placeholder code for the given associated item.
/// Similar to `ty::AssocItem::suggestion`, but appropriate for use as the code snippet of a
/// structured suggestion.
fn suggestion_signature(assoc: &ty::AssocItem, tcx: TyCtxt<'_>) -> String {
    match assoc.kind {
        ty::AssocKind::Fn => {
            // We skip the binder here because the binder would deanonymize all
            // late-bound regions, and we don't want method signatures to show up
            // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
            // regions just fine, showing `fn(&MyType)`.
            fn_sig_suggestion(
                tcx,
                tcx.fn_sig(assoc.def_id).skip_binder(),
                assoc.ident(tcx),
                tcx.predicates_of(assoc.def_id),
                assoc,
            )
        }
        ty::AssocKind::Type => format!("type {} = Type;", assoc.name),
        ty::AssocKind::Const => {
            let ty = tcx.type_of(assoc.def_id);
            let val = expr::ty_kind_suggestion(ty).unwrap_or("value");
            format!("const {}: {} = {};", assoc.name, ty, val)
        }
    }
}

/// Emit an error when encountering two or more variants in a transparent enum.
fn bad_variant_count<'tcx>(tcx: TyCtxt<'tcx>, adt: ty::AdtDef<'tcx>, sp: Span, did: DefId) {
    let variant_spans: Vec<_> = adt
        .variants()
        .iter()
        .map(|variant| tcx.hir().span_if_local(variant.def_id).unwrap())
        .collect();
    let msg = format!("needs exactly one variant, but has {}", adt.variants().len(),);
    let mut err = struct_span_err!(tcx.sess, sp, E0731, "transparent enum {msg}");
    err.span_label(sp, &msg);
    if let [start @ .., end] = &*variant_spans {
        for variant_span in start {
            err.span_label(*variant_span, "");
        }
        err.span_label(*end, &format!("too many variants in `{}`", tcx.def_path_str(did)));
    }
    err.emit();
}

/// Emit an error when encountering two or more non-zero-sized fields in a transparent
/// enum.
fn bad_non_zero_sized_fields<'tcx>(
    tcx: TyCtxt<'tcx>,
    adt: ty::AdtDef<'tcx>,
    field_count: usize,
    field_spans: impl Iterator<Item = Span>,
    sp: Span,
) {
    let msg = format!("needs at most one non-zero-sized field, but has {field_count}");
    let mut err = struct_span_err!(
        tcx.sess,
        sp,
        E0690,
        "{}transparent {} {}",
        if adt.is_enum() { "the variant of a " } else { "" },
        adt.descr(),
        msg,
    );
    err.span_label(sp, &msg);
    for sp in field_spans {
        err.span_label(sp, "this field is non-zero-sized");
    }
    err.emit();
}

fn report_unexpected_variant_res(tcx: TyCtxt<'_>, res: Res, qpath: &hir::QPath<'_>, span: Span) {
    struct_span_err!(
        tcx.sess,
        span,
        E0533,
        "expected unit struct, unit variant or constant, found {} `{}`",
        res.descr(),
        rustc_hir_pretty::qpath_to_string(qpath),
    )
    .emit();
}

/// Controls whether the arguments are tupled. This is used for the call
/// operator.
///
/// Tupling means that all call-side arguments are packed into a tuple and
/// passed as a single parameter. For example, if tupling is enabled, this
/// function:
/// ```
/// fn f(x: (isize, isize)) {}
/// ```
/// Can be called as:
/// ```ignore UNSOLVED (can this be done in user code?)
/// # fn f(x: (isize, isize)) {}
/// f(1, 2);
/// ```
/// Instead of:
/// ```
/// # fn f(x: (isize, isize)) {}
/// f((1, 2));
/// ```
#[derive(Clone, Eq, PartialEq)]
enum TupleArgumentsFlag {
    DontTupleArguments,
    TupleArguments,
}

fn typeck_item_bodies(tcx: TyCtxt<'_>, (): ()) {
    tcx.hir().par_body_owners(|body_owner_def_id| tcx.ensure().typeck(body_owner_def_id));
}

fn fatally_break_rust(sess: &Session) {
    let handler = sess.diagnostic();
    handler.span_bug_no_panic(
        MultiSpan::new(),
        "It looks like you're trying to break rust; would you like some ICE?",
    );
    handler.note_without_error("the compiler expectedly panicked. this is a feature.");
    handler.note_without_error(
        "we would appreciate a joke overview: \
         https://github.com/rust-lang/rust/issues/43162#issuecomment-320764675",
    );
    handler.note_without_error(&format!(
        "rustc {} running on {}",
        option_env!("CFG_VERSION").unwrap_or("unknown_version"),
        config::host_triple(),
    ));
}

fn potentially_plural_count(count: usize, word: &str) -> String {
    format!("{} {}{}", count, word, pluralize!(count))
}

fn has_expected_num_generic_args<'tcx>(
    tcx: TyCtxt<'tcx>,
    trait_did: Option<DefId>,
    expected: usize,
) -> bool {
    trait_did.map_or(true, |trait_did| {
        let generics = tcx.generics_of(trait_did);
        generics.count() == expected + if generics.has_self { 1 } else { 0 }
    })
}