1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
//! Code related to match expressions. These are sufficiently complex to
//! warrant their own module and submodules. :) This main module includes the
//! high-level algorithm, the submodules contain the details.
//!
//! This also includes code for pattern bindings in `let` statements and
//! function parameters.
use crate::build::expr::as_place::PlaceBuilder;
use crate::build::scope::DropKind;
use crate::build::ForGuard::{self, OutsideGuard, RefWithinGuard};
use crate::build::{BlockAnd, BlockAndExtension, Builder};
use crate::build::{GuardFrame, GuardFrameLocal, LocalsForNode};
use rustc_data_structures::{
fx::{FxHashSet, FxIndexMap, FxIndexSet},
stack::ensure_sufficient_stack,
};
use rustc_index::bit_set::BitSet;
use rustc_middle::middle::region;
use rustc_middle::mir::*;
use rustc_middle::thir::{self, *};
use rustc_middle::ty::{self, CanonicalUserTypeAnnotation, Ty};
use rustc_span::symbol::Symbol;
use rustc_span::{BytePos, Pos, Span};
use rustc_target::abi::VariantIdx;
use smallvec::{smallvec, SmallVec};
// helper functions, broken out by category:
mod simplify;
mod test;
mod util;
use std::borrow::Borrow;
use std::convert::TryFrom;
use std::mem;
impl<'a, 'tcx> Builder<'a, 'tcx> {
pub(crate) fn then_else_break(
&mut self,
mut block: BasicBlock,
expr: &Expr<'tcx>,
temp_scope_override: Option<region::Scope>,
break_scope: region::Scope,
variable_source_info: SourceInfo,
) -> BlockAnd<()> {
let this = self;
let expr_span = expr.span;
match expr.kind {
ExprKind::LogicalOp { op: LogicalOp::And, lhs, rhs } => {
let lhs_then_block = unpack!(this.then_else_break(
block,
&this.thir[lhs],
temp_scope_override,
break_scope,
variable_source_info,
));
let rhs_then_block = unpack!(this.then_else_break(
lhs_then_block,
&this.thir[rhs],
temp_scope_override,
break_scope,
variable_source_info,
));
rhs_then_block.unit()
}
ExprKind::Scope { region_scope, lint_level, value } => {
let region_scope = (region_scope, this.source_info(expr_span));
this.in_scope(region_scope, lint_level, |this| {
this.then_else_break(
block,
&this.thir[value],
temp_scope_override,
break_scope,
variable_source_info,
)
})
}
ExprKind::Let { expr, ref pat } => this.lower_let_expr(
block,
&this.thir[expr],
pat,
break_scope,
Some(variable_source_info.scope),
variable_source_info.span,
),
_ => {
let temp_scope = temp_scope_override.unwrap_or_else(|| this.local_scope());
let mutability = Mutability::Mut;
let place =
unpack!(block = this.as_temp(block, Some(temp_scope), expr, mutability));
let operand = Operand::Move(Place::from(place));
let then_block = this.cfg.start_new_block();
let else_block = this.cfg.start_new_block();
let term = TerminatorKind::if_(this.tcx, operand, then_block, else_block);
let source_info = this.source_info(expr_span);
this.cfg.terminate(block, source_info, term);
this.break_for_else(else_block, break_scope, source_info);
then_block.unit()
}
}
}
/// Generates MIR for a `match` expression.
///
/// The MIR that we generate for a match looks like this.
///
/// ```text
/// [ 0. Pre-match ]
/// |
/// [ 1. Evaluate Scrutinee (expression being matched on) ]
/// [ (fake read of scrutinee) ]
/// |
/// [ 2. Decision tree -- check discriminants ] <--------+
/// | |
/// | (once a specific arm is chosen) |
/// | |
/// [pre_binding_block] [otherwise_block]
/// | |
/// [ 3. Create "guard bindings" for arm ] |
/// [ (create fake borrows) ] |
/// | |
/// [ 4. Execute guard code ] |
/// [ (read fake borrows) ] --(guard is false)-----------+
/// |
/// | (guard results in true)
/// |
/// [ 5. Create real bindings and execute arm ]
/// |
/// [ Exit match ]
/// ```
///
/// All of the different arms have been stacked on top of each other to
/// simplify the diagram. For an arm with no guard the blocks marked 3 and
/// 4 and the fake borrows are omitted.
///
/// We generate MIR in the following steps:
///
/// 1. Evaluate the scrutinee and add the fake read of it ([Builder::lower_scrutinee]).
/// 2. Create the decision tree ([Builder::lower_match_tree]).
/// 3. Determine the fake borrows that are needed from the places that were
/// matched against and create the required temporaries for them
/// ([Builder::calculate_fake_borrows]).
/// 4. Create everything else: the guards and the arms ([Builder::lower_match_arms]).
///
/// ## False edges
///
/// We don't want to have the exact structure of the decision tree be
/// visible through borrow checking. False edges ensure that the CFG as
/// seen by borrow checking doesn't encode this. False edges are added:
///
/// * From each pre-binding block to the next pre-binding block.
/// * From each otherwise block to the next pre-binding block.
#[instrument(level = "debug", skip(self, arms))]
pub(crate) fn match_expr(
&mut self,
destination: Place<'tcx>,
span: Span,
mut block: BasicBlock,
scrutinee: &Expr<'tcx>,
arms: &[ArmId],
) -> BlockAnd<()> {
let scrutinee_span = scrutinee.span;
let scrutinee_place =
unpack!(block = self.lower_scrutinee(block, scrutinee, scrutinee_span,));
let mut arm_candidates = self.create_match_candidates(scrutinee_place.clone(), &arms);
let match_has_guard = arm_candidates.iter().any(|(_, candidate)| candidate.has_guard);
let mut candidates =
arm_candidates.iter_mut().map(|(_, candidate)| candidate).collect::<Vec<_>>();
let match_start_span = span.shrink_to_lo().to(scrutinee.span);
let fake_borrow_temps = self.lower_match_tree(
block,
scrutinee_span,
match_start_span,
match_has_guard,
&mut candidates,
);
self.lower_match_arms(
destination,
scrutinee_place,
scrutinee_span,
arm_candidates,
self.source_info(span),
fake_borrow_temps,
)
}
/// Evaluate the scrutinee and add the fake read of it.
fn lower_scrutinee(
&mut self,
mut block: BasicBlock,
scrutinee: &Expr<'tcx>,
scrutinee_span: Span,
) -> BlockAnd<PlaceBuilder<'tcx>> {
let scrutinee_place_builder = unpack!(block = self.as_place_builder(block, scrutinee));
// Matching on a `scrutinee_place` with an uninhabited type doesn't
// generate any memory reads by itself, and so if the place "expression"
// contains unsafe operations like raw pointer dereferences or union
// field projections, we wouldn't know to require an `unsafe` block
// around a `match` equivalent to `std::intrinsics::unreachable()`.
// See issue #47412 for this hole being discovered in the wild.
//
// HACK(eddyb) Work around the above issue by adding a dummy inspection
// of `scrutinee_place`, specifically by applying `ReadForMatch`.
//
// NOTE: ReadForMatch also checks that the scrutinee is initialized.
// This is currently needed to not allow matching on an uninitialized,
// uninhabited value. If we get never patterns, those will check that
// the place is initialized, and so this read would only be used to
// check safety.
let cause_matched_place = FakeReadCause::ForMatchedPlace(None);
let source_info = self.source_info(scrutinee_span);
if let Ok(scrutinee_builder) = scrutinee_place_builder.clone().try_upvars_resolved(self) {
let scrutinee_place = scrutinee_builder.into_place(self);
self.cfg.push_fake_read(block, source_info, cause_matched_place, scrutinee_place);
}
block.and(scrutinee_place_builder)
}
/// Create the initial `Candidate`s for a `match` expression.
fn create_match_candidates<'pat>(
&mut self,
scrutinee: PlaceBuilder<'tcx>,
arms: &'pat [ArmId],
) -> Vec<(&'pat Arm<'tcx>, Candidate<'pat, 'tcx>)>
where
'a: 'pat,
{
// Assemble a list of candidates: there is one candidate per pattern,
// which means there may be more than one candidate *per arm*.
arms.iter()
.copied()
.map(|arm| {
let arm = &self.thir[arm];
let arm_has_guard = arm.guard.is_some();
let arm_candidate =
Candidate::new(scrutinee.clone(), &arm.pattern, arm_has_guard, self);
(arm, arm_candidate)
})
.collect()
}
/// Create the decision tree for the match expression, starting from `block`.
///
/// Modifies `candidates` to store the bindings and type ascriptions for
/// that candidate.
///
/// Returns the places that need fake borrows because we bind or test them.
fn lower_match_tree<'pat>(
&mut self,
block: BasicBlock,
scrutinee_span: Span,
match_start_span: Span,
match_has_guard: bool,
candidates: &mut [&mut Candidate<'pat, 'tcx>],
) -> Vec<(Place<'tcx>, Local)> {
// The set of places that we are creating fake borrows of. If there are
// no match guards then we don't need any fake borrows, so don't track
// them.
let mut fake_borrows = match_has_guard.then(FxIndexSet::default);
let mut otherwise = None;
// This will generate code to test scrutinee_place and
// branch to the appropriate arm block
self.match_candidates(
match_start_span,
scrutinee_span,
block,
&mut otherwise,
candidates,
&mut fake_borrows,
);
if let Some(otherwise_block) = otherwise {
// See the doc comment on `match_candidates` for why we may have an
// otherwise block. Match checking will ensure this is actually
// unreachable.
let source_info = self.source_info(scrutinee_span);
self.cfg.terminate(otherwise_block, source_info, TerminatorKind::Unreachable);
}
// Link each leaf candidate to the `pre_binding_block` of the next one.
let mut previous_candidate: Option<&mut Candidate<'_, '_>> = None;
for candidate in candidates {
candidate.visit_leaves(|leaf_candidate| {
if let Some(ref mut prev) = previous_candidate {
prev.next_candidate_pre_binding_block = leaf_candidate.pre_binding_block;
}
previous_candidate = Some(leaf_candidate);
});
}
if let Some(ref borrows) = fake_borrows {
self.calculate_fake_borrows(borrows, scrutinee_span)
} else {
Vec::new()
}
}
/// Lower the bindings, guards and arm bodies of a `match` expression.
///
/// The decision tree should have already been created
/// (by [Builder::lower_match_tree]).
///
/// `outer_source_info` is the SourceInfo for the whole match.
fn lower_match_arms(
&mut self,
destination: Place<'tcx>,
scrutinee_place_builder: PlaceBuilder<'tcx>,
scrutinee_span: Span,
arm_candidates: Vec<(&'_ Arm<'tcx>, Candidate<'_, 'tcx>)>,
outer_source_info: SourceInfo,
fake_borrow_temps: Vec<(Place<'tcx>, Local)>,
) -> BlockAnd<()> {
let arm_end_blocks: Vec<_> = arm_candidates
.into_iter()
.map(|(arm, candidate)| {
debug!("lowering arm {:?}\ncandidate = {:?}", arm, candidate);
let arm_source_info = self.source_info(arm.span);
let arm_scope = (arm.scope, arm_source_info);
let match_scope = self.local_scope();
self.in_scope(arm_scope, arm.lint_level, |this| {
// `try_upvars_resolved` may fail if it is unable to resolve the given
// `PlaceBuilder` inside a closure. In this case, we don't want to include
// a scrutinee place. `scrutinee_place_builder` will fail to be resolved
// if the only match arm is a wildcard (`_`).
// Example:
// ```
// let foo = (0, 1);
// let c = || {
// match foo { _ => () };
// };
// ```
let mut opt_scrutinee_place: Option<(Option<&Place<'tcx>>, Span)> = None;
let scrutinee_place: Place<'tcx>;
if let Ok(scrutinee_builder) =
scrutinee_place_builder.clone().try_upvars_resolved(this)
{
scrutinee_place = scrutinee_builder.into_place(this);
opt_scrutinee_place = Some((Some(&scrutinee_place), scrutinee_span));
}
let scope = this.declare_bindings(
None,
arm.span,
&arm.pattern,
ArmHasGuard(arm.guard.is_some()),
opt_scrutinee_place,
);
let arm_block = this.bind_pattern(
outer_source_info,
candidate,
arm.guard.as_ref(),
&fake_borrow_temps,
scrutinee_span,
Some(arm.span),
Some(arm.scope),
Some(match_scope),
false,
);
if let Some(source_scope) = scope {
this.source_scope = source_scope;
}
this.expr_into_dest(destination, arm_block, &&this.thir[arm.body])
})
})
.collect();
// all the arm blocks will rejoin here
let end_block = self.cfg.start_new_block();
let end_brace = self.source_info(
outer_source_info.span.with_lo(outer_source_info.span.hi() - BytePos::from_usize(1)),
);
for arm_block in arm_end_blocks {
let block = &self.cfg.basic_blocks[arm_block.0];
let last_location = block.statements.last().map(|s| s.source_info);
self.cfg.goto(unpack!(arm_block), last_location.unwrap_or(end_brace), end_block);
}
self.source_scope = outer_source_info.scope;
end_block.unit()
}
/// Binds the variables and ascribes types for a given `match` arm or
/// `let` binding.
///
/// Also check if the guard matches, if it's provided.
/// `arm_scope` should be `Some` if and only if this is called for a
/// `match` arm.
fn bind_pattern(
&mut self,
outer_source_info: SourceInfo,
candidate: Candidate<'_, 'tcx>,
guard: Option<&Guard<'tcx>>,
fake_borrow_temps: &[(Place<'tcx>, Local)],
scrutinee_span: Span,
arm_span: Option<Span>,
arm_scope: Option<region::Scope>,
match_scope: Option<region::Scope>,
storages_alive: bool,
) -> BasicBlock {
if candidate.subcandidates.is_empty() {
// Avoid generating another `BasicBlock` when we only have one
// candidate.
self.bind_and_guard_matched_candidate(
candidate,
&[],
guard,
fake_borrow_temps,
scrutinee_span,
arm_span,
match_scope,
true,
storages_alive,
)
} else {
// It's helpful to avoid scheduling drops multiple times to save
// drop elaboration from having to clean up the extra drops.
//
// If we are in a `let` then we only schedule drops for the first
// candidate.
//
// If we're in a `match` arm then we could have a case like so:
//
// Ok(x) | Err(x) if return => { /* ... */ }
//
// In this case we don't want a drop of `x` scheduled when we
// return: it isn't bound by move until right before enter the arm.
// To handle this we instead unschedule it's drop after each time
// we lower the guard.
let target_block = self.cfg.start_new_block();
let mut schedule_drops = true;
// We keep a stack of all of the bindings and type ascriptions
// from the parent candidates that we visit, that also need to
// be bound for each candidate.
traverse_candidate(
candidate,
&mut Vec::new(),
&mut |leaf_candidate, parent_bindings| {
if let Some(arm_scope) = arm_scope {
self.clear_top_scope(arm_scope);
}
let binding_end = self.bind_and_guard_matched_candidate(
leaf_candidate,
parent_bindings,
guard,
&fake_borrow_temps,
scrutinee_span,
arm_span,
match_scope,
schedule_drops,
storages_alive,
);
if arm_scope.is_none() {
schedule_drops = false;
}
self.cfg.goto(binding_end, outer_source_info, target_block);
},
|inner_candidate, parent_bindings| {
parent_bindings.push((inner_candidate.bindings, inner_candidate.ascriptions));
inner_candidate.subcandidates.into_iter()
},
|parent_bindings| {
parent_bindings.pop();
},
);
target_block
}
}
pub(super) fn expr_into_pattern(
&mut self,
mut block: BasicBlock,
irrefutable_pat: &Pat<'tcx>,
initializer: &Expr<'tcx>,
) -> BlockAnd<()> {
match irrefutable_pat.kind {
// Optimize the case of `let x = ...` to write directly into `x`
PatKind::Binding { mode: BindingMode::ByValue, var, subpattern: None, .. } => {
let place =
self.storage_live_binding(block, var, irrefutable_pat.span, OutsideGuard, true);
unpack!(block = self.expr_into_dest(place, block, initializer));
// Inject a fake read, see comments on `FakeReadCause::ForLet`.
let source_info = self.source_info(irrefutable_pat.span);
self.cfg.push_fake_read(block, source_info, FakeReadCause::ForLet(None), place);
self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
block.unit()
}
// Optimize the case of `let x: T = ...` to write directly
// into `x` and then require that `T == typeof(x)`.
//
// Weirdly, this is needed to prevent the
// `intrinsic-move-val.rs` test case from crashing. That
// test works with uninitialized values in a rather
// dubious way, so it may be that the test is kind of
// broken.
PatKind::AscribeUserType {
subpattern:
box Pat {
kind:
PatKind::Binding {
mode: BindingMode::ByValue, var, subpattern: None, ..
},
..
},
ascription: thir::Ascription { ref annotation, variance: _ },
} => {
let place =
self.storage_live_binding(block, var, irrefutable_pat.span, OutsideGuard, true);
unpack!(block = self.expr_into_dest(place, block, initializer));
// Inject a fake read, see comments on `FakeReadCause::ForLet`.
let pattern_source_info = self.source_info(irrefutable_pat.span);
let cause_let = FakeReadCause::ForLet(None);
self.cfg.push_fake_read(block, pattern_source_info, cause_let, place);
let ty_source_info = self.source_info(annotation.span);
let base = self.canonical_user_type_annotations.push(annotation.clone());
self.cfg.push(
block,
Statement {
source_info: ty_source_info,
kind: StatementKind::AscribeUserType(
Box::new((place, UserTypeProjection { base, projs: Vec::new() })),
// We always use invariant as the variance here. This is because the
// variance field from the ascription refers to the variance to use
// when applying the type to the value being matched, but this
// ascription applies rather to the type of the binding. e.g., in this
// example:
//
// ```
// let x: T = <expr>
// ```
//
// We are creating an ascription that defines the type of `x` to be
// exactly `T` (i.e., with invariance). The variance field, in
// contrast, is intended to be used to relate `T` to the type of
// `<expr>`.
ty::Variance::Invariant,
),
},
);
self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
block.unit()
}
_ => {
let place_builder = unpack!(block = self.as_place_builder(block, initializer));
self.place_into_pattern(block, &irrefutable_pat, place_builder, true)
}
}
}
pub(crate) fn place_into_pattern(
&mut self,
block: BasicBlock,
irrefutable_pat: &Pat<'tcx>,
initializer: PlaceBuilder<'tcx>,
set_match_place: bool,
) -> BlockAnd<()> {
let mut candidate = Candidate::new(initializer.clone(), &irrefutable_pat, false, self);
let fake_borrow_temps = self.lower_match_tree(
block,
irrefutable_pat.span,
irrefutable_pat.span,
false,
&mut [&mut candidate],
);
// For matches and function arguments, the place that is being matched
// can be set when creating the variables. But the place for
// let PATTERN = ... might not even exist until we do the assignment.
// so we set it here instead.
if set_match_place {
let mut candidate_ref = &candidate;
while let Some(next) = {
for binding in &candidate_ref.bindings {
let local = self.var_local_id(binding.var_id, OutsideGuard);
// `try_upvars_resolved` may fail if it is unable to resolve the given
// `PlaceBuilder` inside a closure. In this case, we don't want to include
// a scrutinee place. `scrutinee_place_builder` will fail for destructured
// assignments. This is because a closure only captures the precise places
// that it will read and as a result a closure may not capture the entire
// tuple/struct and rather have individual places that will be read in the
// final MIR.
// Example:
// ```
// let foo = (0, 1);
// let c = || {
// let (v1, v2) = foo;
// };
// ```
if let Ok(match_pair_resolved) = initializer.clone().try_upvars_resolved(self) {
let place = match_pair_resolved.into_place(self);
let Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::Var(
VarBindingForm { opt_match_place: Some((ref mut match_place, _)), .. },
)))) = self.local_decls[local].local_info else {
bug!("Let binding to non-user variable.")
};
*match_place = Some(place);
}
}
// All of the subcandidates should bind the same locals, so we
// only visit the first one.
candidate_ref.subcandidates.get(0)
} {
candidate_ref = next;
}
}
self.bind_pattern(
self.source_info(irrefutable_pat.span),
candidate,
None,
&fake_borrow_temps,
irrefutable_pat.span,
None,
None,
None,
false,
)
.unit()
}
/// Declares the bindings of the given patterns and returns the visibility
/// scope for the bindings in these patterns, if such a scope had to be
/// created. NOTE: Declaring the bindings should always be done in their
/// drop scope.
#[instrument(skip(self), level = "debug")]
pub(crate) fn declare_bindings(
&mut self,
mut visibility_scope: Option<SourceScope>,
scope_span: Span,
pattern: &Pat<'tcx>,
has_guard: ArmHasGuard,
opt_match_place: Option<(Option<&Place<'tcx>>, Span)>,
) -> Option<SourceScope> {
self.visit_primary_bindings(
&pattern,
UserTypeProjections::none(),
&mut |this, mutability, name, mode, var, span, ty, user_ty| {
if visibility_scope.is_none() {
visibility_scope =
Some(this.new_source_scope(scope_span, LintLevel::Inherited, None));
}
let source_info = SourceInfo { span, scope: this.source_scope };
let visibility_scope = visibility_scope.unwrap();
this.declare_binding(
source_info,
visibility_scope,
mutability,
name,
mode,
var,
ty,
user_ty,
has_guard,
opt_match_place.map(|(x, y)| (x.cloned(), y)),
pattern.span,
);
},
);
visibility_scope
}
pub(crate) fn storage_live_binding(
&mut self,
block: BasicBlock,
var: LocalVarId,
span: Span,
for_guard: ForGuard,
schedule_drop: bool,
) -> Place<'tcx> {
let local_id = self.var_local_id(var, for_guard);
let source_info = self.source_info(span);
self.cfg.push(block, Statement { source_info, kind: StatementKind::StorageLive(local_id) });
// Although there is almost always scope for given variable in corner cases
// like #92893 we might get variable with no scope.
if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id) && schedule_drop {
self.schedule_drop(span, region_scope, local_id, DropKind::Storage);
}
Place::from(local_id)
}
pub(crate) fn schedule_drop_for_binding(
&mut self,
var: LocalVarId,
span: Span,
for_guard: ForGuard,
) {
let local_id = self.var_local_id(var, for_guard);
if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id) {
self.schedule_drop(span, region_scope, local_id, DropKind::Value);
}
}
/// Visit all of the primary bindings in a patterns, that is, visit the
/// leftmost occurrence of each variable bound in a pattern. A variable
/// will occur more than once in an or-pattern.
pub(super) fn visit_primary_bindings(
&mut self,
pattern: &Pat<'tcx>,
pattern_user_ty: UserTypeProjections,
f: &mut impl FnMut(
&mut Self,
Mutability,
Symbol,
BindingMode,
LocalVarId,
Span,
Ty<'tcx>,
UserTypeProjections,
),
) {
debug!(
"visit_primary_bindings: pattern={:?} pattern_user_ty={:?}",
pattern, pattern_user_ty
);
match pattern.kind {
PatKind::Binding {
mutability,
name,
mode,
var,
ty,
ref subpattern,
is_primary,
..
} => {
if is_primary {
f(self, mutability, name, mode, var, pattern.span, ty, pattern_user_ty.clone());
}
if let Some(subpattern) = subpattern.as_ref() {
self.visit_primary_bindings(subpattern, pattern_user_ty, f);
}
}
PatKind::Array { ref prefix, ref slice, ref suffix }
| PatKind::Slice { ref prefix, ref slice, ref suffix } => {
let from = u64::try_from(prefix.len()).unwrap();
let to = u64::try_from(suffix.len()).unwrap();
for subpattern in prefix.iter() {
self.visit_primary_bindings(subpattern, pattern_user_ty.clone().index(), f);
}
for subpattern in slice {
self.visit_primary_bindings(
subpattern,
pattern_user_ty.clone().subslice(from, to),
f,
);
}
for subpattern in suffix.iter() {
self.visit_primary_bindings(subpattern, pattern_user_ty.clone().index(), f);
}
}
PatKind::Constant { .. } | PatKind::Range { .. } | PatKind::Wild => {}
PatKind::Deref { ref subpattern } => {
self.visit_primary_bindings(subpattern, pattern_user_ty.deref(), f);
}
PatKind::AscribeUserType {
ref subpattern,
ascription: thir::Ascription { ref annotation, variance: _ },
} => {
// This corresponds to something like
//
// ```
// let A::<'a>(_): A<'static> = ...;
// ```
//
// Note that the variance doesn't apply here, as we are tracking the effect
// of `user_ty` on any bindings contained with subpattern.
let projection = UserTypeProjection {
base: self.canonical_user_type_annotations.push(annotation.clone()),
projs: Vec::new(),
};
let subpattern_user_ty =
pattern_user_ty.push_projection(&projection, annotation.span);
self.visit_primary_bindings(subpattern, subpattern_user_ty, f)
}
PatKind::Leaf { ref subpatterns } => {
for subpattern in subpatterns {
let subpattern_user_ty = pattern_user_ty.clone().leaf(subpattern.field);
debug!("visit_primary_bindings: subpattern_user_ty={:?}", subpattern_user_ty);
self.visit_primary_bindings(&subpattern.pattern, subpattern_user_ty, f);
}
}
PatKind::Variant { adt_def, substs: _, variant_index, ref subpatterns } => {
for subpattern in subpatterns {
let subpattern_user_ty =
pattern_user_ty.clone().variant(adt_def, variant_index, subpattern.field);
self.visit_primary_bindings(&subpattern.pattern, subpattern_user_ty, f);
}
}
PatKind::Or { ref pats } => {
// In cases where we recover from errors the primary bindings
// may not all be in the leftmost subpattern. For example in
// `let (x | y) = ...`, the primary binding of `y` occurs in
// the right subpattern
for subpattern in pats.iter() {
self.visit_primary_bindings(subpattern, pattern_user_ty.clone(), f);
}
}
}
}
}
#[derive(Debug)]
struct Candidate<'pat, 'tcx> {
/// [`Span`] of the original pattern that gave rise to this candidate.
span: Span,
/// Whether this `Candidate` has a guard.
has_guard: bool,
/// All of these must be satisfied...
match_pairs: SmallVec<[MatchPair<'pat, 'tcx>; 1]>,
/// ...these bindings established...
bindings: Vec<Binding<'tcx>>,
/// ...and these types asserted...
ascriptions: Vec<Ascription<'tcx>>,
/// ...and if this is non-empty, one of these subcandidates also has to match...
subcandidates: Vec<Candidate<'pat, 'tcx>>,
/// ...and the guard must be evaluated; if it's `false` then branch to `otherwise_block`.
otherwise_block: Option<BasicBlock>,
/// The block before the `bindings` have been established.
pre_binding_block: Option<BasicBlock>,
/// The pre-binding block of the next candidate.
next_candidate_pre_binding_block: Option<BasicBlock>,
}
impl<'tcx, 'pat> Candidate<'pat, 'tcx> {
fn new(
place: PlaceBuilder<'tcx>,
pattern: &'pat Pat<'tcx>,
has_guard: bool,
cx: &Builder<'_, 'tcx>,
) -> Self {
Candidate {
span: pattern.span,
has_guard,
match_pairs: smallvec![MatchPair::new(place, pattern, cx)],
bindings: Vec::new(),
ascriptions: Vec::new(),
subcandidates: Vec::new(),
otherwise_block: None,
pre_binding_block: None,
next_candidate_pre_binding_block: None,
}
}
/// Visit the leaf candidates (those with no subcandidates) contained in
/// this candidate.
fn visit_leaves<'a>(&'a mut self, mut visit_leaf: impl FnMut(&'a mut Self)) {
traverse_candidate(
self,
&mut (),
&mut move |c, _| visit_leaf(c),
move |c, _| c.subcandidates.iter_mut(),
|_| {},
);
}
}
/// A depth-first traversal of the `Candidate` and all of its recursive
/// subcandidates.
fn traverse_candidate<'pat, 'tcx: 'pat, C, T, I>(
candidate: C,
context: &mut T,
visit_leaf: &mut impl FnMut(C, &mut T),
get_children: impl Copy + Fn(C, &mut T) -> I,
complete_children: impl Copy + Fn(&mut T),
) where
C: Borrow<Candidate<'pat, 'tcx>>,
I: Iterator<Item = C>,
{
if candidate.borrow().subcandidates.is_empty() {
visit_leaf(candidate, context)
} else {
for child in get_children(candidate, context) {
traverse_candidate(child, context, visit_leaf, get_children, complete_children);
}
complete_children(context)
}
}
#[derive(Clone, Debug)]
struct Binding<'tcx> {
span: Span,
source: Place<'tcx>,
var_id: LocalVarId,
binding_mode: BindingMode,
}
/// Indicates that the type of `source` must be a subtype of the
/// user-given type `user_ty`; this is basically a no-op but can
/// influence region inference.
#[derive(Clone, Debug)]
struct Ascription<'tcx> {
source: Place<'tcx>,
annotation: CanonicalUserTypeAnnotation<'tcx>,
variance: ty::Variance,
}
#[derive(Clone, Debug)]
pub(crate) struct MatchPair<'pat, 'tcx> {
// this place...
place: PlaceBuilder<'tcx>,
// ... must match this pattern.
pattern: &'pat Pat<'tcx>,
}
/// See [`Test`] for more.
#[derive(Clone, Debug, PartialEq)]
enum TestKind<'tcx> {
/// Test what enum variant a value is.
Switch {
/// The enum type being tested.
adt_def: ty::AdtDef<'tcx>,
/// The set of variants that we should create a branch for. We also
/// create an additional "otherwise" case.
variants: BitSet<VariantIdx>,
},
/// Test what value an integer, `bool`, or `char` has.
SwitchInt {
/// The type of the value that we're testing.
switch_ty: Ty<'tcx>,
/// The (ordered) set of values that we test for.
///
/// For integers and `char`s we create a branch to each of the values in
/// `options`, as well as an "otherwise" branch for all other values, even
/// in the (rare) case that `options` is exhaustive.
///
/// For `bool` we always generate two edges, one for `true` and one for
/// `false`.
options: FxIndexMap<ConstantKind<'tcx>, u128>,
},
/// Test for equality with value, possibly after an unsizing coercion to
/// `ty`,
Eq {
value: ConstantKind<'tcx>,
// Integer types are handled by `SwitchInt`, and constants with ADT
// types are converted back into patterns, so this can only be `&str`,
// `&[T]`, `f32` or `f64`.
ty: Ty<'tcx>,
},
/// Test whether the value falls within an inclusive or exclusive range
Range(Box<PatRange<'tcx>>),
/// Test that the length of the slice is equal to `len`.
Len { len: u64, op: BinOp },
}
/// A test to perform to determine which [`Candidate`] matches a value.
///
/// [`Test`] is just the test to perform; it does not include the value
/// to be tested.
#[derive(Debug)]
pub(crate) struct Test<'tcx> {
span: Span,
kind: TestKind<'tcx>,
}
/// `ArmHasGuard` is a wrapper around a boolean flag. It indicates whether
/// a match arm has a guard expression attached to it.
#[derive(Copy, Clone, Debug)]
pub(crate) struct ArmHasGuard(pub(crate) bool);
///////////////////////////////////////////////////////////////////////////
// Main matching algorithm
impl<'a, 'tcx> Builder<'a, 'tcx> {
/// The main match algorithm. It begins with a set of candidates
/// `candidates` and has the job of generating code to determine
/// which of these candidates, if any, is the correct one. The
/// candidates are sorted such that the first item in the list
/// has the highest priority. When a candidate is found to match
/// the value, we will set and generate a branch to the appropriate
/// pre-binding block.
///
/// If we find that *NONE* of the candidates apply, we branch to the
/// `otherwise_block`, setting it to `Some` if required. In principle, this
/// means that the input list was not exhaustive, though at present we
/// sometimes are not smart enough to recognize all exhaustive inputs.
///
/// It might be surprising that the input can be non-exhaustive.
/// Indeed, initially, it is not, because all matches are
/// exhaustive in Rust. But during processing we sometimes divide
/// up the list of candidates and recurse with a non-exhaustive
/// list. This is important to keep the size of the generated code
/// under control. See [`Builder::test_candidates`] for more details.
///
/// If `fake_borrows` is `Some`, then places which need fake borrows
/// will be added to it.
///
/// For an example of a case where we set `otherwise_block`, even for an
/// exhaustive match, consider:
///
/// ```
/// # fn foo(x: (bool, bool)) {
/// match x {
/// (true, true) => (),
/// (_, false) => (),
/// (false, true) => (),
/// }
/// # }
/// ```
///
/// For this match, we check if `x.0` matches `true` (for the first
/// arm). If it doesn't match, we check `x.1`. If `x.1` is `true` we check
/// if `x.0` matches `false` (for the third arm). In the (impossible at
/// runtime) case when `x.0` is now `true`, we branch to
/// `otherwise_block`.
#[instrument(skip(self, fake_borrows), level = "debug")]
fn match_candidates<'pat>(
&mut self,
span: Span,
scrutinee_span: Span,
start_block: BasicBlock,
otherwise_block: &mut Option<BasicBlock>,
candidates: &mut [&mut Candidate<'pat, 'tcx>],
fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
) {
// Start by simplifying candidates. Once this process is complete, all
// the match pairs which remain require some form of test, whether it
// be a switch or pattern comparison.
let mut split_or_candidate = false;
for candidate in &mut *candidates {
split_or_candidate |= self.simplify_candidate(candidate);
}
ensure_sufficient_stack(|| {
if split_or_candidate {
// At least one of the candidates has been split into subcandidates.
// We need to change the candidate list to include those.
let mut new_candidates = Vec::new();
for candidate in candidates {
candidate.visit_leaves(|leaf_candidate| new_candidates.push(leaf_candidate));
}
self.match_simplified_candidates(
span,
scrutinee_span,
start_block,
otherwise_block,
&mut *new_candidates,
fake_borrows,
);
} else {
self.match_simplified_candidates(
span,
scrutinee_span,
start_block,
otherwise_block,
candidates,
fake_borrows,
);
}
});
}
fn match_simplified_candidates(
&mut self,
span: Span,
scrutinee_span: Span,
start_block: BasicBlock,
otherwise_block: &mut Option<BasicBlock>,
candidates: &mut [&mut Candidate<'_, 'tcx>],
fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
) {
// The candidates are sorted by priority. Check to see whether the
// higher priority candidates (and hence at the front of the slice)
// have satisfied all their match pairs.
let fully_matched = candidates.iter().take_while(|c| c.match_pairs.is_empty()).count();
debug!("match_candidates: {:?} candidates fully matched", fully_matched);
let (matched_candidates, unmatched_candidates) = candidates.split_at_mut(fully_matched);
let block = if !matched_candidates.is_empty() {
let otherwise_block =
self.select_matched_candidates(matched_candidates, start_block, fake_borrows);
if let Some(last_otherwise_block) = otherwise_block {
last_otherwise_block
} else {
// Any remaining candidates are unreachable.
if unmatched_candidates.is_empty() {
return;
}
self.cfg.start_new_block()
}
} else {
start_block
};
// If there are no candidates that still need testing, we're
// done. Since all matches are exhaustive, execution should
// never reach this point.
if unmatched_candidates.is_empty() {
let source_info = self.source_info(span);
if let Some(otherwise) = *otherwise_block {
self.cfg.goto(block, source_info, otherwise);
} else {
*otherwise_block = Some(block);
}
return;
}
// Test for the remaining candidates.
self.test_candidates_with_or(
span,
scrutinee_span,
unmatched_candidates,
block,
otherwise_block,
fake_borrows,
);
}
/// Link up matched candidates.
///
/// For example, if we have something like this:
///
/// ```ignore (illustrative)
/// ...
/// Some(x) if cond1 => ...
/// Some(x) => ...
/// Some(x) if cond2 => ...
/// ...
/// ```
///
/// We generate real edges from:
///
/// * `start_block` to the [pre-binding block] of the first pattern,
/// * the [otherwise block] of the first pattern to the second pattern,
/// * the [otherwise block] of the third pattern to a block with an
/// [`Unreachable` terminator](TerminatorKind::Unreachable).
///
/// In addition, we add fake edges from the otherwise blocks to the
/// pre-binding block of the next candidate in the original set of
/// candidates.
///
/// [pre-binding block]: Candidate::pre_binding_block
/// [otherwise block]: Candidate::otherwise_block
fn select_matched_candidates(
&mut self,
matched_candidates: &mut [&mut Candidate<'_, 'tcx>],
start_block: BasicBlock,
fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
) -> Option<BasicBlock> {
debug_assert!(
!matched_candidates.is_empty(),
"select_matched_candidates called with no candidates",
);
debug_assert!(
matched_candidates.iter().all(|c| c.subcandidates.is_empty()),
"subcandidates should be empty in select_matched_candidates",
);
// Insert a borrows of prefixes of places that are bound and are
// behind a dereference projection.
//
// These borrows are taken to avoid situations like the following:
//
// match x[10] {
// _ if { x = &[0]; false } => (),
// y => (), // Out of bounds array access!
// }
//
// match *x {
// // y is bound by reference in the guard and then by copy in the
// // arm, so y is 2 in the arm!
// y if { y == 1 && (x = &2) == () } => y,
// _ => 3,
// }
if let Some(fake_borrows) = fake_borrows {
for Binding { source, .. } in
matched_candidates.iter().flat_map(|candidate| &candidate.bindings)
{
if let Some(i) =
source.projection.iter().rposition(|elem| elem == ProjectionElem::Deref)
{
let proj_base = &source.projection[..i];
fake_borrows.insert(Place {
local: source.local,
projection: self.tcx.intern_place_elems(proj_base),
});
}
}
}
let fully_matched_with_guard = matched_candidates
.iter()
.position(|c| !c.has_guard)
.unwrap_or(matched_candidates.len() - 1);
let (reachable_candidates, unreachable_candidates) =
matched_candidates.split_at_mut(fully_matched_with_guard + 1);
let mut next_prebinding = start_block;
for candidate in reachable_candidates.iter_mut() {
assert!(candidate.otherwise_block.is_none());
assert!(candidate.pre_binding_block.is_none());
candidate.pre_binding_block = Some(next_prebinding);
if candidate.has_guard {
// Create the otherwise block for this candidate, which is the
// pre-binding block for the next candidate.
next_prebinding = self.cfg.start_new_block();
candidate.otherwise_block = Some(next_prebinding);
}
}
debug!(
"match_candidates: add pre_binding_blocks for unreachable {:?}",
unreachable_candidates,
);
for candidate in unreachable_candidates {
assert!(candidate.pre_binding_block.is_none());
candidate.pre_binding_block = Some(self.cfg.start_new_block());
}
reachable_candidates.last_mut().unwrap().otherwise_block
}
/// Tests a candidate where there are only or-patterns left to test, or
/// forwards to [Builder::test_candidates].
///
/// Given a pattern `(P | Q, R | S)` we (in principle) generate a CFG like
/// so:
///
/// ```text
/// [ start ]
/// |
/// [ match P, Q ]
/// |
/// +----------------------------------------+------------------------------------+
/// | | |
/// V V V
/// [ P matches ] [ Q matches ] [ otherwise ]
/// | | |
/// V V |
/// [ match R, S ] [ match R, S ] |
/// | | |
/// +--------------+------------+ +--------------+------------+ |
/// | | | | | | |
/// V V V V V V |
/// [ R matches ] [ S matches ] [otherwise ] [ R matches ] [ S matches ] [otherwise ] |
/// | | | | | | |
/// +--------------+------------|------------+--------------+ | |
/// | | | |
/// | +----------------------------------------+--------+
/// | |
/// V V
/// [ Success ] [ Failure ]
/// ```
///
/// In practice there are some complications:
///
/// * If there's a guard, then the otherwise branch of the first match on
/// `R | S` goes to a test for whether `Q` matches, and the control flow
/// doesn't merge into a single success block until after the guard is
/// tested.
/// * If neither `P` or `Q` has any bindings or type ascriptions and there
/// isn't a match guard, then we create a smaller CFG like:
///
/// ```text
/// ...
/// +---------------+------------+
/// | | |
/// [ P matches ] [ Q matches ] [ otherwise ]
/// | | |
/// +---------------+ |
/// | ...
/// [ match R, S ]
/// |
/// ...
/// ```
fn test_candidates_with_or(
&mut self,
span: Span,
scrutinee_span: Span,
candidates: &mut [&mut Candidate<'_, 'tcx>],
block: BasicBlock,
otherwise_block: &mut Option<BasicBlock>,
fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
) {
let (first_candidate, remaining_candidates) = candidates.split_first_mut().unwrap();
// All of the or-patterns have been sorted to the end, so if the first
// pattern is an or-pattern we only have or-patterns.
match first_candidate.match_pairs[0].pattern.kind {
PatKind::Or { .. } => (),
_ => {
self.test_candidates(
span,
scrutinee_span,
candidates,
block,
otherwise_block,
fake_borrows,
);
return;
}
}
let match_pairs = mem::take(&mut first_candidate.match_pairs);
first_candidate.pre_binding_block = Some(block);
let mut otherwise = None;
for match_pair in match_pairs {
let PatKind::Or { ref pats } = &match_pair.pattern.kind else {
bug!("Or-patterns should have been sorted to the end");
};
let or_span = match_pair.pattern.span;
let place = match_pair.place;
first_candidate.visit_leaves(|leaf_candidate| {
self.test_or_pattern(
leaf_candidate,
&mut otherwise,
pats,
or_span,
place.clone(),
fake_borrows,
);
});
}
let remainder_start = otherwise.unwrap_or_else(|| self.cfg.start_new_block());
self.match_candidates(
span,
scrutinee_span,
remainder_start,
otherwise_block,
remaining_candidates,
fake_borrows,
)
}
#[instrument(
skip(self, otherwise, or_span, place, fake_borrows, candidate, pats),
level = "debug"
)]
fn test_or_pattern<'pat>(
&mut self,
candidate: &mut Candidate<'pat, 'tcx>,
otherwise: &mut Option<BasicBlock>,
pats: &'pat [Box<Pat<'tcx>>],
or_span: Span,
place: PlaceBuilder<'tcx>,
fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
) {
debug!("candidate={:#?}\npats={:#?}", candidate, pats);
let mut or_candidates: Vec<_> = pats
.iter()
.map(|pat| Candidate::new(place.clone(), pat, candidate.has_guard, self))
.collect();
let mut or_candidate_refs: Vec<_> = or_candidates.iter_mut().collect();
let otherwise = if candidate.otherwise_block.is_some() {
&mut candidate.otherwise_block
} else {
otherwise
};
self.match_candidates(
or_span,
or_span,
candidate.pre_binding_block.unwrap(),
otherwise,
&mut or_candidate_refs,
fake_borrows,
);
candidate.subcandidates = or_candidates;
self.merge_trivial_subcandidates(candidate, self.source_info(or_span));
}
/// Try to merge all of the subcandidates of the given candidate into one.
/// This avoids exponentially large CFGs in cases like `(1 | 2, 3 | 4, ...)`.
fn merge_trivial_subcandidates(
&mut self,
candidate: &mut Candidate<'_, 'tcx>,
source_info: SourceInfo,
) {
if candidate.subcandidates.is_empty() || candidate.has_guard {
// FIXME(or_patterns; matthewjasper) Don't give up if we have a guard.
return;
}
let mut can_merge = true;
// Not `Iterator::all` because we don't want to short-circuit.
for subcandidate in &mut candidate.subcandidates {
self.merge_trivial_subcandidates(subcandidate, source_info);
// FIXME(or_patterns; matthewjasper) Try to be more aggressive here.
can_merge &= subcandidate.subcandidates.is_empty()
&& subcandidate.bindings.is_empty()
&& subcandidate.ascriptions.is_empty();
}
if can_merge {
let any_matches = self.cfg.start_new_block();
for subcandidate in mem::take(&mut candidate.subcandidates) {
let or_block = subcandidate.pre_binding_block.unwrap();
self.cfg.goto(or_block, source_info, any_matches);
}
candidate.pre_binding_block = Some(any_matches);
}
}
/// This is the most subtle part of the matching algorithm. At
/// this point, the input candidates have been fully simplified,
/// and so we know that all remaining match-pairs require some
/// sort of test. To decide what test to perform, we take the highest
/// priority candidate (the first one in the list, as of January 2021)
/// and extract the first match-pair from the list. From this we decide
/// what kind of test is needed using [`Builder::test`], defined in the
/// [`test` module](mod@test).
///
/// *Note:* taking the first match pair is somewhat arbitrary, and
/// we might do better here by choosing more carefully what to
/// test.
///
/// For example, consider the following possible match-pairs:
///
/// 1. `x @ Some(P)` -- we will do a [`Switch`] to decide what variant `x` has
/// 2. `x @ 22` -- we will do a [`SwitchInt`] to decide what value `x` has
/// 3. `x @ 3..5` -- we will do a [`Range`] test to decide what range `x` falls in
/// 4. etc.
///
/// [`Switch`]: TestKind::Switch
/// [`SwitchInt`]: TestKind::SwitchInt
/// [`Range`]: TestKind::Range
///
/// Once we know what sort of test we are going to perform, this
/// test may also help us winnow down our candidates. So we walk over
/// the candidates (from high to low priority) and check. This
/// gives us, for each outcome of the test, a transformed list of
/// candidates. For example, if we are testing `x.0`'s variant,
/// and we have a candidate `(x.0 @ Some(v), x.1 @ 22)`,
/// then we would have a resulting candidate of `((x.0 as Some).0 @ v, x.1 @ 22)`.
/// Note that the first match-pair is now simpler (and, in fact, irrefutable).
///
/// But there may also be candidates that the test just doesn't
/// apply to. The classical example involves wildcards:
///
/// ```
/// # let (x, y, z) = (true, true, true);
/// match (x, y, z) {
/// (true , _ , true ) => true, // (0)
/// (_ , true , _ ) => true, // (1)
/// (false, false, _ ) => false, // (2)
/// (true , _ , false) => false, // (3)
/// }
/// # ;
/// ```
///
/// In that case, after we test on `x`, there are 2 overlapping candidate
/// sets:
///
/// - If the outcome is that `x` is true, candidates 0, 1, and 3
/// - If the outcome is that `x` is false, candidates 1 and 2
///
/// Here, the traditional "decision tree" method would generate 2
/// separate code-paths for the 2 separate cases.
///
/// In some cases, this duplication can create an exponential amount of
/// code. This is most easily seen by noticing that this method terminates
/// with precisely the reachable arms being reachable - but that problem
/// is trivially NP-complete:
///
/// ```ignore (illustrative)
/// match (var0, var1, var2, var3, ...) {
/// (true , _ , _ , false, true, ...) => false,
/// (_ , true, true , false, _ , ...) => false,
/// (false, _ , false, false, _ , ...) => false,
/// ...
/// _ => true
/// }
/// ```
///
/// Here the last arm is reachable only if there is an assignment to
/// the variables that does not match any of the literals. Therefore,
/// compilation would take an exponential amount of time in some cases.
///
/// That kind of exponential worst-case might not occur in practice, but
/// our simplistic treatment of constants and guards would make it occur
/// in very common situations - for example [#29740]:
///
/// ```ignore (illustrative)
/// match x {
/// "foo" if foo_guard => ...,
/// "bar" if bar_guard => ...,
/// "baz" if baz_guard => ...,
/// ...
/// }
/// ```
///
/// [#29740]: https://github.com/rust-lang/rust/issues/29740
///
/// Here we first test the match-pair `x @ "foo"`, which is an [`Eq` test].
///
/// [`Eq` test]: TestKind::Eq
///
/// It might seem that we would end up with 2 disjoint candidate
/// sets, consisting of the first candidate or the other two, but our
/// algorithm doesn't reason about `"foo"` being distinct from the other
/// constants; it considers the latter arms to potentially match after
/// both outcomes, which obviously leads to an exponential number
/// of tests.
///
/// To avoid these kinds of problems, our algorithm tries to ensure
/// the amount of generated tests is linear. When we do a k-way test,
/// we return an additional "unmatched" set alongside the obvious `k`
/// sets. When we encounter a candidate that would be present in more
/// than one of the sets, we put it and all candidates below it into the
/// "unmatched" set. This ensures these `k+1` sets are disjoint.
///
/// After we perform our test, we branch into the appropriate candidate
/// set and recurse with `match_candidates`. These sub-matches are
/// obviously non-exhaustive - as we discarded our otherwise set - so
/// we set their continuation to do `match_candidates` on the
/// "unmatched" set (which is again non-exhaustive).
///
/// If you apply this to the above test, you basically wind up
/// with an if-else-if chain, testing each candidate in turn,
/// which is precisely what we want.
///
/// In addition to avoiding exponential-time blowups, this algorithm
/// also has the nice property that each guard and arm is only generated
/// once.
fn test_candidates<'pat, 'b, 'c>(
&mut self,
span: Span,
scrutinee_span: Span,
mut candidates: &'b mut [&'c mut Candidate<'pat, 'tcx>],
block: BasicBlock,
otherwise_block: &mut Option<BasicBlock>,
fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
) {
// extract the match-pair from the highest priority candidate
let match_pair = &candidates.first().unwrap().match_pairs[0];
let mut test = self.test(match_pair);
let match_place = match_pair.place.clone();
// most of the time, the test to perform is simply a function
// of the main candidate; but for a test like SwitchInt, we
// may want to add cases based on the candidates that are
// available
match test.kind {
TestKind::SwitchInt { switch_ty, ref mut options } => {
for candidate in candidates.iter() {
if !self.add_cases_to_switch(&match_place, candidate, switch_ty, options) {
break;
}
}
}
TestKind::Switch { adt_def: _, ref mut variants } => {
for candidate in candidates.iter() {
if !self.add_variants_to_switch(&match_place, candidate, variants) {
break;
}
}
}
_ => {}
}
// Insert a Shallow borrow of any places that is switched on.
if let Some(fb) = fake_borrows && let Ok(match_place_resolved) =
match_place.clone().try_upvars_resolved(self)
{
let resolved_place = match_place_resolved.into_place(self);
fb.insert(resolved_place);
}
// perform the test, branching to one of N blocks. For each of
// those N possible outcomes, create a (initially empty)
// vector of candidates. Those are the candidates that still
// apply if the test has that particular outcome.
debug!("test_candidates: test={:?} match_pair={:?}", test, match_pair);
let mut target_candidates: Vec<Vec<&mut Candidate<'pat, 'tcx>>> = vec![];
target_candidates.resize_with(test.targets(), Default::default);
let total_candidate_count = candidates.len();
// Sort the candidates into the appropriate vector in
// `target_candidates`. Note that at some point we may
// encounter a candidate where the test is not relevant; at
// that point, we stop sorting.
while let Some(candidate) = candidates.first_mut() {
let Some(idx) = self.sort_candidate(&match_place.clone(), &test, candidate) else {
break;
};
let (candidate, rest) = candidates.split_first_mut().unwrap();
target_candidates[idx].push(candidate);
candidates = rest;
}
// at least the first candidate ought to be tested
assert!(
total_candidate_count > candidates.len(),
"{}, {:#?}",
total_candidate_count,
candidates
);
debug!("tested_candidates: {}", total_candidate_count - candidates.len());
debug!("untested_candidates: {}", candidates.len());
// HACK(matthewjasper) This is a closure so that we can let the test
// create its blocks before the rest of the match. This currently
// improves the speed of llvm when optimizing long string literal
// matches
let make_target_blocks = move |this: &mut Self| -> Vec<BasicBlock> {
// The block that we should branch to if none of the
// `target_candidates` match. This is either the block where we
// start matching the untested candidates if there are any,
// otherwise it's the `otherwise_block`.
let remainder_start = &mut None;
let remainder_start =
if candidates.is_empty() { &mut *otherwise_block } else { remainder_start };
// For each outcome of test, process the candidates that still
// apply. Collect a list of blocks where control flow will
// branch if one of the `target_candidate` sets is not
// exhaustive.
let target_blocks: Vec<_> = target_candidates
.into_iter()
.map(|mut candidates| {
if !candidates.is_empty() {
let candidate_start = this.cfg.start_new_block();
this.match_candidates(
span,
scrutinee_span,
candidate_start,
remainder_start,
&mut *candidates,
fake_borrows,
);
candidate_start
} else {
*remainder_start.get_or_insert_with(|| this.cfg.start_new_block())
}
})
.collect();
if !candidates.is_empty() {
let remainder_start = remainder_start.unwrap_or_else(|| this.cfg.start_new_block());
this.match_candidates(
span,
scrutinee_span,
remainder_start,
otherwise_block,
candidates,
fake_borrows,
);
};
target_blocks
};
self.perform_test(span, scrutinee_span, block, match_place, &test, make_target_blocks);
}
/// Determine the fake borrows that are needed from a set of places that
/// have to be stable across match guards.
///
/// Returns a list of places that need a fake borrow and the temporary
/// that's used to store the fake borrow.
///
/// Match exhaustiveness checking is not able to handle the case where the
/// place being matched on is mutated in the guards. We add "fake borrows"
/// to the guards that prevent any mutation of the place being matched.
/// There are a some subtleties:
///
/// 1. Borrowing `*x` doesn't prevent assigning to `x`. If `x` is a shared
/// reference, the borrow isn't even tracked. As such we have to add fake
/// borrows of any prefixes of a place
/// 2. We don't want `match x { _ => (), }` to conflict with mutable
/// borrows of `x`, so we only add fake borrows for places which are
/// bound or tested by the match.
/// 3. We don't want the fake borrows to conflict with `ref mut` bindings,
/// so we use a special BorrowKind for them.
/// 4. The fake borrows may be of places in inactive variants, so it would
/// be UB to generate code for them. They therefore have to be removed
/// by a MIR pass run after borrow checking.
fn calculate_fake_borrows<'b>(
&mut self,
fake_borrows: &'b FxIndexSet<Place<'tcx>>,
temp_span: Span,
) -> Vec<(Place<'tcx>, Local)> {
let tcx = self.tcx;
debug!("add_fake_borrows fake_borrows = {:?}", fake_borrows);
let mut all_fake_borrows = Vec::with_capacity(fake_borrows.len());
// Insert a Shallow borrow of the prefixes of any fake borrows.
for place in fake_borrows {
let mut cursor = place.projection.as_ref();
while let [proj_base @ .., elem] = cursor {
cursor = proj_base;
if let ProjectionElem::Deref = elem {
// Insert a shallow borrow after a deref. For other
// projections the borrow of prefix_cursor will
// conflict with any mutation of base.
all_fake_borrows.push(PlaceRef { local: place.local, projection: proj_base });
}
}
all_fake_borrows.push(place.as_ref());
}
// Deduplicate
let mut dedup = FxHashSet::default();
all_fake_borrows.retain(|b| dedup.insert(*b));
debug!("add_fake_borrows all_fake_borrows = {:?}", all_fake_borrows);
all_fake_borrows
.into_iter()
.map(|matched_place_ref| {
let matched_place = Place {
local: matched_place_ref.local,
projection: tcx.intern_place_elems(matched_place_ref.projection),
};
let fake_borrow_deref_ty = matched_place.ty(&self.local_decls, tcx).ty;
let fake_borrow_ty = tcx.mk_imm_ref(tcx.lifetimes.re_erased, fake_borrow_deref_ty);
let fake_borrow_temp =
self.local_decls.push(LocalDecl::new(fake_borrow_ty, temp_span));
(matched_place, fake_borrow_temp)
})
.collect()
}
}
///////////////////////////////////////////////////////////////////////////
// Pat binding - used for `let` and function parameters as well.
impl<'a, 'tcx> Builder<'a, 'tcx> {
pub(crate) fn lower_let_expr(
&mut self,
mut block: BasicBlock,
expr: &Expr<'tcx>,
pat: &Pat<'tcx>,
else_target: region::Scope,
source_scope: Option<SourceScope>,
span: Span,
) -> BlockAnd<()> {
let expr_span = expr.span;
let expr_place_builder = unpack!(block = self.lower_scrutinee(block, expr, expr_span));
let wildcard = Pat::wildcard_from_ty(pat.ty);
let mut guard_candidate = Candidate::new(expr_place_builder.clone(), &pat, false, self);
let mut otherwise_candidate =
Candidate::new(expr_place_builder.clone(), &wildcard, false, self);
let fake_borrow_temps = self.lower_match_tree(
block,
pat.span,
pat.span,
false,
&mut [&mut guard_candidate, &mut otherwise_candidate],
);
let mut opt_expr_place: Option<(Option<&Place<'tcx>>, Span)> = None;
let expr_place: Place<'tcx>;
if let Ok(expr_builder) = expr_place_builder.try_upvars_resolved(self) {
expr_place = expr_builder.into_place(self);
opt_expr_place = Some((Some(&expr_place), expr_span));
}
let otherwise_post_guard_block = otherwise_candidate.pre_binding_block.unwrap();
self.break_for_else(otherwise_post_guard_block, else_target, self.source_info(expr_span));
self.declare_bindings(
source_scope,
pat.span.to(span),
pat,
ArmHasGuard(false),
opt_expr_place,
);
let post_guard_block = self.bind_pattern(
self.source_info(pat.span),
guard_candidate,
None,
&fake_borrow_temps,
expr.span,
None,
None,
None,
false,
);
post_guard_block.unit()
}
/// Initializes each of the bindings from the candidate by
/// moving/copying/ref'ing the source as appropriate. Tests the guard, if
/// any, and then branches to the arm. Returns the block for the case where
/// the guard succeeds.
///
/// Note: we do not check earlier that if there is a guard,
/// there cannot be move bindings. We avoid a use-after-move by only
/// moving the binding once the guard has evaluated to true (see below).
fn bind_and_guard_matched_candidate<'pat>(
&mut self,
candidate: Candidate<'pat, 'tcx>,
parent_bindings: &[(Vec<Binding<'tcx>>, Vec<Ascription<'tcx>>)],
guard: Option<&Guard<'tcx>>,
fake_borrows: &[(Place<'tcx>, Local)],
scrutinee_span: Span,
arm_span: Option<Span>,
match_scope: Option<region::Scope>,
schedule_drops: bool,
storages_alive: bool,
) -> BasicBlock {
debug!("bind_and_guard_matched_candidate(candidate={:?})", candidate);
debug_assert!(candidate.match_pairs.is_empty());
let candidate_source_info = self.source_info(candidate.span);
let mut block = candidate.pre_binding_block.unwrap();
if candidate.next_candidate_pre_binding_block.is_some() {
let fresh_block = self.cfg.start_new_block();
self.false_edges(
block,
fresh_block,
candidate.next_candidate_pre_binding_block,
candidate_source_info,
);
block = fresh_block;
}
self.ascribe_types(
block,
parent_bindings
.iter()
.flat_map(|(_, ascriptions)| ascriptions)
.cloned()
.chain(candidate.ascriptions),
);
// rust-lang/rust#27282: The `autoref` business deserves some
// explanation here.
//
// The intent of the `autoref` flag is that when it is true,
// then any pattern bindings of type T will map to a `&T`
// within the context of the guard expression, but will
// continue to map to a `T` in the context of the arm body. To
// avoid surfacing this distinction in the user source code
// (which would be a severe change to the language and require
// far more revision to the compiler), when `autoref` is true,
// then any occurrence of the identifier in the guard
// expression will automatically get a deref op applied to it.
//
// So an input like:
//
// ```
// let place = Foo::new();
// match place { foo if inspect(foo)
// => feed(foo), ... }
// ```
//
// will be treated as if it were really something like:
//
// ```
// let place = Foo::new();
// match place { Foo { .. } if { let tmp1 = &place; inspect(*tmp1) }
// => { let tmp2 = place; feed(tmp2) }, ... }
//
// And an input like:
//
// ```
// let place = Foo::new();
// match place { ref mut foo if inspect(foo)
// => feed(foo), ... }
// ```
//
// will be treated as if it were really something like:
//
// ```
// let place = Foo::new();
// match place { Foo { .. } if { let tmp1 = & &mut place; inspect(*tmp1) }
// => { let tmp2 = &mut place; feed(tmp2) }, ... }
// ```
//
// In short, any pattern binding will always look like *some*
// kind of `&T` within the guard at least in terms of how the
// MIR-borrowck views it, and this will ensure that guard
// expressions cannot mutate their the match inputs via such
// bindings. (It also ensures that guard expressions can at
// most *copy* values from such bindings; non-Copy things
// cannot be moved via pattern bindings in guard expressions.)
//
// ----
//
// Implementation notes (under assumption `autoref` is true).
//
// To encode the distinction above, we must inject the
// temporaries `tmp1` and `tmp2`.
//
// There are two cases of interest: binding by-value, and binding by-ref.
//
// 1. Binding by-value: Things are simple.
//
// * Establishing `tmp1` creates a reference into the
// matched place. This code is emitted by
// bind_matched_candidate_for_guard.
//
// * `tmp2` is only initialized "lazily", after we have
// checked the guard. Thus, the code that can trigger
// moves out of the candidate can only fire after the
// guard evaluated to true. This initialization code is
// emitted by bind_matched_candidate_for_arm.
//
// 2. Binding by-reference: Things are tricky.
//
// * Here, the guard expression wants a `&&` or `&&mut`
// into the original input. This means we need to borrow
// the reference that we create for the arm.
// * So we eagerly create the reference for the arm and then take a
// reference to that.
if let Some(guard) = guard {
let tcx = self.tcx;
let bindings = parent_bindings
.iter()
.flat_map(|(bindings, _)| bindings)
.chain(&candidate.bindings);
self.bind_matched_candidate_for_guard(block, schedule_drops, bindings.clone());
let guard_frame = GuardFrame {
locals: bindings.map(|b| GuardFrameLocal::new(b.var_id, b.binding_mode)).collect(),
};
debug!("entering guard building context: {:?}", guard_frame);
self.guard_context.push(guard_frame);
let re_erased = tcx.lifetimes.re_erased;
let scrutinee_source_info = self.source_info(scrutinee_span);
for &(place, temp) in fake_borrows {
let borrow = Rvalue::Ref(re_erased, BorrowKind::Shallow, place);
self.cfg.push_assign(block, scrutinee_source_info, Place::from(temp), borrow);
}
let arm_span = arm_span.unwrap();
let match_scope = match_scope.unwrap();
let mut guard_span = rustc_span::DUMMY_SP;
let (post_guard_block, otherwise_post_guard_block) =
self.in_if_then_scope(match_scope, |this| match *guard {
Guard::If(e) => {
let e = &this.thir[e];
guard_span = e.span;
this.then_else_break(
block,
e,
None,
match_scope,
this.source_info(arm_span),
)
}
Guard::IfLet(ref pat, scrutinee) => {
let s = &this.thir[scrutinee];
guard_span = s.span;
this.lower_let_expr(block, s, pat, match_scope, None, arm_span)
}
});
let source_info = self.source_info(guard_span);
let guard_end = self.source_info(tcx.sess.source_map().end_point(guard_span));
let guard_frame = self.guard_context.pop().unwrap();
debug!("Exiting guard building context with locals: {:?}", guard_frame);
for &(_, temp) in fake_borrows {
let cause = FakeReadCause::ForMatchGuard;
self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(temp));
}
let otherwise_block = candidate.otherwise_block.unwrap_or_else(|| {
let unreachable = self.cfg.start_new_block();
self.cfg.terminate(unreachable, source_info, TerminatorKind::Unreachable);
unreachable
});
self.false_edges(
otherwise_post_guard_block,
otherwise_block,
candidate.next_candidate_pre_binding_block,
source_info,
);
// We want to ensure that the matched candidates are bound
// after we have confirmed this candidate *and* any
// associated guard; Binding them on `block` is too soon,
// because that would be before we've checked the result
// from the guard.
//
// But binding them on the arm is *too late*, because
// then all of the candidates for a single arm would be
// bound in the same place, that would cause a case like:
//
// ```rust
// match (30, 2) {
// (mut x, 1) | (2, mut x) if { true } => { ... }
// ... // ^^^^^^^ (this is `arm_block`)
// }
// ```
//
// would yield an `arm_block` something like:
//
// ```
// StorageLive(_4); // _4 is `x`
// _4 = &mut (_1.0: i32); // this is handling `(mut x, 1)` case
// _4 = &mut (_1.1: i32); // this is handling `(2, mut x)` case
// ```
//
// and that is clearly not correct.
let by_value_bindings = parent_bindings
.iter()
.flat_map(|(bindings, _)| bindings)
.chain(&candidate.bindings)
.filter(|binding| matches!(binding.binding_mode, BindingMode::ByValue));
// Read all of the by reference bindings to ensure that the
// place they refer to can't be modified by the guard.
for binding in by_value_bindings.clone() {
let local_id = self.var_local_id(binding.var_id, RefWithinGuard);
let cause = FakeReadCause::ForGuardBinding;
self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(local_id));
}
assert!(schedule_drops, "patterns with guards must schedule drops");
self.bind_matched_candidate_for_arm_body(
post_guard_block,
true,
by_value_bindings,
storages_alive,
);
post_guard_block
} else {
// (Here, it is not too early to bind the matched
// candidate on `block`, because there is no guard result
// that we have to inspect before we bind them.)
self.bind_matched_candidate_for_arm_body(
block,
schedule_drops,
parent_bindings
.iter()
.flat_map(|(bindings, _)| bindings)
.chain(&candidate.bindings),
storages_alive,
);
block
}
}
/// Append `AscribeUserType` statements onto the end of `block`
/// for each ascription
fn ascribe_types(
&mut self,
block: BasicBlock,
ascriptions: impl IntoIterator<Item = Ascription<'tcx>>,
) {
for ascription in ascriptions {
let source_info = self.source_info(ascription.annotation.span);
let base = self.canonical_user_type_annotations.push(ascription.annotation);
self.cfg.push(
block,
Statement {
source_info,
kind: StatementKind::AscribeUserType(
Box::new((
ascription.source,
UserTypeProjection { base, projs: Vec::new() },
)),
ascription.variance,
),
},
);
}
}
fn bind_matched_candidate_for_guard<'b>(
&mut self,
block: BasicBlock,
schedule_drops: bool,
bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
) where
'tcx: 'b,
{
debug!("bind_matched_candidate_for_guard(block={:?})", block);
// Assign each of the bindings. Since we are binding for a
// guard expression, this will never trigger moves out of the
// candidate.
let re_erased = self.tcx.lifetimes.re_erased;
for binding in bindings {
debug!("bind_matched_candidate_for_guard(binding={:?})", binding);
let source_info = self.source_info(binding.span);
// For each pattern ident P of type T, `ref_for_guard` is
// a reference R: &T pointing to the location matched by
// the pattern, and every occurrence of P within a guard
// denotes *R.
let ref_for_guard = self.storage_live_binding(
block,
binding.var_id,
binding.span,
RefWithinGuard,
schedule_drops,
);
match binding.binding_mode {
BindingMode::ByValue => {
let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, binding.source);
self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
}
BindingMode::ByRef(borrow_kind) => {
let value_for_arm = self.storage_live_binding(
block,
binding.var_id,
binding.span,
OutsideGuard,
schedule_drops,
);
let rvalue = Rvalue::Ref(re_erased, borrow_kind, binding.source);
self.cfg.push_assign(block, source_info, value_for_arm, rvalue);
let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, value_for_arm);
self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
}
}
}
}
fn bind_matched_candidate_for_arm_body<'b>(
&mut self,
block: BasicBlock,
schedule_drops: bool,
bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
storages_alive: bool,
) where
'tcx: 'b,
{
debug!("bind_matched_candidate_for_arm_body(block={:?})", block);
let re_erased = self.tcx.lifetimes.re_erased;
// Assign each of the bindings. This may trigger moves out of the candidate.
for binding in bindings {
let source_info = self.source_info(binding.span);
let local = if storages_alive {
// Here storages are already alive, probably because this is a binding
// from let-else.
// We just need to schedule drop for the value.
self.var_local_id(binding.var_id, OutsideGuard).into()
} else {
self.storage_live_binding(
block,
binding.var_id,
binding.span,
OutsideGuard,
schedule_drops,
)
};
if schedule_drops {
self.schedule_drop_for_binding(binding.var_id, binding.span, OutsideGuard);
}
let rvalue = match binding.binding_mode {
BindingMode::ByValue => Rvalue::Use(self.consume_by_copy_or_move(binding.source)),
BindingMode::ByRef(borrow_kind) => {
Rvalue::Ref(re_erased, borrow_kind, binding.source)
}
};
self.cfg.push_assign(block, source_info, local, rvalue);
}
}
/// Each binding (`ref mut var`/`ref var`/`mut var`/`var`, where the bound
/// `var` has type `T` in the arm body) in a pattern maps to 2 locals. The
/// first local is a binding for occurrences of `var` in the guard, which
/// will have type `&T`. The second local is a binding for occurrences of
/// `var` in the arm body, which will have type `T`.
#[instrument(skip(self), level = "debug")]
fn declare_binding(
&mut self,
source_info: SourceInfo,
visibility_scope: SourceScope,
mutability: Mutability,
name: Symbol,
mode: BindingMode,
var_id: LocalVarId,
var_ty: Ty<'tcx>,
user_ty: UserTypeProjections,
has_guard: ArmHasGuard,
opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
pat_span: Span,
) {
let tcx = self.tcx;
let debug_source_info = SourceInfo { span: source_info.span, scope: visibility_scope };
let binding_mode = match mode {
BindingMode::ByValue => ty::BindingMode::BindByValue(mutability),
BindingMode::ByRef(_) => ty::BindingMode::BindByReference(mutability),
};
let local = LocalDecl::<'tcx> {
mutability,
ty: var_ty,
user_ty: if user_ty.is_empty() { None } else { Some(Box::new(user_ty)) },
source_info,
internal: false,
is_block_tail: None,
local_info: Some(Box::new(LocalInfo::User(ClearCrossCrate::Set(BindingForm::Var(
VarBindingForm {
binding_mode,
// hypothetically, `visit_primary_bindings` could try to unzip
// an outermost hir::Ty as we descend, matching up
// idents in pat; but complex w/ unclear UI payoff.
// Instead, just abandon providing diagnostic info.
opt_ty_info: None,
opt_match_place,
pat_span,
},
))))),
};
let for_arm_body = self.local_decls.push(local);
self.var_debug_info.push(VarDebugInfo {
name,
source_info: debug_source_info,
value: VarDebugInfoContents::Place(for_arm_body.into()),
});
let locals = if has_guard.0 {
let ref_for_guard = self.local_decls.push(LocalDecl::<'tcx> {
// This variable isn't mutated but has a name, so has to be
// immutable to avoid the unused mut lint.
mutability: Mutability::Not,
ty: tcx.mk_imm_ref(tcx.lifetimes.re_erased, var_ty),
user_ty: None,
source_info,
internal: false,
is_block_tail: None,
local_info: Some(Box::new(LocalInfo::User(ClearCrossCrate::Set(
BindingForm::RefForGuard,
)))),
});
self.var_debug_info.push(VarDebugInfo {
name,
source_info: debug_source_info,
value: VarDebugInfoContents::Place(ref_for_guard.into()),
});
LocalsForNode::ForGuard { ref_for_guard, for_arm_body }
} else {
LocalsForNode::One(for_arm_body)
};
debug!(?locals);
self.var_indices.insert(var_id, locals);
}
pub(crate) fn ast_let_else(
&mut self,
mut block: BasicBlock,
init: &Expr<'tcx>,
initializer_span: Span,
else_block: BlockId,
let_else_scope: ®ion::Scope,
pattern: &Pat<'tcx>,
) -> BlockAnd<BasicBlock> {
let else_block_span = self.thir[else_block].span;
let (matching, failure) = self.in_if_then_scope(*let_else_scope, |this| {
let scrutinee = unpack!(block = this.lower_scrutinee(block, init, initializer_span));
let pat = Pat { ty: init.ty, span: else_block_span, kind: PatKind::Wild };
let mut wildcard = Candidate::new(scrutinee.clone(), &pat, false, this);
let mut candidate = Candidate::new(scrutinee.clone(), pattern, false, this);
let fake_borrow_temps = this.lower_match_tree(
block,
initializer_span,
pattern.span,
false,
&mut [&mut candidate, &mut wildcard],
);
// This block is for the matching case
let matching = this.bind_pattern(
this.source_info(pattern.span),
candidate,
None,
&fake_borrow_temps,
initializer_span,
None,
None,
None,
true,
);
// This block is for the failure case
let failure = this.bind_pattern(
this.source_info(else_block_span),
wildcard,
None,
&fake_borrow_temps,
initializer_span,
None,
None,
None,
true,
);
this.break_for_else(failure, *let_else_scope, this.source_info(initializer_span));
matching.unit()
});
matching.and(failure)
}
}