1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
//! Support code for rustdoc and external tools.
//! You really don't want to be using this unless you need to.
use super::*;
use crate::errors::UnableToConstructConstantValue;
use crate::infer::region_constraints::{Constraint, RegionConstraintData};
use crate::infer::InferCtxt;
use crate::traits::project::ProjectAndUnifyResult;
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::ty::fold::{TypeFolder, TypeSuperFoldable};
use rustc_middle::ty::visit::TypeVisitable;
use rustc_middle::ty::{Region, RegionVid};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use std::collections::hash_map::Entry;
use std::collections::VecDeque;
use std::iter;
// FIXME(twk): this is obviously not nice to duplicate like that
#[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
pub enum RegionTarget<'tcx> {
Region(Region<'tcx>),
RegionVid(RegionVid),
}
#[derive(Default, Debug, Clone)]
pub struct RegionDeps<'tcx> {
larger: FxHashSet<RegionTarget<'tcx>>,
smaller: FxHashSet<RegionTarget<'tcx>>,
}
pub enum AutoTraitResult<A> {
ExplicitImpl,
PositiveImpl(A),
NegativeImpl,
}
#[allow(dead_code)]
impl<A> AutoTraitResult<A> {
fn is_auto(&self) -> bool {
matches!(self, AutoTraitResult::PositiveImpl(_) | AutoTraitResult::NegativeImpl)
}
}
pub struct AutoTraitInfo<'cx> {
pub full_user_env: ty::ParamEnv<'cx>,
pub region_data: RegionConstraintData<'cx>,
pub vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
}
pub struct AutoTraitFinder<'tcx> {
tcx: TyCtxt<'tcx>,
}
impl<'tcx> AutoTraitFinder<'tcx> {
pub fn new(tcx: TyCtxt<'tcx>) -> Self {
AutoTraitFinder { tcx }
}
/// Makes a best effort to determine whether and under which conditions an auto trait is
/// implemented for a type. For example, if you have
///
/// ```
/// struct Foo<T> { data: Box<T> }
/// ```
///
/// then this might return that Foo<T>: Send if T: Send (encoded in the AutoTraitResult type).
/// The analysis attempts to account for custom impls as well as other complex cases. This
/// result is intended for use by rustdoc and other such consumers.
///
/// (Note that due to the coinductive nature of Send, the full and correct result is actually
/// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
/// types are all Send. So, in our example, we might have that Foo<T>: Send if Box<T>: Send.
/// But this is often not the best way to present to the user.)
///
/// Warning: The API should be considered highly unstable, and it may be refactored or removed
/// in the future.
pub fn find_auto_trait_generics<A>(
&self,
ty: Ty<'tcx>,
orig_env: ty::ParamEnv<'tcx>,
trait_did: DefId,
mut auto_trait_callback: impl FnMut(AutoTraitInfo<'tcx>) -> A,
) -> AutoTraitResult<A> {
let tcx = self.tcx;
let trait_ref = ty::TraitRef { def_id: trait_did, substs: tcx.mk_substs_trait(ty, &[]) };
let trait_pred = ty::Binder::dummy(trait_ref);
let bail_out = tcx.infer_ctxt().enter(|infcx| {
let mut selcx = SelectionContext::new(&infcx);
let result = selcx.select(&Obligation::new(
ObligationCause::dummy(),
orig_env,
trait_pred.to_poly_trait_predicate(),
));
match result {
Ok(Some(ImplSource::UserDefined(_))) => {
debug!(
"find_auto_trait_generics({:?}): \
manual impl found, bailing out",
trait_ref
);
return true;
}
_ => {}
}
let result = selcx.select(&Obligation::new(
ObligationCause::dummy(),
orig_env,
trait_pred.to_poly_trait_predicate_negative_polarity(),
));
match result {
Ok(Some(ImplSource::UserDefined(_))) => {
debug!(
"find_auto_trait_generics({:?}): \
manual impl found, bailing out",
trait_ref
);
true
}
_ => false,
}
});
// If an explicit impl exists, it always takes priority over an auto impl
if bail_out {
return AutoTraitResult::ExplicitImpl;
}
tcx.infer_ctxt().enter(|infcx| {
let mut fresh_preds = FxHashSet::default();
// Due to the way projections are handled by SelectionContext, we need to run
// evaluate_predicates twice: once on the original param env, and once on the result of
// the first evaluate_predicates call.
//
// The problem is this: most of rustc, including SelectionContext and traits::project,
// are designed to work with a concrete usage of a type (e.g., Vec<u8>
// fn<T>() { Vec<T> }. This information will generally never change - given
// the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
// If we're unable to prove that 'T' implements a particular trait, we're done -
// there's nothing left to do but error out.
//
// However, synthesizing an auto trait impl works differently. Here, we start out with
// a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
// with - and progressively discover the conditions we need to fulfill for it to
// implement a certain auto trait. This ends up breaking two assumptions made by trait
// selection and projection:
//
// * We can always cache the result of a particular trait selection for the lifetime of
// an InfCtxt
// * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
// SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
//
// We fix the first assumption by manually clearing out all of the InferCtxt's caches
// in between calls to SelectionContext.select. This allows us to keep all of the
// intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
// them between calls.
//
// We fix the second assumption by reprocessing the result of our first call to
// evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
// pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
// traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
// SelectionContext to return it back to us.
let Some((new_env, user_env)) = self.evaluate_predicates(
&infcx,
trait_did,
ty,
orig_env,
orig_env,
&mut fresh_preds,
false,
) else {
return AutoTraitResult::NegativeImpl;
};
let (full_env, full_user_env) = self
.evaluate_predicates(
&infcx,
trait_did,
ty,
new_env,
user_env,
&mut fresh_preds,
true,
)
.unwrap_or_else(|| {
panic!("Failed to fully process: {:?} {:?} {:?}", ty, trait_did, orig_env)
});
debug!(
"find_auto_trait_generics({:?}): fulfilling \
with {:?}",
trait_ref, full_env
);
infcx.clear_caches();
// At this point, we already have all of the bounds we need. FulfillmentContext is used
// to store all of the necessary region/lifetime bounds in the InferContext, as well as
// an additional sanity check.
let errors =
super::fully_solve_bound(&infcx, ObligationCause::dummy(), full_env, ty, trait_did);
if !errors.is_empty() {
panic!("Unable to fulfill trait {:?} for '{:?}': {:?}", trait_did, ty, errors);
}
infcx.process_registered_region_obligations(&Default::default(), full_env);
let region_data = infcx
.inner
.borrow_mut()
.unwrap_region_constraints()
.region_constraint_data()
.clone();
let vid_to_region = self.map_vid_to_region(®ion_data);
let info = AutoTraitInfo { full_user_env, region_data, vid_to_region };
AutoTraitResult::PositiveImpl(auto_trait_callback(info))
})
}
}
impl<'tcx> AutoTraitFinder<'tcx> {
/// The core logic responsible for computing the bounds for our synthesized impl.
///
/// To calculate the bounds, we call `SelectionContext.select` in a loop. Like
/// `FulfillmentContext`, we recursively select the nested obligations of predicates we
/// encounter. However, whenever we encounter an `UnimplementedError` involving a type
/// parameter, we add it to our `ParamEnv`. Since our goal is to determine when a particular
/// type implements an auto trait, Unimplemented errors tell us what conditions need to be met.
///
/// This method ends up working somewhat similarly to `FulfillmentContext`, but with a few key
/// differences. `FulfillmentContext` works under the assumption that it's dealing with concrete
/// user code. According, it considers all possible ways that a `Predicate` could be met, which
/// isn't always what we want for a synthesized impl. For example, given the predicate `T:
/// Iterator`, `FulfillmentContext` can end up reporting an Unimplemented error for `T:
/// IntoIterator` -- since there's an implementation of `Iterator` where `T: IntoIterator`,
/// `FulfillmentContext` will drive `SelectionContext` to consider that impl before giving up.
/// If we were to rely on `FulfillmentContext`s decision, we might end up synthesizing an impl
/// like this:
/// ```ignore (illustrative)
/// impl<T> Send for Foo<T> where T: IntoIterator
/// ```
/// While it might be technically true that Foo implements Send where `T: IntoIterator`,
/// the bound is overly restrictive - it's really only necessary that `T: Iterator`.
///
/// For this reason, `evaluate_predicates` handles predicates with type variables specially.
/// When we encounter an `Unimplemented` error for a bound such as `T: Iterator`, we immediately
/// add it to our `ParamEnv`, and add it to our stack for recursive evaluation. When we later
/// select it, we'll pick up any nested bounds, without ever inferring that `T: IntoIterator`
/// needs to hold.
///
/// One additional consideration is supertrait bounds. Normally, a `ParamEnv` is only ever
/// constructed once for a given type. As part of the construction process, the `ParamEnv` will
/// have any supertrait bounds normalized -- e.g., if we have a type `struct Foo<T: Copy>`, the
/// `ParamEnv` will contain `T: Copy` and `T: Clone`, since `Copy: Clone`. When we construct our
/// own `ParamEnv`, we need to do this ourselves, through `traits::elaborate_predicates`, or
/// else `SelectionContext` will choke on the missing predicates. However, this should never
/// show up in the final synthesized generics: we don't want our generated docs page to contain
/// something like `T: Copy + Clone`, as that's redundant. Therefore, we keep track of a
/// separate `user_env`, which only holds the predicates that will actually be displayed to the
/// user.
fn evaluate_predicates(
&self,
infcx: &InferCtxt<'_, 'tcx>,
trait_did: DefId,
ty: Ty<'tcx>,
param_env: ty::ParamEnv<'tcx>,
user_env: ty::ParamEnv<'tcx>,
fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
only_projections: bool,
) -> Option<(ty::ParamEnv<'tcx>, ty::ParamEnv<'tcx>)> {
let tcx = infcx.tcx;
// Don't try to process any nested obligations involving predicates
// that are already in the `ParamEnv` (modulo regions): we already
// know that they must hold.
for predicate in param_env.caller_bounds() {
fresh_preds.insert(self.clean_pred(infcx, predicate));
}
let mut select = SelectionContext::new(&infcx);
let mut already_visited = FxHashSet::default();
let mut predicates = VecDeque::new();
predicates.push_back(ty::Binder::dummy(ty::TraitPredicate {
trait_ref: ty::TraitRef {
def_id: trait_did,
substs: infcx.tcx.mk_substs_trait(ty, &[]),
},
constness: ty::BoundConstness::NotConst,
// Auto traits are positive
polarity: ty::ImplPolarity::Positive,
}));
let computed_preds = param_env.caller_bounds().iter();
let mut user_computed_preds: FxHashSet<_> = user_env.caller_bounds().iter().collect();
let mut new_env = param_env;
let dummy_cause = ObligationCause::dummy();
while let Some(pred) = predicates.pop_front() {
infcx.clear_caches();
if !already_visited.insert(pred) {
continue;
}
// Call `infcx.resolve_vars_if_possible` to see if we can
// get rid of any inference variables.
let obligation =
infcx.resolve_vars_if_possible(Obligation::new(dummy_cause.clone(), new_env, pred));
let result = select.select(&obligation);
match result {
Ok(Some(ref impl_source)) => {
// If we see an explicit negative impl (e.g., `impl !Send for MyStruct`),
// we immediately bail out, since it's impossible for us to continue.
if let ImplSource::UserDefined(ImplSourceUserDefinedData {
impl_def_id, ..
}) = impl_source
{
// Blame 'tidy' for the weird bracket placement.
if infcx.tcx.impl_polarity(*impl_def_id) == ty::ImplPolarity::Negative {
debug!(
"evaluate_nested_obligations: found explicit negative impl\
{:?}, bailing out",
impl_def_id
);
return None;
}
}
let obligations = impl_source.borrow_nested_obligations().iter().cloned();
if !self.evaluate_nested_obligations(
ty,
obligations,
&mut user_computed_preds,
fresh_preds,
&mut predicates,
&mut select,
only_projections,
) {
return None;
}
}
Ok(None) => {}
Err(SelectionError::Unimplemented) => {
if self.is_param_no_infer(pred.skip_binder().trait_ref.substs) {
already_visited.remove(&pred);
self.add_user_pred(&mut user_computed_preds, pred.to_predicate(self.tcx));
predicates.push_back(pred);
} else {
debug!(
"evaluate_nested_obligations: `Unimplemented` found, bailing: \
{:?} {:?} {:?}",
ty,
pred,
pred.skip_binder().trait_ref.substs
);
return None;
}
}
_ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
};
let normalized_preds = elaborate_predicates(
tcx,
computed_preds.clone().chain(user_computed_preds.iter().cloned()),
)
.map(|o| o.predicate);
new_env = ty::ParamEnv::new(
tcx.mk_predicates(normalized_preds),
param_env.reveal(),
param_env.constness(),
);
}
let final_user_env = ty::ParamEnv::new(
tcx.mk_predicates(user_computed_preds.into_iter()),
user_env.reveal(),
user_env.constness(),
);
debug!(
"evaluate_nested_obligations(ty={:?}, trait_did={:?}): succeeded with '{:?}' \
'{:?}'",
ty, trait_did, new_env, final_user_env
);
Some((new_env, final_user_env))
}
/// This method is designed to work around the following issue:
/// When we compute auto trait bounds, we repeatedly call `SelectionContext.select`,
/// progressively building a `ParamEnv` based on the results we get.
/// However, our usage of `SelectionContext` differs from its normal use within the compiler,
/// in that we capture and re-reprocess predicates from `Unimplemented` errors.
///
/// This can lead to a corner case when dealing with region parameters.
/// During our selection loop in `evaluate_predicates`, we might end up with
/// two trait predicates that differ only in their region parameters:
/// one containing a HRTB lifetime parameter, and one containing a 'normal'
/// lifetime parameter. For example:
/// ```ignore (illustrative)
/// T as MyTrait<'a>
/// T as MyTrait<'static>
/// ```
/// If we put both of these predicates in our computed `ParamEnv`, we'll
/// confuse `SelectionContext`, since it will (correctly) view both as being applicable.
///
/// To solve this, we pick the 'more strict' lifetime bound -- i.e., the HRTB
/// Our end goal is to generate a user-visible description of the conditions
/// under which a type implements an auto trait. A trait predicate involving
/// a HRTB means that the type needs to work with any choice of lifetime,
/// not just one specific lifetime (e.g., `'static`).
fn add_user_pred(
&self,
user_computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
new_pred: ty::Predicate<'tcx>,
) {
let mut should_add_new = true;
user_computed_preds.retain(|&old_pred| {
if let (ty::PredicateKind::Trait(new_trait), ty::PredicateKind::Trait(old_trait)) =
(new_pred.kind().skip_binder(), old_pred.kind().skip_binder())
{
if new_trait.def_id() == old_trait.def_id() {
let new_substs = new_trait.trait_ref.substs;
let old_substs = old_trait.trait_ref.substs;
if !new_substs.types().eq(old_substs.types()) {
// We can't compare lifetimes if the types are different,
// so skip checking `old_pred`.
return true;
}
for (new_region, old_region) in
iter::zip(new_substs.regions(), old_substs.regions())
{
match (*new_region, *old_region) {
// If both predicates have an `ReLateBound` (a HRTB) in the
// same spot, we do nothing.
(ty::ReLateBound(_, _), ty::ReLateBound(_, _)) => {}
(ty::ReLateBound(_, _), _) | (_, ty::ReVar(_)) => {
// One of these is true:
// The new predicate has a HRTB in a spot where the old
// predicate does not (if they both had a HRTB, the previous
// match arm would have executed). A HRBT is a 'stricter'
// bound than anything else, so we want to keep the newer
// predicate (with the HRBT) in place of the old predicate.
//
// OR
//
// The old predicate has a region variable where the new
// predicate has some other kind of region. An region
// variable isn't something we can actually display to a user,
// so we choose their new predicate (which doesn't have a region
// variable).
//
// In both cases, we want to remove the old predicate,
// from `user_computed_preds`, and replace it with the new
// one. Having both the old and the new
// predicate in a `ParamEnv` would confuse `SelectionContext`.
//
// We're currently in the predicate passed to 'retain',
// so we return `false` to remove the old predicate from
// `user_computed_preds`.
return false;
}
(_, ty::ReLateBound(_, _)) | (ty::ReVar(_), _) => {
// This is the opposite situation as the previous arm.
// One of these is true:
//
// The old predicate has a HRTB lifetime in a place where the
// new predicate does not.
//
// OR
//
// The new predicate has a region variable where the old
// predicate has some other type of region.
//
// We want to leave the old
// predicate in `user_computed_preds`, and skip adding
// new_pred to `user_computed_params`.
should_add_new = false
}
_ => {}
}
}
}
}
true
});
if should_add_new {
user_computed_preds.insert(new_pred);
}
}
/// This is very similar to `handle_lifetimes`. However, instead of matching `ty::Region`s
/// to each other, we match `ty::RegionVid`s to `ty::Region`s.
fn map_vid_to_region<'cx>(
&self,
regions: &RegionConstraintData<'cx>,
) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap::default();
let mut finished_map = FxHashMap::default();
for constraint in regions.constraints.keys() {
match constraint {
&Constraint::VarSubVar(r1, r2) => {
{
let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
deps1.larger.insert(RegionTarget::RegionVid(r2));
}
let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
deps2.smaller.insert(RegionTarget::RegionVid(r1));
}
&Constraint::RegSubVar(region, vid) => {
{
let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
deps1.larger.insert(RegionTarget::RegionVid(vid));
}
let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
deps2.smaller.insert(RegionTarget::Region(region));
}
&Constraint::VarSubReg(vid, region) => {
finished_map.insert(vid, region);
}
&Constraint::RegSubReg(r1, r2) => {
{
let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
deps1.larger.insert(RegionTarget::Region(r2));
}
let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
deps2.smaller.insert(RegionTarget::Region(r1));
}
}
}
while !vid_map.is_empty() {
let target = *vid_map.keys().next().expect("Keys somehow empty");
let deps = vid_map.remove(&target).expect("Entry somehow missing");
for smaller in deps.smaller.iter() {
for larger in deps.larger.iter() {
match (smaller, larger) {
(&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let larger_deps = v.into_mut();
larger_deps.smaller.insert(*smaller);
larger_deps.smaller.remove(&target);
}
}
(&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
finished_map.insert(v1, r1);
}
(&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
// Do nothing; we don't care about regions that are smaller than vids.
}
(&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let larger_deps = v.into_mut();
larger_deps.smaller.insert(*smaller);
larger_deps.smaller.remove(&target);
}
}
}
}
}
}
finished_map
}
fn is_param_no_infer(&self, substs: SubstsRef<'_>) -> bool {
self.is_of_param(substs.type_at(0)) && !substs.types().any(|t| t.has_infer_types())
}
pub fn is_of_param(&self, ty: Ty<'_>) -> bool {
match ty.kind() {
ty::Param(_) => true,
ty::Projection(p) => self.is_of_param(p.self_ty()),
_ => false,
}
}
fn is_self_referential_projection(&self, p: ty::PolyProjectionPredicate<'_>) -> bool {
if let Some(ty) = p.term().skip_binder().ty() {
matches!(ty.kind(), ty::Projection(proj) if proj == &p.skip_binder().projection_ty)
} else {
false
}
}
fn evaluate_nested_obligations(
&self,
ty: Ty<'_>,
nested: impl Iterator<Item = Obligation<'tcx, ty::Predicate<'tcx>>>,
computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
predicates: &mut VecDeque<ty::PolyTraitPredicate<'tcx>>,
select: &mut SelectionContext<'_, 'tcx>,
only_projections: bool,
) -> bool {
let dummy_cause = ObligationCause::dummy();
for obligation in nested {
let is_new_pred =
fresh_preds.insert(self.clean_pred(select.infcx(), obligation.predicate));
// Resolve any inference variables that we can, to help selection succeed
let predicate = select.infcx().resolve_vars_if_possible(obligation.predicate);
// We only add a predicate as a user-displayable bound if
// it involves a generic parameter, and doesn't contain
// any inference variables.
//
// Displaying a bound involving a concrete type (instead of a generic
// parameter) would be pointless, since it's always true
// (e.g. u8: Copy)
// Displaying an inference variable is impossible, since they're
// an internal compiler detail without a defined visual representation
//
// We check this by calling is_of_param on the relevant types
// from the various possible predicates
let bound_predicate = predicate.kind();
match bound_predicate.skip_binder() {
ty::PredicateKind::Trait(p) => {
// Add this to `predicates` so that we end up calling `select`
// with it. If this predicate ends up being unimplemented,
// then `evaluate_predicates` will handle adding it the `ParamEnv`
// if possible.
predicates.push_back(bound_predicate.rebind(p));
}
ty::PredicateKind::Projection(p) => {
let p = bound_predicate.rebind(p);
debug!(
"evaluate_nested_obligations: examining projection predicate {:?}",
predicate
);
// As described above, we only want to display
// bounds which include a generic parameter but don't include
// an inference variable.
// Additionally, we check if we've seen this predicate before,
// to avoid rendering duplicate bounds to the user.
if self.is_param_no_infer(p.skip_binder().projection_ty.substs)
&& !p.term().skip_binder().has_infer_types()
&& is_new_pred
{
debug!(
"evaluate_nested_obligations: adding projection predicate \
to computed_preds: {:?}",
predicate
);
// Under unusual circumstances, we can end up with a self-referential
// projection predicate. For example:
// <T as MyType>::Value == <T as MyType>::Value
// Not only is displaying this to the user pointless,
// having it in the ParamEnv will cause an issue if we try to call
// poly_project_and_unify_type on the predicate, since this kind of
// predicate will normally never end up in a ParamEnv.
//
// For these reasons, we ignore these weird predicates,
// ensuring that we're able to properly synthesize an auto trait impl
if self.is_self_referential_projection(p) {
debug!(
"evaluate_nested_obligations: encountered a projection
predicate equating a type with itself! Skipping"
);
} else {
self.add_user_pred(computed_preds, predicate);
}
}
// There are three possible cases when we project a predicate:
//
// 1. We encounter an error. This means that it's impossible for
// our current type to implement the auto trait - there's bound
// that we could add to our ParamEnv that would 'fix' this kind
// of error, as it's not caused by an unimplemented type.
//
// 2. We successfully project the predicate (Ok(Some(_))), generating
// some subobligations. We then process these subobligations
// like any other generated sub-obligations.
//
// 3. We receive an 'ambiguous' result (Ok(None))
// If we were actually trying to compile a crate,
// we would need to re-process this obligation later.
// However, all we care about is finding out what bounds
// are needed for our type to implement a particular auto trait.
// We've already added this obligation to our computed ParamEnv
// above (if it was necessary). Therefore, we don't need
// to do any further processing of the obligation.
//
// Note that we *must* try to project *all* projection predicates
// we encounter, even ones without inference variable.
// This ensures that we detect any projection errors,
// which indicate that our type can *never* implement the given
// auto trait. In that case, we will generate an explicit negative
// impl (e.g. 'impl !Send for MyType'). However, we don't
// try to process any of the generated subobligations -
// they contain no new information, since we already know
// that our type implements the projected-through trait,
// and can lead to weird region issues.
//
// Normally, we'll generate a negative impl as a result of encountering
// a type with an explicit negative impl of an auto trait
// (for example, raw pointers have !Send and !Sync impls)
// However, through some **interesting** manipulations of the type
// system, it's actually possible to write a type that never
// implements an auto trait due to a projection error, not a normal
// negative impl error. To properly handle this case, we need
// to ensure that we catch any potential projection errors,
// and turn them into an explicit negative impl for our type.
debug!("Projecting and unifying projection predicate {:?}", predicate);
match project::poly_project_and_unify_type(select, &obligation.with(p)) {
ProjectAndUnifyResult::MismatchedProjectionTypes(e) => {
debug!(
"evaluate_nested_obligations: Unable to unify predicate \
'{:?}' '{:?}', bailing out",
ty, e
);
return false;
}
ProjectAndUnifyResult::Recursive => {
debug!("evaluate_nested_obligations: recursive projection predicate");
return false;
}
ProjectAndUnifyResult::Holds(v) => {
// We only care about sub-obligations
// when we started out trying to unify
// some inference variables. See the comment above
// for more information
if p.term().skip_binder().has_infer_types() {
if !self.evaluate_nested_obligations(
ty,
v.into_iter(),
computed_preds,
fresh_preds,
predicates,
select,
only_projections,
) {
return false;
}
}
}
ProjectAndUnifyResult::FailedNormalization => {
// It's ok not to make progress when have no inference variables -
// in that case, we were only performing unification to check if an
// error occurred (which would indicate that it's impossible for our
// type to implement the auto trait).
// However, we should always make progress (either by generating
// subobligations or getting an error) when we started off with
// inference variables
if p.term().skip_binder().has_infer_types() {
panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
}
}
}
}
ty::PredicateKind::RegionOutlives(binder) => {
let binder = bound_predicate.rebind(binder);
select.infcx().region_outlives_predicate(&dummy_cause, binder)
}
ty::PredicateKind::TypeOutlives(binder) => {
let binder = bound_predicate.rebind(binder);
match (
binder.no_bound_vars(),
binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
) {
(None, Some(t_a)) => {
select.infcx().register_region_obligation_with_cause(
t_a,
select.infcx().tcx.lifetimes.re_static,
&dummy_cause,
);
}
(Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
select.infcx().register_region_obligation_with_cause(
t_a,
r_b,
&dummy_cause,
);
}
_ => {}
};
}
ty::PredicateKind::ConstEquate(c1, c2) => {
let evaluate = |c: ty::Const<'tcx>| {
if let ty::ConstKind::Unevaluated(unevaluated) = c.kind() {
match select.infcx().const_eval_resolve(
obligation.param_env,
unevaluated,
Some(obligation.cause.span),
) {
Ok(Some(valtree)) => {
Ok(ty::Const::from_value(select.tcx(), valtree, c.ty()))
}
Ok(None) => {
let tcx = self.tcx;
let def_id = unevaluated.def.did;
let reported =
tcx.sess.emit_err(UnableToConstructConstantValue {
span: tcx.def_span(def_id),
unevaluated: unevaluated,
});
Err(ErrorHandled::Reported(reported))
}
Err(err) => Err(err),
}
} else {
Ok(c)
}
};
match (evaluate(c1), evaluate(c2)) {
(Ok(c1), Ok(c2)) => {
match select
.infcx()
.at(&obligation.cause, obligation.param_env)
.eq(c1, c2)
{
Ok(_) => (),
Err(_) => return false,
}
}
_ => return false,
}
}
// There's not really much we can do with these predicates -
// we start out with a `ParamEnv` with no inference variables,
// and these don't correspond to adding any new bounds to
// the `ParamEnv`.
ty::PredicateKind::WellFormed(..)
| ty::PredicateKind::ObjectSafe(..)
| ty::PredicateKind::ClosureKind(..)
| ty::PredicateKind::Subtype(..)
| ty::PredicateKind::ConstEvaluatable(..)
| ty::PredicateKind::Coerce(..)
| ty::PredicateKind::TypeWellFormedFromEnv(..) => {}
};
}
true
}
pub fn clean_pred(
&self,
infcx: &InferCtxt<'_, 'tcx>,
p: ty::Predicate<'tcx>,
) -> ty::Predicate<'tcx> {
infcx.freshen(p)
}
}
// Replaces all ReVars in a type with ty::Region's, using the provided map
pub struct RegionReplacer<'a, 'tcx> {
vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
tcx: TyCtxt<'tcx>,
}
impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
(match *r {
ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
_ => None,
})
.unwrap_or_else(|| r.super_fold_with(self))
}
}