1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
use crate::check::intrinsicck::InlineAsmCtxt;

use super::coercion::CoerceMany;
use super::compare_method::check_type_bounds;
use super::compare_method::{compare_const_impl, compare_impl_method, compare_ty_impl};
use super::*;
use rustc_attr as attr;
use rustc_errors::{Applicability, ErrorGuaranteed, MultiSpan};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::intravisit::Visitor;
use rustc_hir::lang_items::LangItem;
use rustc_hir::{ItemKind, Node, PathSegment};
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_infer::infer::{DefiningAnchor, RegionVariableOrigin, TyCtxtInferExt};
use rustc_infer::traits::Obligation;
use rustc_lint::builtin::REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS;
use rustc_middle::hir::nested_filter;
use rustc_middle::middle::stability::EvalResult;
use rustc_middle::ty::layout::{LayoutError, MAX_SIMD_LANES};
use rustc_middle::ty::subst::GenericArgKind;
use rustc_middle::ty::util::{Discr, IntTypeExt};
use rustc_middle::ty::{
    self, ParamEnv, ToPredicate, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable,
};
use rustc_session::lint::builtin::{UNINHABITED_STATIC, UNSUPPORTED_CALLING_CONVENTIONS};
use rustc_span::symbol::sym;
use rustc_span::{self, Span};
use rustc_target::spec::abi::Abi;
use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
use rustc_trait_selection::traits::{self, ObligationCtxt};
use rustc_ty_utils::representability::{self, Representability};

use std::ops::ControlFlow;

pub(super) fn check_abi(tcx: TyCtxt<'_>, hir_id: hir::HirId, span: Span, abi: Abi) {
    match tcx.sess.target.is_abi_supported(abi) {
        Some(true) => (),
        Some(false) => {
            struct_span_err!(
                tcx.sess,
                span,
                E0570,
                "`{abi}` is not a supported ABI for the current target",
            )
            .emit();
        }
        None => {
            tcx.struct_span_lint_hir(
                UNSUPPORTED_CALLING_CONVENTIONS,
                hir_id,
                span,
                "use of calling convention not supported on this target",
                |lint| lint,
            );
        }
    }

    // This ABI is only allowed on function pointers
    if abi == Abi::CCmseNonSecureCall {
        struct_span_err!(
            tcx.sess,
            span,
            E0781,
            "the `\"C-cmse-nonsecure-call\"` ABI is only allowed on function pointers"
        )
        .emit();
    }
}

/// Helper used for fns and closures. Does the grungy work of checking a function
/// body and returns the function context used for that purpose, since in the case of a fn item
/// there is still a bit more to do.
///
/// * ...
/// * inherited: other fields inherited from the enclosing fn (if any)
#[instrument(skip(inherited, body), level = "debug")]
pub(super) fn check_fn<'a, 'tcx>(
    inherited: &'a Inherited<'a, 'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    fn_sig: ty::FnSig<'tcx>,
    decl: &'tcx hir::FnDecl<'tcx>,
    fn_id: hir::HirId,
    body: &'tcx hir::Body<'tcx>,
    can_be_generator: Option<hir::Movability>,
    return_type_pre_known: bool,
) -> (FnCtxt<'a, 'tcx>, Option<GeneratorTypes<'tcx>>) {
    // Create the function context. This is either derived from scratch or,
    // in the case of closures, based on the outer context.
    let mut fcx = FnCtxt::new(inherited, param_env, body.value.hir_id);
    fcx.ps.set(UnsafetyState::function(fn_sig.unsafety, fn_id));
    fcx.return_type_pre_known = return_type_pre_known;

    let tcx = fcx.tcx;
    let hir = tcx.hir();

    let declared_ret_ty = fn_sig.output();

    let ret_ty =
        fcx.register_infer_ok_obligations(fcx.infcx.replace_opaque_types_with_inference_vars(
            declared_ret_ty,
            body.value.hir_id,
            decl.output.span(),
            param_env,
        ));
    // If we replaced declared_ret_ty with infer vars, then we must be inferring
    // an opaque type, so set a flag so we can improve diagnostics.
    fcx.return_type_has_opaque = ret_ty != declared_ret_ty;

    fcx.ret_coercion = Some(RefCell::new(CoerceMany::new(ret_ty)));

    let span = body.value.span;

    fn_maybe_err(tcx, span, fn_sig.abi);

    if fn_sig.abi == Abi::RustCall {
        let expected_args = if let ImplicitSelfKind::None = decl.implicit_self { 1 } else { 2 };

        let err = || {
            let item = match tcx.hir().get(fn_id) {
                Node::Item(hir::Item { kind: ItemKind::Fn(header, ..), .. }) => Some(header),
                Node::ImplItem(hir::ImplItem {
                    kind: hir::ImplItemKind::Fn(header, ..), ..
                }) => Some(header),
                Node::TraitItem(hir::TraitItem {
                    kind: hir::TraitItemKind::Fn(header, ..),
                    ..
                }) => Some(header),
                // Closures are RustCall, but they tuple their arguments, so shouldn't be checked
                Node::Expr(hir::Expr { kind: hir::ExprKind::Closure { .. }, .. }) => None,
                node => bug!("Item being checked wasn't a function/closure: {:?}", node),
            };

            if let Some(header) = item {
                tcx.sess.span_err(header.span, "functions with the \"rust-call\" ABI must take a single non-self argument that is a tuple");
            }
        };

        if fn_sig.inputs().len() != expected_args {
            err()
        } else {
            // FIXME(CraftSpider) Add a check on parameter expansion, so we don't just make the ICE happen later on
            //   This will probably require wide-scale changes to support a TupleKind obligation
            //   We can't resolve this without knowing the type of the param
            if !matches!(fn_sig.inputs()[expected_args - 1].kind(), ty::Tuple(_) | ty::Param(_)) {
                err()
            }
        }
    }

    if body.generator_kind.is_some() && can_be_generator.is_some() {
        let yield_ty = fcx
            .next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::TypeInference, span });
        fcx.require_type_is_sized(yield_ty, span, traits::SizedYieldType);

        // Resume type defaults to `()` if the generator has no argument.
        let resume_ty = fn_sig.inputs().get(0).copied().unwrap_or_else(|| tcx.mk_unit());

        fcx.resume_yield_tys = Some((resume_ty, yield_ty));
    }

    GatherLocalsVisitor::new(&fcx).visit_body(body);

    // C-variadic fns also have a `VaList` input that's not listed in `fn_sig`
    // (as it's created inside the body itself, not passed in from outside).
    let maybe_va_list = if fn_sig.c_variadic {
        let span = body.params.last().unwrap().span;
        let va_list_did = tcx.require_lang_item(LangItem::VaList, Some(span));
        let region = fcx.next_region_var(RegionVariableOrigin::MiscVariable(span));

        Some(tcx.bound_type_of(va_list_did).subst(tcx, &[region.into()]))
    } else {
        None
    };

    // Add formal parameters.
    let inputs_hir = hir.fn_decl_by_hir_id(fn_id).map(|decl| &decl.inputs);
    let inputs_fn = fn_sig.inputs().iter().copied();
    for (idx, (param_ty, param)) in inputs_fn.chain(maybe_va_list).zip(body.params).enumerate() {
        // Check the pattern.
        let ty_span = try { inputs_hir?.get(idx)?.span };
        fcx.check_pat_top(&param.pat, param_ty, ty_span, false);

        // Check that argument is Sized.
        // The check for a non-trivial pattern is a hack to avoid duplicate warnings
        // for simple cases like `fn foo(x: Trait)`,
        // where we would error once on the parameter as a whole, and once on the binding `x`.
        if param.pat.simple_ident().is_none() && !tcx.features().unsized_fn_params {
            fcx.require_type_is_sized(param_ty, param.pat.span, traits::SizedArgumentType(ty_span));
        }

        fcx.write_ty(param.hir_id, param_ty);
    }

    inherited.typeck_results.borrow_mut().liberated_fn_sigs_mut().insert(fn_id, fn_sig);

    fcx.in_tail_expr = true;
    if let ty::Dynamic(..) = declared_ret_ty.kind() {
        // FIXME: We need to verify that the return type is `Sized` after the return expression has
        // been evaluated so that we have types available for all the nodes being returned, but that
        // requires the coerced evaluated type to be stored. Moving `check_return_expr` before this
        // causes unsized errors caused by the `declared_ret_ty` to point at the return expression,
        // while keeping the current ordering we will ignore the tail expression's type because we
        // don't know it yet. We can't do `check_expr_kind` while keeping `check_return_expr`
        // because we will trigger "unreachable expression" lints unconditionally.
        // Because of all of this, we perform a crude check to know whether the simplest `!Sized`
        // case that a newcomer might make, returning a bare trait, and in that case we populate
        // the tail expression's type so that the suggestion will be correct, but ignore all other
        // possible cases.
        fcx.check_expr(&body.value);
        fcx.require_type_is_sized(declared_ret_ty, decl.output.span(), traits::SizedReturnType);
    } else {
        fcx.require_type_is_sized(declared_ret_ty, decl.output.span(), traits::SizedReturnType);
        fcx.check_return_expr(&body.value, false);
    }
    fcx.in_tail_expr = false;

    // We insert the deferred_generator_interiors entry after visiting the body.
    // This ensures that all nested generators appear before the entry of this generator.
    // resolve_generator_interiors relies on this property.
    let gen_ty = if let (Some(_), Some(gen_kind)) = (can_be_generator, body.generator_kind) {
        let interior = fcx
            .next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::MiscVariable, span });
        fcx.deferred_generator_interiors.borrow_mut().push((body.id(), interior, gen_kind));

        let (resume_ty, yield_ty) = fcx.resume_yield_tys.unwrap();
        Some(GeneratorTypes {
            resume_ty,
            yield_ty,
            interior,
            movability: can_be_generator.unwrap(),
        })
    } else {
        None
    };

    // Finalize the return check by taking the LUB of the return types
    // we saw and assigning it to the expected return type. This isn't
    // really expected to fail, since the coercions would have failed
    // earlier when trying to find a LUB.
    let coercion = fcx.ret_coercion.take().unwrap().into_inner();
    let mut actual_return_ty = coercion.complete(&fcx);
    debug!("actual_return_ty = {:?}", actual_return_ty);
    if let ty::Dynamic(..) = declared_ret_ty.kind() {
        // We have special-cased the case where the function is declared
        // `-> dyn Foo` and we don't actually relate it to the
        // `fcx.ret_coercion`, so just substitute a type variable.
        actual_return_ty =
            fcx.next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::DynReturnFn, span });
        debug!("actual_return_ty replaced with {:?}", actual_return_ty);
    }

    // HACK(oli-obk, compiler-errors): We should be comparing this against
    // `declared_ret_ty`, but then anything uninferred would be inferred to
    // the opaque type itself. That again would cause writeback to assume
    // we have a recursive call site and do the sadly stabilized fallback to `()`.
    fcx.demand_suptype(span, ret_ty, actual_return_ty);

    // Check that a function marked as `#[panic_handler]` has signature `fn(&PanicInfo) -> !`
    if let Some(panic_impl_did) = tcx.lang_items().panic_impl()
        && panic_impl_did == hir.local_def_id(fn_id).to_def_id()
    {
        check_panic_info_fn(tcx, panic_impl_did.expect_local(), fn_sig, decl, declared_ret_ty);
    }

    // Check that a function marked as `#[alloc_error_handler]` has signature `fn(Layout) -> !`
    if let Some(alloc_error_handler_did) = tcx.lang_items().oom()
        && alloc_error_handler_did == hir.local_def_id(fn_id).to_def_id()
    {
        check_alloc_error_fn(tcx, alloc_error_handler_did.expect_local(), fn_sig, decl, declared_ret_ty);
    }

    (fcx, gen_ty)
}

fn check_panic_info_fn(
    tcx: TyCtxt<'_>,
    fn_id: LocalDefId,
    fn_sig: ty::FnSig<'_>,
    decl: &hir::FnDecl<'_>,
    declared_ret_ty: Ty<'_>,
) {
    let Some(panic_info_did) = tcx.lang_items().panic_info() else {
        tcx.sess.err("language item required, but not found: `panic_info`");
        return;
    };

    if *declared_ret_ty.kind() != ty::Never {
        tcx.sess.span_err(decl.output.span(), "return type should be `!`");
    }

    let inputs = fn_sig.inputs();
    if inputs.len() != 1 {
        tcx.sess.span_err(tcx.def_span(fn_id), "function should have one argument");
        return;
    }

    let arg_is_panic_info = match *inputs[0].kind() {
        ty::Ref(region, ty, mutbl) => match *ty.kind() {
            ty::Adt(ref adt, _) => {
                adt.did() == panic_info_did && mutbl == hir::Mutability::Not && !region.is_static()
            }
            _ => false,
        },
        _ => false,
    };

    if !arg_is_panic_info {
        tcx.sess.span_err(decl.inputs[0].span, "argument should be `&PanicInfo`");
    }

    let DefKind::Fn = tcx.def_kind(fn_id) else {
        let span = tcx.def_span(fn_id);
        tcx.sess.span_err(span, "should be a function");
        return;
    };

    let generic_counts = tcx.generics_of(fn_id).own_counts();
    if generic_counts.types != 0 {
        let span = tcx.def_span(fn_id);
        tcx.sess.span_err(span, "should have no type parameters");
    }
    if generic_counts.consts != 0 {
        let span = tcx.def_span(fn_id);
        tcx.sess.span_err(span, "should have no const parameters");
    }
}

fn check_alloc_error_fn(
    tcx: TyCtxt<'_>,
    fn_id: LocalDefId,
    fn_sig: ty::FnSig<'_>,
    decl: &hir::FnDecl<'_>,
    declared_ret_ty: Ty<'_>,
) {
    let Some(alloc_layout_did) = tcx.lang_items().alloc_layout() else {
        tcx.sess.err("language item required, but not found: `alloc_layout`");
        return;
    };

    if *declared_ret_ty.kind() != ty::Never {
        tcx.sess.span_err(decl.output.span(), "return type should be `!`");
    }

    let inputs = fn_sig.inputs();
    if inputs.len() != 1 {
        tcx.sess.span_err(tcx.def_span(fn_id), "function should have one argument");
        return;
    }

    let arg_is_alloc_layout = match inputs[0].kind() {
        ty::Adt(ref adt, _) => adt.did() == alloc_layout_did,
        _ => false,
    };

    if !arg_is_alloc_layout {
        tcx.sess.span_err(decl.inputs[0].span, "argument should be `Layout`");
    }

    let DefKind::Fn = tcx.def_kind(fn_id) else {
        let span = tcx.def_span(fn_id);
        tcx.sess.span_err(span, "`#[alloc_error_handler]` should be a function");
        return;
    };

    let generic_counts = tcx.generics_of(fn_id).own_counts();
    if generic_counts.types != 0 {
        let span = tcx.def_span(fn_id);
        tcx.sess.span_err(span, "`#[alloc_error_handler]` function should have no type parameters");
    }
    if generic_counts.consts != 0 {
        let span = tcx.def_span(fn_id);
        tcx.sess
            .span_err(span, "`#[alloc_error_handler]` function should have no const parameters");
    }
}

fn check_struct(tcx: TyCtxt<'_>, def_id: LocalDefId) {
    let def = tcx.adt_def(def_id);
    let span = tcx.def_span(def_id);
    def.destructor(tcx); // force the destructor to be evaluated
    check_representable(tcx, span, def_id);

    if def.repr().simd() {
        check_simd(tcx, span, def_id);
    }

    check_transparent(tcx, span, def);
    check_packed(tcx, span, def);
}

fn check_union(tcx: TyCtxt<'_>, def_id: LocalDefId) {
    let def = tcx.adt_def(def_id);
    let span = tcx.def_span(def_id);
    def.destructor(tcx); // force the destructor to be evaluated
    check_representable(tcx, span, def_id);
    check_transparent(tcx, span, def);
    check_union_fields(tcx, span, def_id);
    check_packed(tcx, span, def);
}

/// Check that the fields of the `union` do not need dropping.
fn check_union_fields(tcx: TyCtxt<'_>, span: Span, item_def_id: LocalDefId) -> bool {
    let item_type = tcx.type_of(item_def_id);
    if let ty::Adt(def, substs) = item_type.kind() {
        assert!(def.is_union());

        fn allowed_union_field<'tcx>(
            ty: Ty<'tcx>,
            tcx: TyCtxt<'tcx>,
            param_env: ty::ParamEnv<'tcx>,
            span: Span,
        ) -> bool {
            // We don't just accept all !needs_drop fields, due to semver concerns.
            match ty.kind() {
                ty::Ref(..) => true, // references never drop (even mutable refs, which are non-Copy and hence fail the later check)
                ty::Tuple(tys) => {
                    // allow tuples of allowed types
                    tys.iter().all(|ty| allowed_union_field(ty, tcx, param_env, span))
                }
                ty::Array(elem, _len) => {
                    // Like `Copy`, we do *not* special-case length 0.
                    allowed_union_field(*elem, tcx, param_env, span)
                }
                _ => {
                    // Fallback case: allow `ManuallyDrop` and things that are `Copy`.
                    ty.ty_adt_def().is_some_and(|adt_def| adt_def.is_manually_drop())
                        || ty.is_copy_modulo_regions(tcx.at(span), param_env)
                }
            }
        }

        let param_env = tcx.param_env(item_def_id);
        for field in &def.non_enum_variant().fields {
            let field_ty = field.ty(tcx, substs);

            if !allowed_union_field(field_ty, tcx, param_env, span) {
                let (field_span, ty_span) = match tcx.hir().get_if_local(field.did) {
                    // We are currently checking the type this field came from, so it must be local.
                    Some(Node::Field(field)) => (field.span, field.ty.span),
                    _ => unreachable!("mir field has to correspond to hir field"),
                };
                struct_span_err!(
                    tcx.sess,
                    field_span,
                    E0740,
                    "unions cannot contain fields that may need dropping"
                )
                .note(
                    "a type is guaranteed not to need dropping \
                    when it implements `Copy`, or when it is the special `ManuallyDrop<_>` type",
                )
                .multipart_suggestion_verbose(
                    "when the type does not implement `Copy`, \
                    wrap it inside a `ManuallyDrop<_>` and ensure it is manually dropped",
                    vec![
                        (ty_span.shrink_to_lo(), "std::mem::ManuallyDrop<".into()),
                        (ty_span.shrink_to_hi(), ">".into()),
                    ],
                    Applicability::MaybeIncorrect,
                )
                .emit();
                return false;
            } else if field_ty.needs_drop(tcx, param_env) {
                // This should never happen. But we can get here e.g. in case of name resolution errors.
                tcx.sess.delay_span_bug(span, "we should never accept maybe-dropping union fields");
            }
        }
    } else {
        span_bug!(span, "unions must be ty::Adt, but got {:?}", item_type.kind());
    }
    true
}

/// Check that a `static` is inhabited.
fn check_static_inhabited<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) {
    // Make sure statics are inhabited.
    // Other parts of the compiler assume that there are no uninhabited places. In principle it
    // would be enough to check this for `extern` statics, as statics with an initializer will
    // have UB during initialization if they are uninhabited, but there also seems to be no good
    // reason to allow any statics to be uninhabited.
    let ty = tcx.type_of(def_id);
    let span = tcx.def_span(def_id);
    let layout = match tcx.layout_of(ParamEnv::reveal_all().and(ty)) {
        Ok(l) => l,
        // Foreign statics that overflow their allowed size should emit an error
        Err(LayoutError::SizeOverflow(_))
            if {
                let node = tcx.hir().get_by_def_id(def_id);
                matches!(
                    node,
                    hir::Node::ForeignItem(hir::ForeignItem {
                        kind: hir::ForeignItemKind::Static(..),
                        ..
                    })
                )
            } =>
        {
            tcx.sess
                .struct_span_err(span, "extern static is too large for the current architecture")
                .emit();
            return;
        }
        // Generic statics are rejected, but we still reach this case.
        Err(e) => {
            tcx.sess.delay_span_bug(span, &e.to_string());
            return;
        }
    };
    if layout.abi.is_uninhabited() {
        tcx.struct_span_lint_hir(
            UNINHABITED_STATIC,
            tcx.hir().local_def_id_to_hir_id(def_id),
            span,
            "static of uninhabited type",
            |lint| {
                lint
                .note("uninhabited statics cannot be initialized, and any access would be an immediate error")
            },
        );
    }
}

/// Checks that an opaque type does not contain cycles and does not use `Self` or `T::Foo`
/// projections that would result in "inheriting lifetimes".
pub(super) fn check_opaque<'tcx>(
    tcx: TyCtxt<'tcx>,
    def_id: LocalDefId,
    substs: SubstsRef<'tcx>,
    origin: &hir::OpaqueTyOrigin,
) {
    let span = tcx.def_span(def_id);
    check_opaque_for_inheriting_lifetimes(tcx, def_id, span);
    if tcx.type_of(def_id).references_error() {
        return;
    }
    if check_opaque_for_cycles(tcx, def_id, substs, span, origin).is_err() {
        return;
    }
    check_opaque_meets_bounds(tcx, def_id, substs, span, origin);
}

/// Checks that an opaque type does not use `Self` or `T::Foo` projections that would result
/// in "inheriting lifetimes".
#[instrument(level = "debug", skip(tcx, span))]
pub(super) fn check_opaque_for_inheriting_lifetimes<'tcx>(
    tcx: TyCtxt<'tcx>,
    def_id: LocalDefId,
    span: Span,
) {
    let item = tcx.hir().expect_item(def_id);
    debug!(?item, ?span);

    struct FoundParentLifetime;
    struct FindParentLifetimeVisitor<'tcx>(&'tcx ty::Generics);
    impl<'tcx> ty::visit::TypeVisitor<'tcx> for FindParentLifetimeVisitor<'tcx> {
        type BreakTy = FoundParentLifetime;

        fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
            debug!("FindParentLifetimeVisitor: r={:?}", r);
            if let ty::ReEarlyBound(ty::EarlyBoundRegion { index, .. }) = *r {
                if index < self.0.parent_count as u32 {
                    return ControlFlow::Break(FoundParentLifetime);
                } else {
                    return ControlFlow::CONTINUE;
                }
            }

            r.super_visit_with(self)
        }

        fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
            if let ty::ConstKind::Unevaluated(..) = c.kind() {
                // FIXME(#72219) We currently don't detect lifetimes within substs
                // which would violate this check. Even though the particular substitution is not used
                // within the const, this should still be fixed.
                return ControlFlow::CONTINUE;
            }
            c.super_visit_with(self)
        }
    }

    struct ProhibitOpaqueVisitor<'tcx> {
        tcx: TyCtxt<'tcx>,
        opaque_identity_ty: Ty<'tcx>,
        generics: &'tcx ty::Generics,
        selftys: Vec<(Span, Option<String>)>,
    }

    impl<'tcx> ty::visit::TypeVisitor<'tcx> for ProhibitOpaqueVisitor<'tcx> {
        type BreakTy = Ty<'tcx>;

        fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
            debug!("check_opaque_for_inheriting_lifetimes: (visit_ty) t={:?}", t);
            if t == self.opaque_identity_ty {
                ControlFlow::CONTINUE
            } else {
                t.super_visit_with(&mut FindParentLifetimeVisitor(self.generics))
                    .map_break(|FoundParentLifetime| t)
            }
        }
    }

    impl<'tcx> Visitor<'tcx> for ProhibitOpaqueVisitor<'tcx> {
        type NestedFilter = nested_filter::OnlyBodies;

        fn nested_visit_map(&mut self) -> Self::Map {
            self.tcx.hir()
        }

        fn visit_ty(&mut self, arg: &'tcx hir::Ty<'tcx>) {
            match arg.kind {
                hir::TyKind::Path(hir::QPath::Resolved(None, path)) => match &path.segments {
                    [PathSegment { res: Res::SelfTyParam { .. }, .. }] => {
                        let impl_ty_name = None;
                        self.selftys.push((path.span, impl_ty_name));
                    }
                    [PathSegment { res: Res::SelfTyAlias { alias_to: def_id, .. }, .. }] => {
                        let impl_ty_name = Some(self.tcx.def_path_str(*def_id));
                        self.selftys.push((path.span, impl_ty_name));
                    }
                    _ => {}
                },
                _ => {}
            }
            hir::intravisit::walk_ty(self, arg);
        }
    }

    if let ItemKind::OpaqueTy(hir::OpaqueTy {
        origin: hir::OpaqueTyOrigin::AsyncFn(..) | hir::OpaqueTyOrigin::FnReturn(..),
        ..
    }) = item.kind
    {
        let mut visitor = ProhibitOpaqueVisitor {
            opaque_identity_ty: tcx.mk_opaque(
                def_id.to_def_id(),
                InternalSubsts::identity_for_item(tcx, def_id.to_def_id()),
            ),
            generics: tcx.generics_of(def_id),
            tcx,
            selftys: vec![],
        };
        let prohibit_opaque = tcx
            .explicit_item_bounds(def_id)
            .iter()
            .try_for_each(|(predicate, _)| predicate.visit_with(&mut visitor));
        debug!(
            "check_opaque_for_inheriting_lifetimes: prohibit_opaque={:?}, visitor.opaque_identity_ty={:?}, visitor.generics={:?}",
            prohibit_opaque, visitor.opaque_identity_ty, visitor.generics
        );

        if let Some(ty) = prohibit_opaque.break_value() {
            visitor.visit_item(&item);
            let is_async = match item.kind {
                ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) => {
                    matches!(origin, hir::OpaqueTyOrigin::AsyncFn(..))
                }
                _ => unreachable!(),
            };

            let mut err = struct_span_err!(
                tcx.sess,
                span,
                E0760,
                "`{}` return type cannot contain a projection or `Self` that references lifetimes from \
                 a parent scope",
                if is_async { "async fn" } else { "impl Trait" },
            );

            for (span, name) in visitor.selftys {
                err.span_suggestion(
                    span,
                    "consider spelling out the type instead",
                    name.unwrap_or_else(|| format!("{:?}", ty)),
                    Applicability::MaybeIncorrect,
                );
            }
            err.emit();
        }
    }
}

/// Checks that an opaque type does not contain cycles.
pub(super) fn check_opaque_for_cycles<'tcx>(
    tcx: TyCtxt<'tcx>,
    def_id: LocalDefId,
    substs: SubstsRef<'tcx>,
    span: Span,
    origin: &hir::OpaqueTyOrigin,
) -> Result<(), ErrorGuaranteed> {
    if tcx.try_expand_impl_trait_type(def_id.to_def_id(), substs).is_err() {
        let reported = match origin {
            hir::OpaqueTyOrigin::AsyncFn(..) => async_opaque_type_cycle_error(tcx, span),
            _ => opaque_type_cycle_error(tcx, def_id, span),
        };
        Err(reported)
    } else {
        Ok(())
    }
}

/// Check that the concrete type behind `impl Trait` actually implements `Trait`.
///
/// This is mostly checked at the places that specify the opaque type, but we
/// check those cases in the `param_env` of that function, which may have
/// bounds not on this opaque type:
///
/// type X<T> = impl Clone
/// fn f<T: Clone>(t: T) -> X<T> {
///     t
/// }
///
/// Without this check the above code is incorrectly accepted: we would ICE if
/// some tried, for example, to clone an `Option<X<&mut ()>>`.
#[instrument(level = "debug", skip(tcx))]
fn check_opaque_meets_bounds<'tcx>(
    tcx: TyCtxt<'tcx>,
    def_id: LocalDefId,
    substs: SubstsRef<'tcx>,
    span: Span,
    origin: &hir::OpaqueTyOrigin,
) {
    let hidden_type = tcx.bound_type_of(def_id.to_def_id()).subst(tcx, substs);

    let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
    let defining_use_anchor = match *origin {
        hir::OpaqueTyOrigin::FnReturn(did) | hir::OpaqueTyOrigin::AsyncFn(did) => did,
        hir::OpaqueTyOrigin::TyAlias => def_id,
    };
    let param_env = tcx.param_env(defining_use_anchor);

    tcx.infer_ctxt().with_opaque_type_inference(DefiningAnchor::Bind(defining_use_anchor)).enter(
        move |infcx| {
            let ocx = ObligationCtxt::new(&infcx);
            let opaque_ty = tcx.mk_opaque(def_id.to_def_id(), substs);

            let misc_cause = traits::ObligationCause::misc(span, hir_id);

            match infcx.at(&misc_cause, param_env).eq(opaque_ty, hidden_type) {
                Ok(infer_ok) => ocx.register_infer_ok_obligations(infer_ok),
                Err(ty_err) => {
                    tcx.sess.delay_span_bug(
                        span,
                        &format!("could not unify `{hidden_type}` with revealed type:\n{ty_err}"),
                    );
                }
            }

            // Additionally require the hidden type to be well-formed with only the generics of the opaque type.
            // Defining use functions may have more bounds than the opaque type, which is ok, as long as the
            // hidden type is well formed even without those bounds.
            let predicate = ty::Binder::dummy(ty::PredicateKind::WellFormed(hidden_type.into()))
                .to_predicate(tcx);
            ocx.register_obligation(Obligation::new(misc_cause, param_env, predicate));

            // Check that all obligations are satisfied by the implementation's
            // version.
            let errors = ocx.select_all_or_error();
            if !errors.is_empty() {
                infcx.report_fulfillment_errors(&errors, None, false);
            }
            match origin {
                // Checked when type checking the function containing them.
                hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..) => {}
                // Can have different predicates to their defining use
                hir::OpaqueTyOrigin::TyAlias => {
                    let outlives_environment = OutlivesEnvironment::new(param_env);
                    infcx.check_region_obligations_and_report_errors(
                        defining_use_anchor,
                        &outlives_environment,
                    );
                }
            }
            // Clean up after ourselves
            let _ = infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();
        },
    );
}

fn check_item_type<'tcx>(tcx: TyCtxt<'tcx>, id: hir::ItemId) {
    debug!(
        "check_item_type(it.def_id={:?}, it.name={})",
        id.def_id,
        tcx.def_path_str(id.def_id.to_def_id())
    );
    let _indenter = indenter();
    match tcx.def_kind(id.def_id) {
        DefKind::Static(..) => {
            tcx.ensure().typeck(id.def_id.def_id);
            maybe_check_static_with_link_section(tcx, id.def_id.def_id);
            check_static_inhabited(tcx, id.def_id.def_id);
        }
        DefKind::Const => {
            tcx.ensure().typeck(id.def_id.def_id);
        }
        DefKind::Enum => {
            let item = tcx.hir().item(id);
            let hir::ItemKind::Enum(ref enum_definition, _) = item.kind else {
                return;
            };
            check_enum(tcx, &enum_definition.variants, item.def_id.def_id);
        }
        DefKind::Fn => {} // entirely within check_item_body
        DefKind::Impl => {
            let it = tcx.hir().item(id);
            let hir::ItemKind::Impl(ref impl_) = it.kind else {
                return;
            };
            debug!("ItemKind::Impl {} with id {:?}", it.ident, it.def_id);
            if let Some(impl_trait_ref) = tcx.impl_trait_ref(it.def_id) {
                check_impl_items_against_trait(
                    tcx,
                    it.span,
                    it.def_id.def_id,
                    impl_trait_ref,
                    &impl_.items,
                );
                check_on_unimplemented(tcx, it);
            }
        }
        DefKind::Trait => {
            let it = tcx.hir().item(id);
            let hir::ItemKind::Trait(_, _, _, _, ref items) = it.kind else {
                return;
            };
            check_on_unimplemented(tcx, it);

            for item in items.iter() {
                let item = tcx.hir().trait_item(item.id);
                match item.kind {
                    hir::TraitItemKind::Fn(ref sig, _) => {
                        let abi = sig.header.abi;
                        fn_maybe_err(tcx, item.ident.span, abi);
                    }
                    hir::TraitItemKind::Type(.., Some(default)) => {
                        let assoc_item = tcx.associated_item(item.def_id);
                        let trait_substs =
                            InternalSubsts::identity_for_item(tcx, it.def_id.to_def_id());
                        let _: Result<_, rustc_errors::ErrorGuaranteed> = check_type_bounds(
                            tcx,
                            assoc_item,
                            assoc_item,
                            default.span,
                            ty::TraitRef { def_id: it.def_id.to_def_id(), substs: trait_substs },
                        );
                    }
                    _ => {}
                }
            }
        }
        DefKind::Struct => {
            check_struct(tcx, id.def_id.def_id);
        }
        DefKind::Union => {
            check_union(tcx, id.def_id.def_id);
        }
        DefKind::OpaqueTy => {
            let item = tcx.hir().item(id);
            let hir::ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) = item.kind else {
                return;
            };
            // HACK(jynelson): trying to infer the type of `impl trait` breaks documenting
            // `async-std` (and `pub async fn` in general).
            // Since rustdoc doesn't care about the concrete type behind `impl Trait`, just don't look at it!
            // See https://github.com/rust-lang/rust/issues/75100
            if !tcx.sess.opts.actually_rustdoc {
                let substs = InternalSubsts::identity_for_item(tcx, item.def_id.to_def_id());
                check_opaque(tcx, item.def_id.def_id, substs, &origin);
            }
        }
        DefKind::TyAlias => {
            let pty_ty = tcx.type_of(id.def_id);
            let generics = tcx.generics_of(id.def_id);
            check_type_params_are_used(tcx, &generics, pty_ty);
        }
        DefKind::ForeignMod => {
            let it = tcx.hir().item(id);
            let hir::ItemKind::ForeignMod { abi, items } = it.kind else {
                return;
            };
            check_abi(tcx, it.hir_id(), it.span, abi);

            if abi == Abi::RustIntrinsic {
                for item in items {
                    let item = tcx.hir().foreign_item(item.id);
                    intrinsic::check_intrinsic_type(tcx, item);
                }
            } else if abi == Abi::PlatformIntrinsic {
                for item in items {
                    let item = tcx.hir().foreign_item(item.id);
                    intrinsic::check_platform_intrinsic_type(tcx, item);
                }
            } else {
                for item in items {
                    let def_id = item.id.def_id.def_id;
                    let generics = tcx.generics_of(def_id);
                    let own_counts = generics.own_counts();
                    if generics.params.len() - own_counts.lifetimes != 0 {
                        let (kinds, kinds_pl, egs) = match (own_counts.types, own_counts.consts) {
                            (_, 0) => ("type", "types", Some("u32")),
                            // We don't specify an example value, because we can't generate
                            // a valid value for any type.
                            (0, _) => ("const", "consts", None),
                            _ => ("type or const", "types or consts", None),
                        };
                        struct_span_err!(
                            tcx.sess,
                            item.span,
                            E0044,
                            "foreign items may not have {kinds} parameters",
                        )
                        .span_label(item.span, &format!("can't have {kinds} parameters"))
                        .help(
                            // FIXME: once we start storing spans for type arguments, turn this
                            // into a suggestion.
                            &format!(
                                "replace the {} parameters with concrete {}{}",
                                kinds,
                                kinds_pl,
                                egs.map(|egs| format!(" like `{}`", egs)).unwrap_or_default(),
                            ),
                        )
                        .emit();
                    }

                    let item = tcx.hir().foreign_item(item.id);
                    match item.kind {
                        hir::ForeignItemKind::Fn(ref fn_decl, _, _) => {
                            require_c_abi_if_c_variadic(tcx, fn_decl, abi, item.span);
                        }
                        hir::ForeignItemKind::Static(..) => {
                            check_static_inhabited(tcx, def_id);
                        }
                        _ => {}
                    }
                }
            }
        }
        DefKind::GlobalAsm => {
            let it = tcx.hir().item(id);
            let hir::ItemKind::GlobalAsm(asm) = it.kind else { span_bug!(it.span, "DefKind::GlobalAsm but got {:#?}", it) };
            InlineAsmCtxt::new_global_asm(tcx).check_asm(asm, id.hir_id());
        }
        _ => {}
    }
}

pub(super) fn check_on_unimplemented(tcx: TyCtxt<'_>, item: &hir::Item<'_>) {
    // an error would be reported if this fails.
    let _ = traits::OnUnimplementedDirective::of_item(tcx, item.def_id.to_def_id());
}

pub(super) fn check_specialization_validity<'tcx>(
    tcx: TyCtxt<'tcx>,
    trait_def: &ty::TraitDef,
    trait_item: &ty::AssocItem,
    impl_id: DefId,
    impl_item: &hir::ImplItemRef,
) {
    let Ok(ancestors) = trait_def.ancestors(tcx, impl_id) else { return };
    let mut ancestor_impls = ancestors.skip(1).filter_map(|parent| {
        if parent.is_from_trait() {
            None
        } else {
            Some((parent, parent.item(tcx, trait_item.def_id)))
        }
    });

    let opt_result = ancestor_impls.find_map(|(parent_impl, parent_item)| {
        match parent_item {
            // Parent impl exists, and contains the parent item we're trying to specialize, but
            // doesn't mark it `default`.
            Some(parent_item) if traits::impl_item_is_final(tcx, &parent_item) => {
                Some(Err(parent_impl.def_id()))
            }

            // Parent impl contains item and makes it specializable.
            Some(_) => Some(Ok(())),

            // Parent impl doesn't mention the item. This means it's inherited from the
            // grandparent. In that case, if parent is a `default impl`, inherited items use the
            // "defaultness" from the grandparent, else they are final.
            None => {
                if tcx.impl_defaultness(parent_impl.def_id()).is_default() {
                    None
                } else {
                    Some(Err(parent_impl.def_id()))
                }
            }
        }
    });

    // If `opt_result` is `None`, we have only encountered `default impl`s that don't contain the
    // item. This is allowed, the item isn't actually getting specialized here.
    let result = opt_result.unwrap_or(Ok(()));

    if let Err(parent_impl) = result {
        report_forbidden_specialization(tcx, impl_item, parent_impl);
    }
}

fn check_impl_items_against_trait<'tcx>(
    tcx: TyCtxt<'tcx>,
    full_impl_span: Span,
    impl_id: LocalDefId,
    impl_trait_ref: ty::TraitRef<'tcx>,
    impl_item_refs: &[hir::ImplItemRef],
) {
    // If the trait reference itself is erroneous (so the compilation is going
    // to fail), skip checking the items here -- the `impl_item` table in `tcx`
    // isn't populated for such impls.
    if impl_trait_ref.references_error() {
        return;
    }

    // Negative impls are not expected to have any items
    match tcx.impl_polarity(impl_id) {
        ty::ImplPolarity::Reservation | ty::ImplPolarity::Positive => {}
        ty::ImplPolarity::Negative => {
            if let [first_item_ref, ..] = impl_item_refs {
                let first_item_span = tcx.hir().impl_item(first_item_ref.id).span;
                struct_span_err!(
                    tcx.sess,
                    first_item_span,
                    E0749,
                    "negative impls cannot have any items"
                )
                .emit();
            }
            return;
        }
    }

    let trait_def = tcx.trait_def(impl_trait_ref.def_id);

    for impl_item in impl_item_refs {
        let ty_impl_item = tcx.associated_item(impl_item.id.def_id);
        let ty_trait_item = if let Some(trait_item_id) = ty_impl_item.trait_item_def_id {
            tcx.associated_item(trait_item_id)
        } else {
            // Checked in `associated_item`.
            tcx.sess.delay_span_bug(impl_item.span, "missing associated item in trait");
            continue;
        };
        let impl_item_full = tcx.hir().impl_item(impl_item.id);
        match impl_item_full.kind {
            hir::ImplItemKind::Const(..) => {
                // Find associated const definition.
                compare_const_impl(
                    tcx,
                    &ty_impl_item,
                    impl_item.span,
                    &ty_trait_item,
                    impl_trait_ref,
                );
            }
            hir::ImplItemKind::Fn(..) => {
                let opt_trait_span = tcx.hir().span_if_local(ty_trait_item.def_id);
                compare_impl_method(
                    tcx,
                    &ty_impl_item,
                    &ty_trait_item,
                    impl_trait_ref,
                    opt_trait_span,
                );
            }
            hir::ImplItemKind::TyAlias(impl_ty) => {
                let opt_trait_span = tcx.hir().span_if_local(ty_trait_item.def_id);
                compare_ty_impl(
                    tcx,
                    &ty_impl_item,
                    impl_ty.span,
                    &ty_trait_item,
                    impl_trait_ref,
                    opt_trait_span,
                );
            }
        }

        check_specialization_validity(
            tcx,
            trait_def,
            &ty_trait_item,
            impl_id.to_def_id(),
            impl_item,
        );
    }

    if let Ok(ancestors) = trait_def.ancestors(tcx, impl_id.to_def_id()) {
        // Check for missing items from trait
        let mut missing_items = Vec::new();

        let mut must_implement_one_of: Option<&[Ident]> =
            trait_def.must_implement_one_of.as_deref();

        for &trait_item_id in tcx.associated_item_def_ids(impl_trait_ref.def_id) {
            let is_implemented = ancestors
                .leaf_def(tcx, trait_item_id)
                .map_or(false, |node_item| node_item.item.defaultness(tcx).has_value());

            if !is_implemented && tcx.impl_defaultness(impl_id).is_final() {
                missing_items.push(tcx.associated_item(trait_item_id));
            }

            // true if this item is specifically implemented in this impl
            let is_implemented_here = ancestors
                .leaf_def(tcx, trait_item_id)
                .map_or(false, |node_item| !node_item.defining_node.is_from_trait());

            if !is_implemented_here {
                match tcx.eval_default_body_stability(trait_item_id, full_impl_span) {
                    EvalResult::Deny { feature, reason, issue, .. } => default_body_is_unstable(
                        tcx,
                        full_impl_span,
                        trait_item_id,
                        feature,
                        reason,
                        issue,
                    ),

                    // Unmarked default bodies are considered stable (at least for now).
                    EvalResult::Allow | EvalResult::Unmarked => {}
                }
            }

            if let Some(required_items) = &must_implement_one_of {
                if is_implemented_here {
                    let trait_item = tcx.associated_item(trait_item_id);
                    if required_items.contains(&trait_item.ident(tcx)) {
                        must_implement_one_of = None;
                    }
                }
            }
        }

        if !missing_items.is_empty() {
            missing_items_err(tcx, tcx.def_span(impl_id), &missing_items, full_impl_span);
        }

        if let Some(missing_items) = must_implement_one_of {
            let attr_span = tcx
                .get_attr(impl_trait_ref.def_id, sym::rustc_must_implement_one_of)
                .map(|attr| attr.span);

            missing_items_must_implement_one_of_err(
                tcx,
                tcx.def_span(impl_id),
                missing_items,
                attr_span,
            );
        }
    }
}

/// Checks whether a type can be represented in memory. In particular, it
/// identifies types that contain themselves without indirection through a
/// pointer, which would mean their size is unbounded.
pub(super) fn check_representable(tcx: TyCtxt<'_>, sp: Span, item_def_id: LocalDefId) -> bool {
    let rty = tcx.type_of(item_def_id);

    // Check that it is possible to represent this type. This call identifies
    // (1) types that contain themselves and (2) types that contain a different
    // recursive type. It is only necessary to throw an error on those that
    // contain themselves. For case 2, there must be an inner type that will be
    // caught by case 1.
    match representability::ty_is_representable(tcx, rty, sp, None) {
        Representability::SelfRecursive(spans) => {
            recursive_type_with_infinite_size_error(tcx, item_def_id.to_def_id(), spans);
            return false;
        }
        Representability::Representable | Representability::ContainsRecursive => (),
    }
    true
}

pub fn check_simd(tcx: TyCtxt<'_>, sp: Span, def_id: LocalDefId) {
    let t = tcx.type_of(def_id);
    if let ty::Adt(def, substs) = t.kind()
        && def.is_struct()
    {
        let fields = &def.non_enum_variant().fields;
        if fields.is_empty() {
            struct_span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty").emit();
            return;
        }
        let e = fields[0].ty(tcx, substs);
        if !fields.iter().all(|f| f.ty(tcx, substs) == e) {
            struct_span_err!(tcx.sess, sp, E0076, "SIMD vector should be homogeneous")
                .span_label(sp, "SIMD elements must have the same type")
                .emit();
            return;
        }

        let len = if let ty::Array(_ty, c) = e.kind() {
            c.try_eval_usize(tcx, tcx.param_env(def.did()))
        } else {
            Some(fields.len() as u64)
        };
        if let Some(len) = len {
            if len == 0 {
                struct_span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty").emit();
                return;
            } else if len > MAX_SIMD_LANES {
                struct_span_err!(
                    tcx.sess,
                    sp,
                    E0075,
                    "SIMD vector cannot have more than {MAX_SIMD_LANES} elements",
                )
                .emit();
                return;
            }
        }

        // Check that we use types valid for use in the lanes of a SIMD "vector register"
        // These are scalar types which directly match a "machine" type
        // Yes: Integers, floats, "thin" pointers
        // No: char, "fat" pointers, compound types
        match e.kind() {
            ty::Param(_) => (), // pass struct<T>(T, T, T, T) through, let monomorphization catch errors
            ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_) => (), // struct(u8, u8, u8, u8) is ok
            ty::Array(t, _) if matches!(t.kind(), ty::Param(_)) => (), // pass struct<T>([T; N]) through, let monomorphization catch errors
            ty::Array(t, _clen)
                if matches!(
                    t.kind(),
                    ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_)
                ) =>
            { /* struct([f32; 4]) is ok */ }
            _ => {
                struct_span_err!(
                    tcx.sess,
                    sp,
                    E0077,
                    "SIMD vector element type should be a \
                        primitive scalar (integer/float/pointer) type"
                )
                .emit();
                return;
            }
        }
    }
}

pub(super) fn check_packed(tcx: TyCtxt<'_>, sp: Span, def: ty::AdtDef<'_>) {
    let repr = def.repr();
    if repr.packed() {
        for attr in tcx.get_attrs(def.did(), sym::repr) {
            for r in attr::parse_repr_attr(&tcx.sess, attr) {
                if let attr::ReprPacked(pack) = r
                && let Some(repr_pack) = repr.pack
                && pack as u64 != repr_pack.bytes()
            {
                        struct_span_err!(
                            tcx.sess,
                            sp,
                            E0634,
                            "type has conflicting packed representation hints"
                        )
                        .emit();
            }
            }
        }
        if repr.align.is_some() {
            struct_span_err!(
                tcx.sess,
                sp,
                E0587,
                "type has conflicting packed and align representation hints"
            )
            .emit();
        } else {
            if let Some(def_spans) = check_packed_inner(tcx, def.did(), &mut vec![]) {
                let mut err = struct_span_err!(
                    tcx.sess,
                    sp,
                    E0588,
                    "packed type cannot transitively contain a `#[repr(align)]` type"
                );

                err.span_note(
                    tcx.def_span(def_spans[0].0),
                    &format!(
                        "`{}` has a `#[repr(align)]` attribute",
                        tcx.item_name(def_spans[0].0)
                    ),
                );

                if def_spans.len() > 2 {
                    let mut first = true;
                    for (adt_def, span) in def_spans.iter().skip(1).rev() {
                        let ident = tcx.item_name(*adt_def);
                        err.span_note(
                            *span,
                            &if first {
                                format!(
                                    "`{}` contains a field of type `{}`",
                                    tcx.type_of(def.did()),
                                    ident
                                )
                            } else {
                                format!("...which contains a field of type `{ident}`")
                            },
                        );
                        first = false;
                    }
                }

                err.emit();
            }
        }
    }
}

pub(super) fn check_packed_inner(
    tcx: TyCtxt<'_>,
    def_id: DefId,
    stack: &mut Vec<DefId>,
) -> Option<Vec<(DefId, Span)>> {
    if let ty::Adt(def, substs) = tcx.type_of(def_id).kind() {
        if def.is_struct() || def.is_union() {
            if def.repr().align.is_some() {
                return Some(vec![(def.did(), DUMMY_SP)]);
            }

            stack.push(def_id);
            for field in &def.non_enum_variant().fields {
                if let ty::Adt(def, _) = field.ty(tcx, substs).kind()
                    && !stack.contains(&def.did())
                    && let Some(mut defs) = check_packed_inner(tcx, def.did(), stack)
                {
                    defs.push((def.did(), field.ident(tcx).span));
                    return Some(defs);
                }
            }
            stack.pop();
        }
    }

    None
}

pub(super) fn check_transparent<'tcx>(tcx: TyCtxt<'tcx>, sp: Span, adt: ty::AdtDef<'tcx>) {
    if !adt.repr().transparent() {
        return;
    }

    if adt.is_union() && !tcx.features().transparent_unions {
        feature_err(
            &tcx.sess.parse_sess,
            sym::transparent_unions,
            sp,
            "transparent unions are unstable",
        )
        .emit();
    }

    if adt.variants().len() != 1 {
        bad_variant_count(tcx, adt, sp, adt.did());
        if adt.variants().is_empty() {
            // Don't bother checking the fields. No variants (and thus no fields) exist.
            return;
        }
    }

    // For each field, figure out if it's known to be a ZST and align(1), with "known"
    // respecting #[non_exhaustive] attributes.
    let field_infos = adt.all_fields().map(|field| {
        let ty = field.ty(tcx, InternalSubsts::identity_for_item(tcx, field.did));
        let param_env = tcx.param_env(field.did);
        let layout = tcx.layout_of(param_env.and(ty));
        // We are currently checking the type this field came from, so it must be local
        let span = tcx.hir().span_if_local(field.did).unwrap();
        let zst = layout.map_or(false, |layout| layout.is_zst());
        let align1 = layout.map_or(false, |layout| layout.align.abi.bytes() == 1);
        if !zst {
            return (span, zst, align1, None);
        }

        fn check_non_exhaustive<'tcx>(
            tcx: TyCtxt<'tcx>,
            t: Ty<'tcx>,
        ) -> ControlFlow<(&'static str, DefId, SubstsRef<'tcx>, bool)> {
            match t.kind() {
                ty::Tuple(list) => list.iter().try_for_each(|t| check_non_exhaustive(tcx, t)),
                ty::Array(ty, _) => check_non_exhaustive(tcx, *ty),
                ty::Adt(def, subst) => {
                    if !def.did().is_local() {
                        let non_exhaustive = def.is_variant_list_non_exhaustive()
                            || def
                                .variants()
                                .iter()
                                .any(ty::VariantDef::is_field_list_non_exhaustive);
                        let has_priv = def.all_fields().any(|f| !f.vis.is_public());
                        if non_exhaustive || has_priv {
                            return ControlFlow::Break((
                                def.descr(),
                                def.did(),
                                subst,
                                non_exhaustive,
                            ));
                        }
                    }
                    def.all_fields()
                        .map(|field| field.ty(tcx, subst))
                        .try_for_each(|t| check_non_exhaustive(tcx, t))
                }
                _ => ControlFlow::Continue(()),
            }
        }

        (span, zst, align1, check_non_exhaustive(tcx, ty).break_value())
    });

    let non_zst_fields = field_infos
        .clone()
        .filter_map(|(span, zst, _align1, _non_exhaustive)| if !zst { Some(span) } else { None });
    let non_zst_count = non_zst_fields.clone().count();
    if non_zst_count >= 2 {
        bad_non_zero_sized_fields(tcx, adt, non_zst_count, non_zst_fields, sp);
    }
    let incompatible_zst_fields =
        field_infos.clone().filter(|(_, _, _, opt)| opt.is_some()).count();
    let incompat = incompatible_zst_fields + non_zst_count >= 2 && non_zst_count < 2;
    for (span, zst, align1, non_exhaustive) in field_infos {
        if zst && !align1 {
            struct_span_err!(
                tcx.sess,
                span,
                E0691,
                "zero-sized field in transparent {} has alignment larger than 1",
                adt.descr(),
            )
            .span_label(span, "has alignment larger than 1")
            .emit();
        }
        if incompat && let Some((descr, def_id, substs, non_exhaustive)) = non_exhaustive {
            tcx.struct_span_lint_hir(
                REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS,
                tcx.hir().local_def_id_to_hir_id(adt.did().expect_local()),
                span,
                "zero-sized fields in `repr(transparent)` cannot contain external non-exhaustive types",
                |lint| {
                    let note = if non_exhaustive {
                        "is marked with `#[non_exhaustive]`"
                    } else {
                        "contains private fields"
                    };
                    let field_ty = tcx.def_path_str_with_substs(def_id, substs);
                    lint
                        .note(format!("this {descr} contains `{field_ty}`, which {note}, \
                            and makes it not a breaking change to become non-zero-sized in the future."))
                },
            )
        }
    }
}

#[allow(trivial_numeric_casts)]
fn check_enum<'tcx>(tcx: TyCtxt<'tcx>, vs: &'tcx [hir::Variant<'tcx>], def_id: LocalDefId) {
    let def = tcx.adt_def(def_id);
    let sp = tcx.def_span(def_id);
    def.destructor(tcx); // force the destructor to be evaluated

    if vs.is_empty() {
        if let Some(attr) = tcx.get_attrs(def_id.to_def_id(), sym::repr).next() {
            struct_span_err!(
                tcx.sess,
                attr.span,
                E0084,
                "unsupported representation for zero-variant enum"
            )
            .span_label(sp, "zero-variant enum")
            .emit();
        }
    }

    let repr_type_ty = def.repr().discr_type().to_ty(tcx);
    if repr_type_ty == tcx.types.i128 || repr_type_ty == tcx.types.u128 {
        if !tcx.features().repr128 {
            feature_err(
                &tcx.sess.parse_sess,
                sym::repr128,
                sp,
                "repr with 128-bit type is unstable",
            )
            .emit();
        }
    }

    for v in vs {
        if let Some(ref e) = v.disr_expr {
            tcx.ensure().typeck(tcx.hir().local_def_id(e.hir_id));
        }
    }

    if tcx.adt_def(def_id).repr().int.is_none() && tcx.features().arbitrary_enum_discriminant {
        let is_unit = |var: &hir::Variant<'_>| matches!(var.data, hir::VariantData::Unit(..));

        let has_disr = |var: &hir::Variant<'_>| var.disr_expr.is_some();
        let has_non_units = vs.iter().any(|var| !is_unit(var));
        let disr_units = vs.iter().any(|var| is_unit(&var) && has_disr(&var));
        let disr_non_unit = vs.iter().any(|var| !is_unit(&var) && has_disr(&var));

        if disr_non_unit || (disr_units && has_non_units) {
            let mut err =
                struct_span_err!(tcx.sess, sp, E0732, "`#[repr(inttype)]` must be specified");
            err.emit();
        }
    }

    detect_discriminant_duplicate(tcx, def.discriminants(tcx).collect(), vs, sp);

    check_representable(tcx, sp, def_id);
    check_transparent(tcx, sp, def);
}

/// Part of enum check. Given the discriminants of an enum, errors if two or more discriminants are equal
fn detect_discriminant_duplicate<'tcx>(
    tcx: TyCtxt<'tcx>,
    mut discrs: Vec<(VariantIdx, Discr<'tcx>)>,
    vs: &'tcx [hir::Variant<'tcx>],
    self_span: Span,
) {
    // Helper closure to reduce duplicate code. This gets called everytime we detect a duplicate.
    // Here `idx` refers to the order of which the discriminant appears, and its index in `vs`
    let report = |dis: Discr<'tcx>, idx: usize, err: &mut Diagnostic| {
        let var = &vs[idx]; // HIR for the duplicate discriminant
        let (span, display_discr) = match var.disr_expr {
            Some(ref expr) => {
                // In the case the discriminant is both a duplicate and overflowed, let the user know
                if let hir::ExprKind::Lit(lit) = &tcx.hir().body(expr.body).value.kind
                    && let rustc_ast::LitKind::Int(lit_value, _int_kind) = &lit.node
                    && *lit_value != dis.val
                {
                    (tcx.hir().span(expr.hir_id), format!("`{dis}` (overflowed from `{lit_value}`)"))
                // Otherwise, format the value as-is
                } else {
                    (tcx.hir().span(expr.hir_id), format!("`{dis}`"))
                }
            }
            None => {
                // At this point we know this discriminant is a duplicate, and was not explicitly
                // assigned by the user. Here we iterate backwards to fetch the HIR for the last
                // explicitly assigned discriminant, and letting the user know that this was the
                // increment startpoint, and how many steps from there leading to the duplicate
                if let Some((n, hir::Variant { span, ident, .. })) =
                    vs[..idx].iter().rev().enumerate().find(|v| v.1.disr_expr.is_some())
                {
                    let ve_ident = var.ident;
                    let n = n + 1;
                    let sp = if n > 1 { "variants" } else { "variant" };

                    err.span_label(
                        *span,
                        format!("discriminant for `{ve_ident}` incremented from this startpoint (`{ident}` + {n} {sp} later => `{ve_ident}` = {dis})"),
                    );
                }

                (vs[idx].span, format!("`{dis}`"))
            }
        };

        err.span_label(span, format!("{display_discr} assigned here"));
    };

    // Here we loop through the discriminants, comparing each discriminant to another.
    // When a duplicate is detected, we instantiate an error and point to both
    // initial and duplicate value. The duplicate discriminant is then discarded by swapping
    // it with the last element and decrementing the `vec.len` (which is why we have to evaluate
    // `discrs.len()` anew every iteration, and why this could be tricky to do in a functional
    // style as we are mutating `discrs` on the fly).
    let mut i = 0;
    while i < discrs.len() {
        let hir_var_i_idx = discrs[i].0.index();
        let mut error: Option<DiagnosticBuilder<'_, _>> = None;

        let mut o = i + 1;
        while o < discrs.len() {
            let hir_var_o_idx = discrs[o].0.index();

            if discrs[i].1.val == discrs[o].1.val {
                let err = error.get_or_insert_with(|| {
                    let mut ret = struct_span_err!(
                        tcx.sess,
                        self_span,
                        E0081,
                        "discriminant value `{}` assigned more than once",
                        discrs[i].1,
                    );

                    report(discrs[i].1, hir_var_i_idx, &mut ret);

                    ret
                });

                report(discrs[o].1, hir_var_o_idx, err);

                // Safe to unwrap here, as we wouldn't reach this point if `discrs` was empty
                discrs[o] = *discrs.last().unwrap();
                discrs.pop();
            } else {
                o += 1;
            }
        }

        if let Some(mut e) = error {
            e.emit();
        }

        i += 1;
    }
}

pub(super) fn check_type_params_are_used<'tcx>(
    tcx: TyCtxt<'tcx>,
    generics: &ty::Generics,
    ty: Ty<'tcx>,
) {
    debug!("check_type_params_are_used(generics={:?}, ty={:?})", generics, ty);

    assert_eq!(generics.parent, None);

    if generics.own_counts().types == 0 {
        return;
    }

    let mut params_used = BitSet::new_empty(generics.params.len());

    if ty.references_error() {
        // If there is already another error, do not emit
        // an error for not using a type parameter.
        assert!(tcx.sess.has_errors().is_some());
        return;
    }

    for leaf in ty.walk() {
        if let GenericArgKind::Type(leaf_ty) = leaf.unpack()
            && let ty::Param(param) = leaf_ty.kind()
        {
            debug!("found use of ty param {:?}", param);
            params_used.insert(param.index);
        }
    }

    for param in &generics.params {
        if !params_used.contains(param.index)
            && let ty::GenericParamDefKind::Type { .. } = param.kind
        {
            let span = tcx.def_span(param.def_id);
            struct_span_err!(
                tcx.sess,
                span,
                E0091,
                "type parameter `{}` is unused",
                param.name,
            )
            .span_label(span, "unused type parameter")
            .emit();
        }
    }
}

pub(super) fn check_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
    let module = tcx.hir_module_items(module_def_id);
    for id in module.items() {
        check_item_type(tcx, id);
    }
}

fn async_opaque_type_cycle_error(tcx: TyCtxt<'_>, span: Span) -> ErrorGuaranteed {
    struct_span_err!(tcx.sess, span, E0733, "recursion in an `async fn` requires boxing")
        .span_label(span, "recursive `async fn`")
        .note("a recursive `async fn` must be rewritten to return a boxed `dyn Future`")
        .note(
            "consider using the `async_recursion` crate: https://crates.io/crates/async_recursion",
        )
        .emit()
}

/// Emit an error for recursive opaque types.
///
/// If this is a return `impl Trait`, find the item's return expressions and point at them. For
/// direct recursion this is enough, but for indirect recursion also point at the last intermediary
/// `impl Trait`.
///
/// If all the return expressions evaluate to `!`, then we explain that the error will go away
/// after changing it. This can happen when a user uses `panic!()` or similar as a placeholder.
fn opaque_type_cycle_error(tcx: TyCtxt<'_>, def_id: LocalDefId, span: Span) -> ErrorGuaranteed {
    let mut err = struct_span_err!(tcx.sess, span, E0720, "cannot resolve opaque type");

    let mut label = false;
    if let Some((def_id, visitor)) = get_owner_return_paths(tcx, def_id) {
        let typeck_results = tcx.typeck(def_id);
        if visitor
            .returns
            .iter()
            .filter_map(|expr| typeck_results.node_type_opt(expr.hir_id))
            .all(|ty| matches!(ty.kind(), ty::Never))
        {
            let spans = visitor
                .returns
                .iter()
                .filter(|expr| typeck_results.node_type_opt(expr.hir_id).is_some())
                .map(|expr| expr.span)
                .collect::<Vec<Span>>();
            let span_len = spans.len();
            if span_len == 1 {
                err.span_label(spans[0], "this returned value is of `!` type");
            } else {
                let mut multispan: MultiSpan = spans.clone().into();
                for span in spans {
                    multispan.push_span_label(span, "this returned value is of `!` type");
                }
                err.span_note(multispan, "these returned values have a concrete \"never\" type");
            }
            err.help("this error will resolve once the item's body returns a concrete type");
        } else {
            let mut seen = FxHashSet::default();
            seen.insert(span);
            err.span_label(span, "recursive opaque type");
            label = true;
            for (sp, ty) in visitor
                .returns
                .iter()
                .filter_map(|e| typeck_results.node_type_opt(e.hir_id).map(|t| (e.span, t)))
                .filter(|(_, ty)| !matches!(ty.kind(), ty::Never))
            {
                struct OpaqueTypeCollector(Vec<DefId>);
                impl<'tcx> ty::visit::TypeVisitor<'tcx> for OpaqueTypeCollector {
                    fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
                        match *t.kind() {
                            ty::Opaque(def, _) => {
                                self.0.push(def);
                                ControlFlow::CONTINUE
                            }
                            _ => t.super_visit_with(self),
                        }
                    }
                }
                let mut visitor = OpaqueTypeCollector(vec![]);
                ty.visit_with(&mut visitor);
                for def_id in visitor.0 {
                    let ty_span = tcx.def_span(def_id);
                    if !seen.contains(&ty_span) {
                        err.span_label(ty_span, &format!("returning this opaque type `{ty}`"));
                        seen.insert(ty_span);
                    }
                    err.span_label(sp, &format!("returning here with type `{ty}`"));
                }
            }
        }
    }
    if !label {
        err.span_label(span, "cannot resolve opaque type");
    }
    err.emit()
}