1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
//! [`super::usefulness`] explains most of what is happening in this file. As explained there,
//! values and patterns are made from constructors applied to fields. This file defines a
//! `Constructor` enum, a `Fields` struct, and various operations to manipulate them and convert
//! them from/to patterns.
//!
//! There's one idea that is not detailed in [`super::usefulness`] because the details are not
//! needed there: _constructor splitting_.
//!
//! # Constructor splitting
//!
//! The idea is as follows: given a constructor `c` and a matrix, we want to specialize in turn
//! with all the value constructors that are covered by `c`, and compute usefulness for each.
//! Instead of listing all those constructors (which is intractable), we group those value
//! constructors together as much as possible. Example:
//!
//! ```compile_fail,E0004
//! match (0, false) {
//!     (0 ..=100, true) => {} // `p_1`
//!     (50..=150, false) => {} // `p_2`
//!     (0 ..=200, _) => {} // `q`
//! }
//! ```
//!
//! The naive approach would try all numbers in the range `0..=200`. But we can be a lot more
//! clever: `0` and `1` for example will match the exact same rows, and return equivalent
//! witnesses. In fact all of `0..50` would. We can thus restrict our exploration to 4
//! constructors: `0..50`, `50..=100`, `101..=150` and `151..=200`. That is enough and infinitely
//! more tractable.
//!
//! We capture this idea in a function `split(p_1 ... p_n, c)` which returns a list of constructors
//! `c'` covered by `c`. Given such a `c'`, we require that all value ctors `c''` covered by `c'`
//! return an equivalent set of witnesses after specializing and computing usefulness.
//! In the example above, witnesses for specializing by `c''` covered by `0..50` will only differ
//! in their first element.
//!
//! We usually also ask that the `c'` together cover all of the original `c`. However we allow
//! skipping some constructors as long as it doesn't change whether the resulting list of witnesses
//! is empty of not. We use this in the wildcard `_` case.
//!
//! Splitting is implemented in the [`Constructor::split`] function. We don't do splitting for
//! or-patterns; instead we just try the alternatives one-by-one. For details on splitting
//! wildcards, see [`SplitWildcard`]; for integer ranges, see [`SplitIntRange`]; for slices, see
//! [`SplitVarLenSlice`].

use self::Constructor::*;
use self::SliceKind::*;

use super::compare_const_vals;
use super::usefulness::{MatchCheckCtxt, PatCtxt};

use rustc_data_structures::captures::Captures;
use rustc_index::vec::Idx;

use rustc_hir::{HirId, RangeEnd};
use rustc_middle::mir::{self, Field};
use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange};
use rustc_middle::ty::layout::IntegerExt;
use rustc_middle::ty::{self, Ty, TyCtxt, VariantDef};
use rustc_middle::{middle::stability::EvalResult, mir::interpret::ConstValue};
use rustc_session::lint;
use rustc_span::{Span, DUMMY_SP};
use rustc_target::abi::{Integer, Size, VariantIdx};

use smallvec::{smallvec, SmallVec};
use std::cell::Cell;
use std::cmp::{self, max, min, Ordering};
use std::fmt;
use std::iter::{once, IntoIterator};
use std::ops::RangeInclusive;

/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
    fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) {
        if let PatKind::Or { pats } = &pat.kind {
            for pat in pats.iter() {
                expand(&pat, vec);
            }
        } else {
            vec.push(pat)
        }
    }

    let mut pats = Vec::new();
    expand(pat, &mut pats);
    pats
}

/// An inclusive interval, used for precise integer exhaustiveness checking.
/// `IntRange`s always store a contiguous range. This means that values are
/// encoded such that `0` encodes the minimum value for the integer,
/// regardless of the signedness.
/// For example, the pattern `-128..=127i8` is encoded as `0..=255`.
/// This makes comparisons and arithmetic on interval endpoints much more
/// straightforward. See `signed_bias` for details.
///
/// `IntRange` is never used to encode an empty range or a "range" that wraps
/// around the (offset) space: i.e., `range.lo <= range.hi`.
#[derive(Clone, PartialEq, Eq)]
pub(super) struct IntRange {
    range: RangeInclusive<u128>,
    /// Keeps the bias used for encoding the range. It depends on the type of the range and
    /// possibly the pointer size of the current architecture. The algorithm ensures we never
    /// compare `IntRange`s with different types/architectures.
    bias: u128,
}

impl IntRange {
    #[inline]
    fn is_integral(ty: Ty<'_>) -> bool {
        matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_) | ty::Bool)
    }

    fn is_singleton(&self) -> bool {
        self.range.start() == self.range.end()
    }

    fn boundaries(&self) -> (u128, u128) {
        (*self.range.start(), *self.range.end())
    }

    #[inline]
    fn integral_size_and_signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> Option<(Size, u128)> {
        match *ty.kind() {
            ty::Bool => Some((Size::from_bytes(1), 0)),
            ty::Char => Some((Size::from_bytes(4), 0)),
            ty::Int(ity) => {
                let size = Integer::from_int_ty(&tcx, ity).size();
                Some((size, 1u128 << (size.bits() as u128 - 1)))
            }
            ty::Uint(uty) => Some((Integer::from_uint_ty(&tcx, uty).size(), 0)),
            _ => None,
        }
    }

    #[inline]
    fn from_constant<'tcx>(
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        value: mir::ConstantKind<'tcx>,
    ) -> Option<IntRange> {
        let ty = value.ty();
        if let Some((target_size, bias)) = Self::integral_size_and_signed_bias(tcx, ty) {
            let val = (|| {
                match value {
                    mir::ConstantKind::Val(ConstValue::Scalar(scalar), _) => {
                        // For this specific pattern we can skip a lot of effort and go
                        // straight to the result, after doing a bit of checking. (We
                        // could remove this branch and just fall through, which
                        // is more general but much slower.)
                        if let Ok(Ok(bits)) = scalar.to_bits_or_ptr_internal(target_size) {
                            return Some(bits);
                        } else {
                            return None;
                        }
                    }
                    mir::ConstantKind::Ty(c) => match c.kind() {
                        ty::ConstKind::Value(_) => bug!(
                            "encountered ConstValue in mir::ConstantKind::Ty, whereas this is expected to be in ConstantKind::Val"
                        ),
                        _ => {}
                    },
                    _ => {}
                }

                // This is a more general form of the previous case.
                value.try_eval_bits(tcx, param_env, ty)
            })()?;
            let val = val ^ bias;
            Some(IntRange { range: val..=val, bias })
        } else {
            None
        }
    }

    #[inline]
    fn from_range<'tcx>(
        tcx: TyCtxt<'tcx>,
        lo: u128,
        hi: u128,
        ty: Ty<'tcx>,
        end: &RangeEnd,
    ) -> Option<IntRange> {
        if Self::is_integral(ty) {
            // Perform a shift if the underlying types are signed,
            // which makes the interval arithmetic simpler.
            let bias = IntRange::signed_bias(tcx, ty);
            let (lo, hi) = (lo ^ bias, hi ^ bias);
            let offset = (*end == RangeEnd::Excluded) as u128;
            if lo > hi || (lo == hi && *end == RangeEnd::Excluded) {
                // This should have been caught earlier by E0030.
                bug!("malformed range pattern: {}..={}", lo, (hi - offset));
            }
            Some(IntRange { range: lo..=(hi - offset), bias })
        } else {
            None
        }
    }

    // The return value of `signed_bias` should be XORed with an endpoint to encode/decode it.
    fn signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> u128 {
        match *ty.kind() {
            ty::Int(ity) => {
                let bits = Integer::from_int_ty(&tcx, ity).size().bits() as u128;
                1u128 << (bits - 1)
            }
            _ => 0,
        }
    }

    fn is_subrange(&self, other: &Self) -> bool {
        other.range.start() <= self.range.start() && self.range.end() <= other.range.end()
    }

    fn intersection(&self, other: &Self) -> Option<Self> {
        let (lo, hi) = self.boundaries();
        let (other_lo, other_hi) = other.boundaries();
        if lo <= other_hi && other_lo <= hi {
            Some(IntRange { range: max(lo, other_lo)..=min(hi, other_hi), bias: self.bias })
        } else {
            None
        }
    }

    fn suspicious_intersection(&self, other: &Self) -> bool {
        // `false` in the following cases:
        // 1     ----      // 1  ----------   // 1 ----        // 1       ----
        // 2  ----------   // 2     ----      // 2       ----  // 2 ----
        //
        // The following are currently `false`, but could be `true` in the future (#64007):
        // 1 ---------       // 1     ---------
        // 2     ----------  // 2 ----------
        //
        // `true` in the following cases:
        // 1 -------          // 1       -------
        // 2       --------   // 2 -------
        let (lo, hi) = self.boundaries();
        let (other_lo, other_hi) = other.boundaries();
        (lo == other_hi || hi == other_lo) && !self.is_singleton() && !other.is_singleton()
    }

    /// Only used for displaying the range properly.
    fn to_pat<'tcx>(&self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Pat<'tcx> {
        let (lo, hi) = self.boundaries();

        let bias = self.bias;
        let (lo, hi) = (lo ^ bias, hi ^ bias);

        let env = ty::ParamEnv::empty().and(ty);
        let lo_const = mir::ConstantKind::from_bits(tcx, lo, env);
        let hi_const = mir::ConstantKind::from_bits(tcx, hi, env);

        let kind = if lo == hi {
            PatKind::Constant { value: lo_const }
        } else {
            PatKind::Range(Box::new(PatRange {
                lo: lo_const,
                hi: hi_const,
                end: RangeEnd::Included,
            }))
        };

        Pat { ty, span: DUMMY_SP, kind }
    }

    /// Lint on likely incorrect range patterns (#63987)
    pub(super) fn lint_overlapping_range_endpoints<'a, 'p: 'a, 'tcx: 'a>(
        &self,
        pcx: &PatCtxt<'_, 'p, 'tcx>,
        pats: impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>>,
        column_count: usize,
        hir_id: HirId,
    ) {
        if self.is_singleton() {
            return;
        }

        if column_count != 1 {
            // FIXME: for now, only check for overlapping ranges on simple range
            // patterns. Otherwise with the current logic the following is detected
            // as overlapping:
            // ```
            // match (0u8, true) {
            //   (0 ..= 125, false) => {}
            //   (125 ..= 255, true) => {}
            //   _ => {}
            // }
            // ```
            return;
        }

        let overlaps: Vec<_> = pats
            .filter_map(|pat| Some((pat.ctor().as_int_range()?, pat.span())))
            .filter(|(range, _)| self.suspicious_intersection(range))
            .map(|(range, span)| (self.intersection(&range).unwrap(), span))
            .collect();

        if !overlaps.is_empty() {
            pcx.cx.tcx.struct_span_lint_hir(
                lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
                hir_id,
                pcx.span,
                "multiple patterns overlap on their endpoints",
                |lint| {
                    for (int_range, span) in overlaps {
                        lint.span_label(
                            span,
                            &format!(
                                "this range overlaps on `{}`...",
                                int_range.to_pat(pcx.cx.tcx, pcx.ty)
                            ),
                        );
                    }
                    lint.span_label(pcx.span, "... with this range");
                    lint.note("you likely meant to write mutually exclusive ranges");
                    lint
                },
            );
        }
    }

    /// See `Constructor::is_covered_by`
    fn is_covered_by(&self, other: &Self) -> bool {
        if self.intersection(other).is_some() {
            // Constructor splitting should ensure that all intersections we encounter are actually
            // inclusions.
            assert!(self.is_subrange(other));
            true
        } else {
            false
        }
    }
}

/// Note: this is often not what we want: e.g. `false` is converted into the range `0..=0` and
/// would be displayed as such. To render properly, convert to a pattern first.
impl fmt::Debug for IntRange {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let (lo, hi) = self.boundaries();
        let bias = self.bias;
        let (lo, hi) = (lo ^ bias, hi ^ bias);
        write!(f, "{}", lo)?;
        write!(f, "{}", RangeEnd::Included)?;
        write!(f, "{}", hi)
    }
}

/// Represents a border between 2 integers. Because the intervals spanning borders must be able to
/// cover every integer, we need to be able to represent 2^128 + 1 such borders.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
enum IntBorder {
    JustBefore(u128),
    AfterMax,
}

/// A range of integers that is partitioned into disjoint subranges. This does constructor
/// splitting for integer ranges as explained at the top of the file.
///
/// This is fed multiple ranges, and returns an output that covers the input, but is split so that
/// the only intersections between an output range and a seen range are inclusions. No output range
/// straddles the boundary of one of the inputs.
///
/// The following input:
/// ```text
///   |-------------------------| // `self`
/// |------|  |----------|   |----|
///    |-------| |-------|
/// ```
/// would be iterated over as follows:
/// ```text
///   ||---|--||-|---|---|---|--|
/// ```
#[derive(Debug, Clone)]
struct SplitIntRange {
    /// The range we are splitting
    range: IntRange,
    /// The borders of ranges we have seen. They are all contained within `range`. This is kept
    /// sorted.
    borders: Vec<IntBorder>,
}

impl SplitIntRange {
    fn new(range: IntRange) -> Self {
        SplitIntRange { range, borders: Vec::new() }
    }

    /// Internal use
    fn to_borders(r: IntRange) -> [IntBorder; 2] {
        use IntBorder::*;
        let (lo, hi) = r.boundaries();
        let lo = JustBefore(lo);
        let hi = match hi.checked_add(1) {
            Some(m) => JustBefore(m),
            None => AfterMax,
        };
        [lo, hi]
    }

    /// Add ranges relative to which we split.
    fn split(&mut self, ranges: impl Iterator<Item = IntRange>) {
        let this_range = &self.range;
        let included_ranges = ranges.filter_map(|r| this_range.intersection(&r));
        let included_borders = included_ranges.flat_map(|r| {
            let borders = Self::to_borders(r);
            once(borders[0]).chain(once(borders[1]))
        });
        self.borders.extend(included_borders);
        self.borders.sort_unstable();
    }

    /// Iterate over the contained ranges.
    fn iter<'a>(&'a self) -> impl Iterator<Item = IntRange> + Captures<'a> {
        use IntBorder::*;

        let self_range = Self::to_borders(self.range.clone());
        // Start with the start of the range.
        let mut prev_border = self_range[0];
        self.borders
            .iter()
            .copied()
            // End with the end of the range.
            .chain(once(self_range[1]))
            // List pairs of adjacent borders.
            .map(move |border| {
                let ret = (prev_border, border);
                prev_border = border;
                ret
            })
            // Skip duplicates.
            .filter(|(prev_border, border)| prev_border != border)
            // Finally, convert to ranges.
            .map(move |(prev_border, border)| {
                let range = match (prev_border, border) {
                    (JustBefore(n), JustBefore(m)) if n < m => n..=(m - 1),
                    (JustBefore(n), AfterMax) => n..=u128::MAX,
                    _ => unreachable!(), // Ruled out by the sorting and filtering we did
                };
                IntRange { range, bias: self.range.bias }
            })
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum SliceKind {
    /// Patterns of length `n` (`[x, y]`).
    FixedLen(usize),
    /// Patterns using the `..` notation (`[x, .., y]`).
    /// Captures any array constructor of `length >= i + j`.
    /// In the case where `array_len` is `Some(_)`,
    /// this indicates that we only care about the first `i` and the last `j` values of the array,
    /// and everything in between is a wildcard `_`.
    VarLen(usize, usize),
}

impl SliceKind {
    fn arity(self) -> usize {
        match self {
            FixedLen(length) => length,
            VarLen(prefix, suffix) => prefix + suffix,
        }
    }

    /// Whether this pattern includes patterns of length `other_len`.
    fn covers_length(self, other_len: usize) -> bool {
        match self {
            FixedLen(len) => len == other_len,
            VarLen(prefix, suffix) => prefix + suffix <= other_len,
        }
    }
}

/// A constructor for array and slice patterns.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(super) struct Slice {
    /// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
    array_len: Option<usize>,
    /// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
    kind: SliceKind,
}

impl Slice {
    fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
        let kind = match (array_len, kind) {
            // If the middle `..` is empty, we effectively have a fixed-length pattern.
            (Some(len), VarLen(prefix, suffix)) if prefix + suffix >= len => FixedLen(len),
            _ => kind,
        };
        Slice { array_len, kind }
    }

    fn arity(self) -> usize {
        self.kind.arity()
    }

    /// See `Constructor::is_covered_by`
    fn is_covered_by(self, other: Self) -> bool {
        other.kind.covers_length(self.arity())
    }
}

/// This computes constructor splitting for variable-length slices, as explained at the top of the
/// file.
///
/// A slice pattern `[x, .., y]` behaves like the infinite or-pattern `[x, y] | [x, _, y] | [x, _,
/// _, y] | ...`. The corresponding value constructors are fixed-length array constructors above a
/// given minimum length. We obviously can't list this infinitude of constructors. Thankfully,
/// it turns out that for each finite set of slice patterns, all sufficiently large array lengths
/// are equivalent.
///
/// Let's look at an example, where we are trying to split the last pattern:
/// ```
/// # fn foo(x: &[bool]) {
/// match x {
///     [true, true, ..] => {}
///     [.., false, false] => {}
///     [..] => {}
/// }
/// # }
/// ```
/// Here are the results of specialization for the first few lengths:
/// ```
/// # fn foo(x: &[bool]) { match x {
/// // length 0
/// [] => {}
/// // length 1
/// [_] => {}
/// // length 2
/// [true, true] => {}
/// [false, false] => {}
/// [_, _] => {}
/// // length 3
/// [true, true,  _    ] => {}
/// [_,    false, false] => {}
/// [_,    _,     _    ] => {}
/// // length 4
/// [true, true, _,     _    ] => {}
/// [_,    _,    false, false] => {}
/// [_,    _,    _,     _    ] => {}
/// // length 5
/// [true, true, _, _,     _    ] => {}
/// [_,    _,    _, false, false] => {}
/// [_,    _,    _, _,     _    ] => {}
/// # _ => {}
/// # }}
/// ```
///
/// If we went above length 5, we would simply be inserting more columns full of wildcards in the
/// middle. This means that the set of witnesses for length `l >= 5` if equivalent to the set for
/// any other `l' >= 5`: simply add or remove wildcards in the middle to convert between them.
///
/// This applies to any set of slice patterns: there will be a length `L` above which all lengths
/// behave the same. This is exactly what we need for constructor splitting. Therefore a
/// variable-length slice can be split into a variable-length slice of minimal length `L`, and many
/// fixed-length slices of lengths `< L`.
///
/// For each variable-length pattern `p` with a prefix of length `plₚ` and suffix of length `slₚ`,
/// only the first `plₚ` and the last `slₚ` elements are examined. Therefore, as long as `L` is
/// positive (to avoid concerns about empty types), all elements after the maximum prefix length
/// and before the maximum suffix length are not examined by any variable-length pattern, and
/// therefore can be added/removed without affecting them - creating equivalent patterns from any
/// sufficiently-large length.
///
/// Of course, if fixed-length patterns exist, we must be sure that our length is large enough to
/// miss them all, so we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`
///
/// `max_slice` below will be made to have arity `L`.
#[derive(Debug)]
struct SplitVarLenSlice {
    /// If the type is an array, this is its size.
    array_len: Option<usize>,
    /// The arity of the input slice.
    arity: usize,
    /// The smallest slice bigger than any slice seen. `max_slice.arity()` is the length `L`
    /// described above.
    max_slice: SliceKind,
}

impl SplitVarLenSlice {
    fn new(prefix: usize, suffix: usize, array_len: Option<usize>) -> Self {
        SplitVarLenSlice { array_len, arity: prefix + suffix, max_slice: VarLen(prefix, suffix) }
    }

    /// Pass a set of slices relative to which to split this one.
    fn split(&mut self, slices: impl Iterator<Item = SliceKind>) {
        let VarLen(max_prefix_len, max_suffix_len) = &mut self.max_slice else {
            // No need to split
            return;
        };
        // We grow `self.max_slice` to be larger than all slices encountered, as described above.
        // For diagnostics, we keep the prefix and suffix lengths separate, but grow them so that
        // `L = max_prefix_len + max_suffix_len`.
        let mut max_fixed_len = 0;
        for slice in slices {
            match slice {
                FixedLen(len) => {
                    max_fixed_len = cmp::max(max_fixed_len, len);
                }
                VarLen(prefix, suffix) => {
                    *max_prefix_len = cmp::max(*max_prefix_len, prefix);
                    *max_suffix_len = cmp::max(*max_suffix_len, suffix);
                }
            }
        }
        // We want `L = max(L, max_fixed_len + 1)`, modulo the fact that we keep prefix and
        // suffix separate.
        if max_fixed_len + 1 >= *max_prefix_len + *max_suffix_len {
            // The subtraction can't overflow thanks to the above check.
            // The new `max_prefix_len` is larger than its previous value.
            *max_prefix_len = max_fixed_len + 1 - *max_suffix_len;
        }

        // We cap the arity of `max_slice` at the array size.
        match self.array_len {
            Some(len) if self.max_slice.arity() >= len => self.max_slice = FixedLen(len),
            _ => {}
        }
    }

    /// Iterate over the partition of this slice.
    fn iter<'a>(&'a self) -> impl Iterator<Item = Slice> + Captures<'a> {
        let smaller_lengths = match self.array_len {
            // The only admissible fixed-length slice is one of the array size. Whether `max_slice`
            // is fixed-length or variable-length, it will be the only relevant slice to output
            // here.
            Some(_) => 0..0, // empty range
            // We cover all arities in the range `(self.arity..infinity)`. We split that range into
            // two: lengths smaller than `max_slice.arity()` are treated independently as
            // fixed-lengths slices, and lengths above are captured by `max_slice`.
            None => self.arity..self.max_slice.arity(),
        };
        smaller_lengths
            .map(FixedLen)
            .chain(once(self.max_slice))
            .map(move |kind| Slice::new(self.array_len, kind))
    }
}

/// A value can be decomposed into a constructor applied to some fields. This struct represents
/// the constructor. See also `Fields`.
///
/// `pat_constructor` retrieves the constructor corresponding to a pattern.
/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
/// `Fields`.
#[derive(Clone, Debug, PartialEq)]
pub(super) enum Constructor<'tcx> {
    /// The constructor for patterns that have a single constructor, like tuples, struct patterns
    /// and fixed-length arrays.
    Single,
    /// Enum variants.
    Variant(VariantIdx),
    /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
    IntRange(IntRange),
    /// Ranges of floating-point literal values (`2.0..=5.2`).
    FloatRange(mir::ConstantKind<'tcx>, mir::ConstantKind<'tcx>, RangeEnd),
    /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
    Str(mir::ConstantKind<'tcx>),
    /// Array and slice patterns.
    Slice(Slice),
    /// Constants that must not be matched structurally. They are treated as black
    /// boxes for the purposes of exhaustiveness: we must not inspect them, and they
    /// don't count towards making a match exhaustive.
    Opaque,
    /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
    /// for those types for which we cannot list constructors explicitly, like `f64` and `str`.
    NonExhaustive,
    /// Stands for constructors that are not seen in the matrix, as explained in the documentation
    /// for [`SplitWildcard`]. The carried `bool` is used for the `non_exhaustive_omitted_patterns`
    /// lint.
    Missing { nonexhaustive_enum_missing_real_variants: bool },
    /// Wildcard pattern.
    Wildcard,
    /// Or-pattern.
    Or,
}

impl<'tcx> Constructor<'tcx> {
    pub(super) fn is_wildcard(&self) -> bool {
        matches!(self, Wildcard)
    }

    pub(super) fn is_non_exhaustive(&self) -> bool {
        matches!(self, NonExhaustive)
    }

    fn as_int_range(&self) -> Option<&IntRange> {
        match self {
            IntRange(range) => Some(range),
            _ => None,
        }
    }

    fn as_slice(&self) -> Option<Slice> {
        match self {
            Slice(slice) => Some(*slice),
            _ => None,
        }
    }

    /// Checks if the `Constructor` is a variant and `TyCtxt::eval_stability` returns
    /// `EvalResult::Deny { .. }`.
    ///
    /// This means that the variant has a stdlib unstable feature marking it.
    pub(super) fn is_unstable_variant(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> bool {
        if let Constructor::Variant(idx) = self && let ty::Adt(adt, _) = pcx.ty.kind() {
            let variant_def_id = adt.variant(*idx).def_id;
            // Filter variants that depend on a disabled unstable feature.
            return matches!(
                pcx.cx.tcx.eval_stability(variant_def_id, None, DUMMY_SP, None),
                EvalResult::Deny { .. }
            );
        }
        false
    }

    /// Checks if the `Constructor` is a `Constructor::Variant` with a `#[doc(hidden)]`
    /// attribute from a type not local to the current crate.
    pub(super) fn is_doc_hidden_variant(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> bool {
        if let Constructor::Variant(idx) = self && let ty::Adt(adt, _) = pcx.ty.kind() {
            let variant_def_id = adt.variants()[*idx].def_id;
            return pcx.cx.tcx.is_doc_hidden(variant_def_id) && !variant_def_id.is_local();
        }
        false
    }

    fn variant_index_for_adt(&self, adt: ty::AdtDef<'tcx>) -> VariantIdx {
        match *self {
            Variant(idx) => idx,
            Single => {
                assert!(!adt.is_enum());
                VariantIdx::new(0)
            }
            _ => bug!("bad constructor {:?} for adt {:?}", self, adt),
        }
    }

    /// The number of fields for this constructor. This must be kept in sync with
    /// `Fields::wildcards`.
    pub(super) fn arity(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> usize {
        match self {
            Single | Variant(_) => match pcx.ty.kind() {
                ty::Tuple(fs) => fs.len(),
                ty::Ref(..) => 1,
                ty::Adt(adt, ..) => {
                    if adt.is_box() {
                        // The only legal patterns of type `Box` (outside `std`) are `_` and box
                        // patterns. If we're here we can assume this is a box pattern.
                        1
                    } else {
                        let variant = &adt.variant(self.variant_index_for_adt(*adt));
                        Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant).count()
                    }
                }
                _ => bug!("Unexpected type for `Single` constructor: {:?}", pcx.ty),
            },
            Slice(slice) => slice.arity(),
            Str(..)
            | FloatRange(..)
            | IntRange(..)
            | NonExhaustive
            | Opaque
            | Missing { .. }
            | Wildcard => 0,
            Or => bug!("The `Or` constructor doesn't have a fixed arity"),
        }
    }

    /// Some constructors (namely `Wildcard`, `IntRange` and `Slice`) actually stand for a set of actual
    /// constructors (like variants, integers or fixed-sized slices). When specializing for these
    /// constructors, we want to be specialising for the actual underlying constructors.
    /// Naively, we would simply return the list of constructors they correspond to. We instead are
    /// more clever: if there are constructors that we know will behave the same wrt the current
    /// matrix, we keep them grouped. For example, all slices of a sufficiently large length
    /// will either be all useful or all non-useful with a given matrix.
    ///
    /// See the branches for details on how the splitting is done.
    ///
    /// This function may discard some irrelevant constructors if this preserves behavior and
    /// diagnostics. Eg. for the `_` case, we ignore the constructors already present in the
    /// matrix, unless all of them are.
    pub(super) fn split<'a>(
        &self,
        pcx: &PatCtxt<'_, '_, 'tcx>,
        ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone,
    ) -> SmallVec<[Self; 1]>
    where
        'tcx: 'a,
    {
        match self {
            Wildcard => {
                let mut split_wildcard = SplitWildcard::new(pcx);
                split_wildcard.split(pcx, ctors);
                split_wildcard.into_ctors(pcx)
            }
            // Fast-track if the range is trivial. In particular, we don't do the overlapping
            // ranges check.
            IntRange(ctor_range) if !ctor_range.is_singleton() => {
                let mut split_range = SplitIntRange::new(ctor_range.clone());
                let int_ranges = ctors.filter_map(|ctor| ctor.as_int_range());
                split_range.split(int_ranges.cloned());
                split_range.iter().map(IntRange).collect()
            }
            &Slice(Slice { kind: VarLen(self_prefix, self_suffix), array_len }) => {
                let mut split_self = SplitVarLenSlice::new(self_prefix, self_suffix, array_len);
                let slices = ctors.filter_map(|c| c.as_slice()).map(|s| s.kind);
                split_self.split(slices);
                split_self.iter().map(Slice).collect()
            }
            // Any other constructor can be used unchanged.
            _ => smallvec![self.clone()],
        }
    }

    /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
    /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
    /// this checks for inclusion.
    // We inline because this has a single call site in `Matrix::specialize_constructor`.
    #[inline]
    pub(super) fn is_covered_by<'p>(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
        // This must be kept in sync with `is_covered_by_any`.
        match (self, other) {
            // Wildcards cover anything
            (_, Wildcard) => true,
            // The missing ctors are not covered by anything in the matrix except wildcards.
            (Missing { .. } | Wildcard, _) => false,

            (Single, Single) => true,
            (Variant(self_id), Variant(other_id)) => self_id == other_id,

            (IntRange(self_range), IntRange(other_range)) => self_range.is_covered_by(other_range),
            (
                FloatRange(self_from, self_to, self_end),
                FloatRange(other_from, other_to, other_end),
            ) => {
                match (
                    compare_const_vals(pcx.cx.tcx, *self_to, *other_to, pcx.cx.param_env),
                    compare_const_vals(pcx.cx.tcx, *self_from, *other_from, pcx.cx.param_env),
                ) {
                    (Some(to), Some(from)) => {
                        (from == Ordering::Greater || from == Ordering::Equal)
                            && (to == Ordering::Less
                                || (other_end == self_end && to == Ordering::Equal))
                    }
                    _ => false,
                }
            }
            (Str(self_val), Str(other_val)) => {
                // FIXME Once valtrees are available we can directly use the bytes
                // in the `Str` variant of the valtree for the comparison here.
                self_val == other_val
            }
            (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),

            // We are trying to inspect an opaque constant. Thus we skip the row.
            (Opaque, _) | (_, Opaque) => false,
            // Only a wildcard pattern can match the special extra constructor.
            (NonExhaustive, _) => false,

            _ => span_bug!(
                pcx.span,
                "trying to compare incompatible constructors {:?} and {:?}",
                self,
                other
            ),
        }
    }

    /// Faster version of `is_covered_by` when applied to many constructors. `used_ctors` is
    /// assumed to be built from `matrix.head_ctors()` with wildcards filtered out, and `self` is
    /// assumed to have been split from a wildcard.
    fn is_covered_by_any<'p>(
        &self,
        pcx: &PatCtxt<'_, 'p, 'tcx>,
        used_ctors: &[Constructor<'tcx>],
    ) -> bool {
        if used_ctors.is_empty() {
            return false;
        }

        // This must be kept in sync with `is_covered_by`.
        match self {
            // If `self` is `Single`, `used_ctors` cannot contain anything else than `Single`s.
            Single => !used_ctors.is_empty(),
            Variant(vid) => used_ctors.iter().any(|c| matches!(c, Variant(i) if i == vid)),
            IntRange(range) => used_ctors
                .iter()
                .filter_map(|c| c.as_int_range())
                .any(|other| range.is_covered_by(other)),
            Slice(slice) => used_ctors
                .iter()
                .filter_map(|c| c.as_slice())
                .any(|other| slice.is_covered_by(other)),
            // This constructor is never covered by anything else
            NonExhaustive => false,
            Str(..) | FloatRange(..) | Opaque | Missing { .. } | Wildcard | Or => {
                span_bug!(pcx.span, "found unexpected ctor in all_ctors: {:?}", self)
            }
        }
    }
}

/// A wildcard constructor that we split relative to the constructors in the matrix, as explained
/// at the top of the file.
///
/// A constructor that is not present in the matrix rows will only be covered by the rows that have
/// wildcards. Thus we can group all of those constructors together; we call them "missing
/// constructors". Splitting a wildcard would therefore list all present constructors individually
/// (or grouped if they are integers or slices), and then all missing constructors together as a
/// group.
///
/// However we can go further: since any constructor will match the wildcard rows, and having more
/// rows can only reduce the amount of usefulness witnesses, we can skip the present constructors
/// and only try the missing ones.
/// This will not preserve the whole list of witnesses, but will preserve whether the list is empty
/// or not. In fact this is quite natural from the point of view of diagnostics too. This is done
/// in `to_ctors`: in some cases we only return `Missing`.
#[derive(Debug)]
pub(super) struct SplitWildcard<'tcx> {
    /// Constructors seen in the matrix.
    matrix_ctors: Vec<Constructor<'tcx>>,
    /// All the constructors for this type
    all_ctors: SmallVec<[Constructor<'tcx>; 1]>,
}

impl<'tcx> SplitWildcard<'tcx> {
    pub(super) fn new<'p>(pcx: &PatCtxt<'_, 'p, 'tcx>) -> Self {
        debug!("SplitWildcard::new({:?})", pcx.ty);
        let cx = pcx.cx;
        let make_range = |start, end| {
            IntRange(
                // `unwrap()` is ok because we know the type is an integer.
                IntRange::from_range(cx.tcx, start, end, pcx.ty, &RangeEnd::Included).unwrap(),
            )
        };
        // This determines the set of all possible constructors for the type `pcx.ty`. For numbers,
        // arrays and slices we use ranges and variable-length slices when appropriate.
        //
        // If the `exhaustive_patterns` feature is enabled, we make sure to omit constructors that
        // are statically impossible. E.g., for `Option<!>`, we do not include `Some(_)` in the
        // returned list of constructors.
        // Invariant: this is empty if and only if the type is uninhabited (as determined by
        // `cx.is_uninhabited()`).
        let all_ctors = match pcx.ty.kind() {
            ty::Bool => smallvec![make_range(0, 1)],
            ty::Array(sub_ty, len) if len.try_eval_usize(cx.tcx, cx.param_env).is_some() => {
                let len = len.eval_usize(cx.tcx, cx.param_env) as usize;
                if len != 0 && cx.is_uninhabited(*sub_ty) {
                    smallvec![]
                } else {
                    smallvec![Slice(Slice::new(Some(len), VarLen(0, 0)))]
                }
            }
            // Treat arrays of a constant but unknown length like slices.
            ty::Array(sub_ty, _) | ty::Slice(sub_ty) => {
                let kind = if cx.is_uninhabited(*sub_ty) { FixedLen(0) } else { VarLen(0, 0) };
                smallvec![Slice(Slice::new(None, kind))]
            }
            ty::Adt(def, substs) if def.is_enum() => {
                // If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an
                // additional "unknown" constructor.
                // There is no point in enumerating all possible variants, because the user can't
                // actually match against them all themselves. So we always return only the fictitious
                // constructor.
                // E.g., in an example like:
                //
                // ```
                //     let err: io::ErrorKind = ...;
                //     match err {
                //         io::ErrorKind::NotFound => {},
                //     }
                // ```
                //
                // we don't want to show every possible IO error, but instead have only `_` as the
                // witness.
                let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(pcx.ty);

                let is_exhaustive_pat_feature = cx.tcx.features().exhaustive_patterns;

                // If `exhaustive_patterns` is disabled and our scrutinee is an empty enum, we treat it
                // as though it had an "unknown" constructor to avoid exposing its emptiness. The
                // exception is if the pattern is at the top level, because we want empty matches to be
                // considered exhaustive.
                let is_secretly_empty =
                    def.variants().is_empty() && !is_exhaustive_pat_feature && !pcx.is_top_level;

                let mut ctors: SmallVec<[_; 1]> = def
                    .variants()
                    .iter_enumerated()
                    .filter(|(_, v)| {
                        // If `exhaustive_patterns` is enabled, we exclude variants known to be
                        // uninhabited.
                        let is_uninhabited = is_exhaustive_pat_feature
                            && v.uninhabited_from(cx.tcx, substs, def.adt_kind(), cx.param_env)
                                .contains(cx.tcx, cx.module);
                        !is_uninhabited
                    })
                    .map(|(idx, _)| Variant(idx))
                    .collect();

                if is_secretly_empty || is_declared_nonexhaustive {
                    ctors.push(NonExhaustive);
                }
                ctors
            }
            ty::Char => {
                smallvec![
                    // The valid Unicode Scalar Value ranges.
                    make_range('\u{0000}' as u128, '\u{D7FF}' as u128),
                    make_range('\u{E000}' as u128, '\u{10FFFF}' as u128),
                ]
            }
            ty::Int(_) | ty::Uint(_)
                if pcx.ty.is_ptr_sized_integral()
                    && !cx.tcx.features().precise_pointer_size_matching =>
            {
                // `usize`/`isize` are not allowed to be matched exhaustively unless the
                // `precise_pointer_size_matching` feature is enabled. So we treat those types like
                // `#[non_exhaustive]` enums by returning a special unmatchable constructor.
                smallvec![NonExhaustive]
            }
            &ty::Int(ity) => {
                let bits = Integer::from_int_ty(&cx.tcx, ity).size().bits() as u128;
                let min = 1u128 << (bits - 1);
                let max = min - 1;
                smallvec![make_range(min, max)]
            }
            &ty::Uint(uty) => {
                let size = Integer::from_uint_ty(&cx.tcx, uty).size();
                let max = size.truncate(u128::MAX);
                smallvec![make_range(0, max)]
            }
            // If `exhaustive_patterns` is disabled and our scrutinee is the never type, we cannot
            // expose its emptiness. The exception is if the pattern is at the top level, because we
            // want empty matches to be considered exhaustive.
            ty::Never if !cx.tcx.features().exhaustive_patterns && !pcx.is_top_level => {
                smallvec![NonExhaustive]
            }
            ty::Never => smallvec![],
            _ if cx.is_uninhabited(pcx.ty) => smallvec![],
            ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => smallvec![Single],
            // This type is one for which we cannot list constructors, like `str` or `f64`.
            _ => smallvec![NonExhaustive],
        };

        SplitWildcard { matrix_ctors: Vec::new(), all_ctors }
    }

    /// Pass a set of constructors relative to which to split this one. Don't call twice, it won't
    /// do what you want.
    pub(super) fn split<'a>(
        &mut self,
        pcx: &PatCtxt<'_, '_, 'tcx>,
        ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone,
    ) where
        'tcx: 'a,
    {
        // Since `all_ctors` never contains wildcards, this won't recurse further.
        self.all_ctors =
            self.all_ctors.iter().flat_map(|ctor| ctor.split(pcx, ctors.clone())).collect();
        self.matrix_ctors = ctors.filter(|c| !c.is_wildcard()).cloned().collect();
    }

    /// Whether there are any value constructors for this type that are not present in the matrix.
    fn any_missing(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> bool {
        self.iter_missing(pcx).next().is_some()
    }

    /// Iterate over the constructors for this type that are not present in the matrix.
    pub(super) fn iter_missing<'a, 'p>(
        &'a self,
        pcx: &'a PatCtxt<'a, 'p, 'tcx>,
    ) -> impl Iterator<Item = &'a Constructor<'tcx>> + Captures<'p> {
        self.all_ctors.iter().filter(move |ctor| !ctor.is_covered_by_any(pcx, &self.matrix_ctors))
    }

    /// Return the set of constructors resulting from splitting the wildcard. As explained at the
    /// top of the file, if any constructors are missing we can ignore the present ones.
    fn into_ctors(self, pcx: &PatCtxt<'_, '_, 'tcx>) -> SmallVec<[Constructor<'tcx>; 1]> {
        if self.any_missing(pcx) {
            // Some constructors are missing, thus we can specialize with the special `Missing`
            // constructor, which stands for those constructors that are not seen in the matrix,
            // and matches the same rows as any of them (namely the wildcard rows). See the top of
            // the file for details.
            // However, when all constructors are missing we can also specialize with the full
            // `Wildcard` constructor. The difference will depend on what we want in diagnostics.

            // If some constructors are missing, we typically want to report those constructors,
            // e.g.:
            // ```
            //     enum Direction { N, S, E, W }
            //     let Direction::N = ...;
            // ```
            // we can report 3 witnesses: `S`, `E`, and `W`.
            //
            // However, if the user didn't actually specify a constructor
            // in this arm, e.g., in
            // ```
            //     let x: (Direction, Direction, bool) = ...;
            //     let (_, _, false) = x;
            // ```
            // we don't want to show all 16 possible witnesses `(<direction-1>, <direction-2>,
            // true)` - we are satisfied with `(_, _, true)`. So if all constructors are missing we
            // prefer to report just a wildcard `_`.
            //
            // The exception is: if we are at the top-level, for example in an empty match, we
            // sometimes prefer reporting the list of constructors instead of just `_`.
            let report_when_all_missing = pcx.is_top_level && !IntRange::is_integral(pcx.ty);
            let ctor = if !self.matrix_ctors.is_empty() || report_when_all_missing {
                if pcx.is_non_exhaustive {
                    Missing {
                        nonexhaustive_enum_missing_real_variants: self
                            .iter_missing(pcx)
                            .any(|c| !(c.is_non_exhaustive() || c.is_unstable_variant(pcx))),
                    }
                } else {
                    Missing { nonexhaustive_enum_missing_real_variants: false }
                }
            } else {
                Wildcard
            };
            return smallvec![ctor];
        }

        // All the constructors are present in the matrix, so we just go through them all.
        self.all_ctors
    }
}

/// A value can be decomposed into a constructor applied to some fields. This struct represents
/// those fields, generalized to allow patterns in each field. See also `Constructor`.
///
/// This is constructed for a constructor using [`Fields::wildcards()`]. The idea is that
/// [`Fields::wildcards()`] constructs a list of fields where all entries are wildcards, and then
/// given a pattern we fill some of the fields with its subpatterns.
/// In the following example `Fields::wildcards` returns `[_, _, _, _]`. Then in
/// `extract_pattern_arguments` we fill some of the entries, and the result is
/// `[Some(0), _, _, _]`.
/// ```compile_fail,E0004
/// # fn foo() -> [Option<u8>; 4] { [None; 4] }
/// let x: [Option<u8>; 4] = foo();
/// match x {
///     [Some(0), ..] => {}
/// }
/// ```
///
/// Note that the number of fields of a constructor may not match the fields declared in the
/// original struct/variant. This happens if a private or `non_exhaustive` field is uninhabited,
/// because the code mustn't observe that it is uninhabited. In that case that field is not
/// included in `fields`. For that reason, when you have a `mir::Field` you must use
/// `index_with_declared_idx`.
#[derive(Debug, Clone, Copy)]
pub(super) struct Fields<'p, 'tcx> {
    fields: &'p [DeconstructedPat<'p, 'tcx>],
}

impl<'p, 'tcx> Fields<'p, 'tcx> {
    fn empty() -> Self {
        Fields { fields: &[] }
    }

    fn singleton(cx: &MatchCheckCtxt<'p, 'tcx>, field: DeconstructedPat<'p, 'tcx>) -> Self {
        let field: &_ = cx.pattern_arena.alloc(field);
        Fields { fields: std::slice::from_ref(field) }
    }

    pub(super) fn from_iter(
        cx: &MatchCheckCtxt<'p, 'tcx>,
        fields: impl IntoIterator<Item = DeconstructedPat<'p, 'tcx>>,
    ) -> Self {
        let fields: &[_] = cx.pattern_arena.alloc_from_iter(fields);
        Fields { fields }
    }

    fn wildcards_from_tys(
        cx: &MatchCheckCtxt<'p, 'tcx>,
        tys: impl IntoIterator<Item = Ty<'tcx>>,
    ) -> Self {
        Fields::from_iter(cx, tys.into_iter().map(DeconstructedPat::wildcard))
    }

    // In the cases of either a `#[non_exhaustive]` field list or a non-public field, we hide
    // uninhabited fields in order not to reveal the uninhabitedness of the whole variant.
    // This lists the fields we keep along with their types.
    fn list_variant_nonhidden_fields<'a>(
        cx: &'a MatchCheckCtxt<'p, 'tcx>,
        ty: Ty<'tcx>,
        variant: &'a VariantDef,
    ) -> impl Iterator<Item = (Field, Ty<'tcx>)> + Captures<'a> + Captures<'p> {
        let ty::Adt(adt, substs) = ty.kind() else { bug!() };
        // Whether we must not match the fields of this variant exhaustively.
        let is_non_exhaustive = variant.is_field_list_non_exhaustive() && !adt.did().is_local();

        variant.fields.iter().enumerate().filter_map(move |(i, field)| {
            let ty = field.ty(cx.tcx, substs);
            // `field.ty()` doesn't normalize after substituting.
            let ty = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
            let is_visible = adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
            let is_uninhabited = cx.is_uninhabited(ty);

            if is_uninhabited && (!is_visible || is_non_exhaustive) {
                None
            } else {
                Some((Field::new(i), ty))
            }
        })
    }

    /// Creates a new list of wildcard fields for a given constructor. The result must have a
    /// length of `constructor.arity()`.
    #[instrument(level = "trace")]
    pub(super) fn wildcards(pcx: &PatCtxt<'_, 'p, 'tcx>, constructor: &Constructor<'tcx>) -> Self {
        let ret = match constructor {
            Single | Variant(_) => match pcx.ty.kind() {
                ty::Tuple(fs) => Fields::wildcards_from_tys(pcx.cx, fs.iter()),
                ty::Ref(_, rty, _) => Fields::wildcards_from_tys(pcx.cx, once(*rty)),
                ty::Adt(adt, substs) => {
                    if adt.is_box() {
                        // The only legal patterns of type `Box` (outside `std`) are `_` and box
                        // patterns. If we're here we can assume this is a box pattern.
                        Fields::wildcards_from_tys(pcx.cx, once(substs.type_at(0)))
                    } else {
                        let variant = &adt.variant(constructor.variant_index_for_adt(*adt));
                        let tys = Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant)
                            .map(|(_, ty)| ty);
                        Fields::wildcards_from_tys(pcx.cx, tys)
                    }
                }
                _ => bug!("Unexpected type for `Single` constructor: {:?}", pcx),
            },
            Slice(slice) => match *pcx.ty.kind() {
                ty::Slice(ty) | ty::Array(ty, _) => {
                    let arity = slice.arity();
                    Fields::wildcards_from_tys(pcx.cx, (0..arity).map(|_| ty))
                }
                _ => bug!("bad slice pattern {:?} {:?}", constructor, pcx),
            },
            Str(..)
            | FloatRange(..)
            | IntRange(..)
            | NonExhaustive
            | Opaque
            | Missing { .. }
            | Wildcard => Fields::empty(),
            Or => {
                bug!("called `Fields::wildcards` on an `Or` ctor")
            }
        };
        debug!(?ret);
        ret
    }

    /// Returns the list of patterns.
    pub(super) fn iter_patterns<'a>(
        &'a self,
    ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
        self.fields.iter()
    }
}

/// Values and patterns can be represented as a constructor applied to some fields. This represents
/// a pattern in this form.
/// This also keeps track of whether the pattern has been found reachable during analysis. For this
/// reason we should be careful not to clone patterns for which we care about that. Use
/// `clone_and_forget_reachability` if you're sure.
pub(crate) struct DeconstructedPat<'p, 'tcx> {
    ctor: Constructor<'tcx>,
    fields: Fields<'p, 'tcx>,
    ty: Ty<'tcx>,
    span: Span,
    reachable: Cell<bool>,
}

impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> {
    pub(super) fn wildcard(ty: Ty<'tcx>) -> Self {
        Self::new(Wildcard, Fields::empty(), ty, DUMMY_SP)
    }

    pub(super) fn new(
        ctor: Constructor<'tcx>,
        fields: Fields<'p, 'tcx>,
        ty: Ty<'tcx>,
        span: Span,
    ) -> Self {
        DeconstructedPat { ctor, fields, ty, span, reachable: Cell::new(false) }
    }

    /// Construct a pattern that matches everything that starts with this constructor.
    /// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
    /// `Some(_)`.
    pub(super) fn wild_from_ctor(pcx: &PatCtxt<'_, 'p, 'tcx>, ctor: Constructor<'tcx>) -> Self {
        let fields = Fields::wildcards(pcx, &ctor);
        DeconstructedPat::new(ctor, fields, pcx.ty, DUMMY_SP)
    }

    /// Clone this value. This method emphasizes that cloning loses reachability information and
    /// should be done carefully.
    pub(super) fn clone_and_forget_reachability(&self) -> Self {
        DeconstructedPat::new(self.ctor.clone(), self.fields, self.ty, self.span)
    }

    pub(crate) fn from_pat(cx: &MatchCheckCtxt<'p, 'tcx>, pat: &Pat<'tcx>) -> Self {
        let mkpat = |pat| DeconstructedPat::from_pat(cx, pat);
        let ctor;
        let fields;
        match &pat.kind {
            PatKind::AscribeUserType { subpattern, .. } => return mkpat(subpattern),
            PatKind::Binding { subpattern: Some(subpat), .. } => return mkpat(subpat),
            PatKind::Binding { subpattern: None, .. } | PatKind::Wild => {
                ctor = Wildcard;
                fields = Fields::empty();
            }
            PatKind::Deref { subpattern } => {
                ctor = Single;
                fields = Fields::singleton(cx, mkpat(subpattern));
            }
            PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
                match pat.ty.kind() {
                    ty::Tuple(fs) => {
                        ctor = Single;
                        let mut wilds: SmallVec<[_; 2]> =
                            fs.iter().map(DeconstructedPat::wildcard).collect();
                        for pat in subpatterns {
                            wilds[pat.field.index()] = mkpat(&pat.pattern);
                        }
                        fields = Fields::from_iter(cx, wilds);
                    }
                    ty::Adt(adt, substs) if adt.is_box() => {
                        // The only legal patterns of type `Box` (outside `std`) are `_` and box
                        // patterns. If we're here we can assume this is a box pattern.
                        // FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
                        // _)` or a box pattern. As a hack to avoid an ICE with the former, we
                        // ignore other fields than the first one. This will trigger an error later
                        // anyway.
                        // See https://github.com/rust-lang/rust/issues/82772 ,
                        // explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
                        // The problem is that we can't know from the type whether we'll match
                        // normally or through box-patterns. We'll have to figure out a proper
                        // solution when we introduce generalized deref patterns. Also need to
                        // prevent mixing of those two options.
                        let pat = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
                        let pat = if let Some(pat) = pat {
                            mkpat(&pat.pattern)
                        } else {
                            DeconstructedPat::wildcard(substs.type_at(0))
                        };
                        ctor = Single;
                        fields = Fields::singleton(cx, pat);
                    }
                    ty::Adt(adt, _) => {
                        ctor = match pat.kind {
                            PatKind::Leaf { .. } => Single,
                            PatKind::Variant { variant_index, .. } => Variant(variant_index),
                            _ => bug!(),
                        };
                        let variant = &adt.variant(ctor.variant_index_for_adt(*adt));
                        // For each field in the variant, we store the relevant index into `self.fields` if any.
                        let mut field_id_to_id: Vec<Option<usize>> =
                            (0..variant.fields.len()).map(|_| None).collect();
                        let tys = Fields::list_variant_nonhidden_fields(cx, pat.ty, variant)
                            .enumerate()
                            .map(|(i, (field, ty))| {
                                field_id_to_id[field.index()] = Some(i);
                                ty
                            });
                        let mut wilds: SmallVec<[_; 2]> =
                            tys.map(DeconstructedPat::wildcard).collect();
                        for pat in subpatterns {
                            if let Some(i) = field_id_to_id[pat.field.index()] {
                                wilds[i] = mkpat(&pat.pattern);
                            }
                        }
                        fields = Fields::from_iter(cx, wilds);
                    }
                    _ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, pat.ty),
                }
            }
            PatKind::Constant { value } => {
                if let Some(int_range) = IntRange::from_constant(cx.tcx, cx.param_env, *value) {
                    ctor = IntRange(int_range);
                    fields = Fields::empty();
                } else {
                    match pat.ty.kind() {
                        ty::Float(_) => {
                            ctor = FloatRange(*value, *value, RangeEnd::Included);
                            fields = Fields::empty();
                        }
                        ty::Ref(_, t, _) if t.is_str() => {
                            // We want a `&str` constant to behave like a `Deref` pattern, to be compatible
                            // with other `Deref` patterns. This could have been done in `const_to_pat`,
                            // but that causes issues with the rest of the matching code.
                            // So here, the constructor for a `"foo"` pattern is `&` (represented by
                            // `Single`), and has one field. That field has constructor `Str(value)` and no
                            // fields.
                            // Note: `t` is `str`, not `&str`.
                            let subpattern =
                                DeconstructedPat::new(Str(*value), Fields::empty(), *t, pat.span);
                            ctor = Single;
                            fields = Fields::singleton(cx, subpattern)
                        }
                        // All constants that can be structurally matched have already been expanded
                        // into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
                        // opaque.
                        _ => {
                            ctor = Opaque;
                            fields = Fields::empty();
                        }
                    }
                }
            }
            &PatKind::Range(box PatRange { lo, hi, end }) => {
                let ty = lo.ty();
                ctor = if let Some(int_range) = IntRange::from_range(
                    cx.tcx,
                    lo.eval_bits(cx.tcx, cx.param_env, lo.ty()),
                    hi.eval_bits(cx.tcx, cx.param_env, hi.ty()),
                    ty,
                    &end,
                ) {
                    IntRange(int_range)
                } else {
                    FloatRange(lo, hi, end)
                };
                fields = Fields::empty();
            }
            PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
                let array_len = match pat.ty.kind() {
                    ty::Array(_, length) => Some(length.eval_usize(cx.tcx, cx.param_env) as usize),
                    ty::Slice(_) => None,
                    _ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
                };
                let kind = if slice.is_some() {
                    VarLen(prefix.len(), suffix.len())
                } else {
                    FixedLen(prefix.len() + suffix.len())
                };
                ctor = Slice(Slice::new(array_len, kind));
                fields =
                    Fields::from_iter(cx, prefix.iter().chain(suffix.iter()).map(|p| mkpat(&*p)));
            }
            PatKind::Or { .. } => {
                ctor = Or;
                let pats = expand_or_pat(pat);
                fields = Fields::from_iter(cx, pats.into_iter().map(mkpat));
            }
        }
        DeconstructedPat::new(ctor, fields, pat.ty, pat.span)
    }

    pub(crate) fn to_pat(&self, cx: &MatchCheckCtxt<'p, 'tcx>) -> Pat<'tcx> {
        let is_wildcard = |pat: &Pat<'_>| {
            matches!(pat.kind, PatKind::Binding { subpattern: None, .. } | PatKind::Wild)
        };
        let mut subpatterns = self.iter_fields().map(|p| Box::new(p.to_pat(cx)));
        let kind = match &self.ctor {
            Single | Variant(_) => match self.ty.kind() {
                ty::Tuple(..) => PatKind::Leaf {
                    subpatterns: subpatterns
                        .enumerate()
                        .map(|(i, pattern)| FieldPat { field: Field::new(i), pattern })
                        .collect(),
                },
                ty::Adt(adt_def, _) if adt_def.is_box() => {
                    // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
                    // of `std`). So this branch is only reachable when the feature is enabled and
                    // the pattern is a box pattern.
                    PatKind::Deref { subpattern: subpatterns.next().unwrap() }
                }
                ty::Adt(adt_def, substs) => {
                    let variant_index = self.ctor.variant_index_for_adt(*adt_def);
                    let variant = &adt_def.variant(variant_index);
                    let subpatterns = Fields::list_variant_nonhidden_fields(cx, self.ty, variant)
                        .zip(subpatterns)
                        .map(|((field, _ty), pattern)| FieldPat { field, pattern })
                        .collect();

                    if adt_def.is_enum() {
                        PatKind::Variant { adt_def: *adt_def, substs, variant_index, subpatterns }
                    } else {
                        PatKind::Leaf { subpatterns }
                    }
                }
                // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
                // be careful to reconstruct the correct constant pattern here. However a string
                // literal pattern will never be reported as a non-exhaustiveness witness, so we
                // ignore this issue.
                ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
                _ => bug!("unexpected ctor for type {:?} {:?}", self.ctor, self.ty),
            },
            Slice(slice) => {
                match slice.kind {
                    FixedLen(_) => PatKind::Slice {
                        prefix: subpatterns.collect(),
                        slice: None,
                        suffix: Box::new([]),
                    },
                    VarLen(prefix, _) => {
                        let mut subpatterns = subpatterns.peekable();
                        let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect();
                        if slice.array_len.is_some() {
                            // Improves diagnostics a bit: if the type is a known-size array, instead
                            // of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
                            // This is incorrect if the size is not known, since `[_, ..]` captures
                            // arrays of lengths `>= 1` whereas `[..]` captures any length.
                            while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) {
                                prefix.pop();
                            }
                            while subpatterns.peek().is_some()
                                && is_wildcard(subpatterns.peek().unwrap())
                            {
                                subpatterns.next();
                            }
                        }
                        let suffix: Box<[_]> = subpatterns.collect();
                        let wild = Pat::wildcard_from_ty(self.ty);
                        PatKind::Slice {
                            prefix: prefix.into_boxed_slice(),
                            slice: Some(Box::new(wild)),
                            suffix,
                        }
                    }
                }
            }
            &Str(value) => PatKind::Constant { value },
            &FloatRange(lo, hi, end) => PatKind::Range(Box::new(PatRange { lo, hi, end })),
            IntRange(range) => return range.to_pat(cx.tcx, self.ty),
            Wildcard | NonExhaustive => PatKind::Wild,
            Missing { .. } => bug!(
                "trying to convert a `Missing` constructor into a `Pat`; this is probably a bug,
                `Missing` should have been processed in `apply_constructors`"
            ),
            Opaque | Or => {
                bug!("can't convert to pattern: {:?}", self)
            }
        };

        Pat { ty: self.ty, span: DUMMY_SP, kind }
    }

    pub(super) fn is_or_pat(&self) -> bool {
        matches!(self.ctor, Or)
    }

    pub(super) fn ctor(&self) -> &Constructor<'tcx> {
        &self.ctor
    }
    pub(super) fn ty(&self) -> Ty<'tcx> {
        self.ty
    }
    pub(super) fn span(&self) -> Span {
        self.span
    }

    pub(super) fn iter_fields<'a>(
        &'a self,
    ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
        self.fields.iter_patterns()
    }

    /// Specialize this pattern with a constructor.
    /// `other_ctor` can be different from `self.ctor`, but must be covered by it.
    pub(super) fn specialize<'a>(
        &'a self,
        pcx: &PatCtxt<'_, 'p, 'tcx>,
        other_ctor: &Constructor<'tcx>,
    ) -> SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]> {
        match (&self.ctor, other_ctor) {
            (Wildcard, _) => {
                // We return a wildcard for each field of `other_ctor`.
                Fields::wildcards(pcx, other_ctor).iter_patterns().collect()
            }
            (Slice(self_slice), Slice(other_slice))
                if self_slice.arity() != other_slice.arity() =>
            {
                // The only tricky case: two slices of different arity. Since `self_slice` covers
                // `other_slice`, `self_slice` must be `VarLen`, i.e. of the form
                // `[prefix, .., suffix]`. Moreover `other_slice` is guaranteed to have a larger
                // arity. So we fill the middle part with enough wildcards to reach the length of
                // the new, larger slice.
                match self_slice.kind {
                    FixedLen(_) => bug!("{:?} doesn't cover {:?}", self_slice, other_slice),
                    VarLen(prefix, suffix) => {
                        let (ty::Slice(inner_ty) | ty::Array(inner_ty, _)) = *self.ty.kind() else {
                            bug!("bad slice pattern {:?} {:?}", self.ctor, self.ty);
                        };
                        let prefix = &self.fields.fields[..prefix];
                        let suffix = &self.fields.fields[self_slice.arity() - suffix..];
                        let wildcard: &_ =
                            pcx.cx.pattern_arena.alloc(DeconstructedPat::wildcard(inner_ty));
                        let extra_wildcards = other_slice.arity() - self_slice.arity();
                        let extra_wildcards = (0..extra_wildcards).map(|_| wildcard);
                        prefix.iter().chain(extra_wildcards).chain(suffix).collect()
                    }
                }
            }
            _ => self.fields.iter_patterns().collect(),
        }
    }

    /// We keep track for each pattern if it was ever reachable during the analysis. This is used
    /// with `unreachable_spans` to report unreachable subpatterns arising from or patterns.
    pub(super) fn set_reachable(&self) {
        self.reachable.set(true)
    }
    pub(super) fn is_reachable(&self) -> bool {
        self.reachable.get()
    }

    /// Report the spans of subpatterns that were not reachable, if any.
    pub(super) fn unreachable_spans(&self) -> Vec<Span> {
        let mut spans = Vec::new();
        self.collect_unreachable_spans(&mut spans);
        spans
    }

    fn collect_unreachable_spans(&self, spans: &mut Vec<Span>) {
        // We don't look at subpatterns if we already reported the whole pattern as unreachable.
        if !self.is_reachable() {
            spans.push(self.span);
        } else {
            for p in self.iter_fields() {
                p.collect_unreachable_spans(spans);
            }
        }
    }
}

/// This is mostly copied from the `Pat` impl. This is best effort and not good enough for a
/// `Display` impl.
impl<'p, 'tcx> fmt::Debug for DeconstructedPat<'p, 'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Printing lists is a chore.
        let mut first = true;
        let mut start_or_continue = |s| {
            if first {
                first = false;
                ""
            } else {
                s
            }
        };
        let mut start_or_comma = || start_or_continue(", ");

        match &self.ctor {
            Single | Variant(_) => match self.ty.kind() {
                ty::Adt(def, _) if def.is_box() => {
                    // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
                    // of `std`). So this branch is only reachable when the feature is enabled and
                    // the pattern is a box pattern.
                    let subpattern = self.iter_fields().next().unwrap();
                    write!(f, "box {:?}", subpattern)
                }
                ty::Adt(..) | ty::Tuple(..) => {
                    let variant = match self.ty.kind() {
                        ty::Adt(adt, _) => Some(adt.variant(self.ctor.variant_index_for_adt(*adt))),
                        ty::Tuple(_) => None,
                        _ => unreachable!(),
                    };

                    if let Some(variant) = variant {
                        write!(f, "{}", variant.name)?;
                    }

                    // Without `cx`, we can't know which field corresponds to which, so we can't
                    // get the names of the fields. Instead we just display everything as a tuple
                    // struct, which should be good enough.
                    write!(f, "(")?;
                    for p in self.iter_fields() {
                        write!(f, "{}", start_or_comma())?;
                        write!(f, "{:?}", p)?;
                    }
                    write!(f, ")")
                }
                // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
                // be careful to detect strings here. However a string literal pattern will never
                // be reported as a non-exhaustiveness witness, so we can ignore this issue.
                ty::Ref(_, _, mutbl) => {
                    let subpattern = self.iter_fields().next().unwrap();
                    write!(f, "&{}{:?}", mutbl.prefix_str(), subpattern)
                }
                _ => write!(f, "_"),
            },
            Slice(slice) => {
                let mut subpatterns = self.fields.iter_patterns();
                write!(f, "[")?;
                match slice.kind {
                    FixedLen(_) => {
                        for p in subpatterns {
                            write!(f, "{}{:?}", start_or_comma(), p)?;
                        }
                    }
                    VarLen(prefix_len, _) => {
                        for p in subpatterns.by_ref().take(prefix_len) {
                            write!(f, "{}{:?}", start_or_comma(), p)?;
                        }
                        write!(f, "{}", start_or_comma())?;
                        write!(f, "..")?;
                        for p in subpatterns {
                            write!(f, "{}{:?}", start_or_comma(), p)?;
                        }
                    }
                }
                write!(f, "]")
            }
            &FloatRange(lo, hi, end) => {
                write!(f, "{}", lo)?;
                write!(f, "{}", end)?;
                write!(f, "{}", hi)
            }
            IntRange(range) => write!(f, "{:?}", range), // Best-effort, will render e.g. `false` as `0..=0`
            Wildcard | Missing { .. } | NonExhaustive => write!(f, "_ : {:?}", self.ty),
            Or => {
                for pat in self.iter_fields() {
                    write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
                }
                Ok(())
            }
            Str(value) => write!(f, "{}", value),
            Opaque => write!(f, "<constant pattern>"),
        }
    }
}