1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
//! Implement thread-local storage.
use std::collections::btree_map::Entry as BTreeEntry;
use std::collections::hash_map::Entry as HashMapEntry;
use std::collections::BTreeMap;
use log::trace;
use rustc_data_structures::fx::FxHashMap;
use rustc_middle::ty;
use rustc_target::abi::{HasDataLayout, Size};
use rustc_target::spec::abi::Abi;
use crate::*;
pub type TlsKey = u128;
#[derive(Clone, Debug)]
pub struct TlsEntry<'tcx> {
/// The data for this key. None is used to represent NULL.
/// (We normalize this early to avoid having to do a NULL-ptr-test each time we access the data.)
data: BTreeMap<ThreadId, Scalar<Provenance>>,
dtor: Option<ty::Instance<'tcx>>,
}
#[derive(Clone, Debug)]
struct RunningDtorsState {
/// The last TlsKey used to retrieve a TLS destructor. `None` means that we
/// have not tried to retrieve a TLS destructor yet or that we already tried
/// all keys.
last_dtor_key: Option<TlsKey>,
}
#[derive(Debug)]
pub struct TlsData<'tcx> {
/// The Key to use for the next thread-local allocation.
next_key: TlsKey,
/// pthreads-style thread-local storage.
keys: BTreeMap<TlsKey, TlsEntry<'tcx>>,
/// A single per thread destructor of the thread local storage (that's how
/// things work on macOS) with a data argument.
macos_thread_dtors: BTreeMap<ThreadId, (ty::Instance<'tcx>, Scalar<Provenance>)>,
/// State for currently running TLS dtors. If this map contains a key for a
/// specific thread, it means that we are in the "destruct" phase, during
/// which some operations are UB.
dtors_running: FxHashMap<ThreadId, RunningDtorsState>,
}
impl<'tcx> Default for TlsData<'tcx> {
fn default() -> Self {
TlsData {
next_key: 1, // start with 1 as we must not use 0 on Windows
keys: Default::default(),
macos_thread_dtors: Default::default(),
dtors_running: Default::default(),
}
}
}
impl<'tcx> TlsData<'tcx> {
/// Generate a new TLS key with the given destructor.
/// `max_size` determines the integer size the key has to fit in.
#[allow(clippy::integer_arithmetic)]
pub fn create_tls_key(
&mut self,
dtor: Option<ty::Instance<'tcx>>,
max_size: Size,
) -> InterpResult<'tcx, TlsKey> {
let new_key = self.next_key;
self.next_key += 1;
self.keys.try_insert(new_key, TlsEntry { data: Default::default(), dtor }).unwrap();
trace!("New TLS key allocated: {} with dtor {:?}", new_key, dtor);
if max_size.bits() < 128 && new_key >= (1u128 << max_size.bits()) {
throw_unsup_format!("we ran out of TLS key space");
}
Ok(new_key)
}
pub fn delete_tls_key(&mut self, key: TlsKey) -> InterpResult<'tcx> {
match self.keys.remove(&key) {
Some(_) => {
trace!("TLS key {} removed", key);
Ok(())
}
None => throw_ub_format!("removing a non-existig TLS key: {}", key),
}
}
pub fn load_tls(
&self,
key: TlsKey,
thread_id: ThreadId,
cx: &impl HasDataLayout,
) -> InterpResult<'tcx, Scalar<Provenance>> {
match self.keys.get(&key) {
Some(TlsEntry { data, .. }) => {
let value = data.get(&thread_id).copied();
trace!("TLS key {} for thread {:?} loaded: {:?}", key, thread_id, value);
Ok(value.unwrap_or_else(|| Scalar::null_ptr(cx)))
}
None => throw_ub_format!("loading from a non-existing TLS key: {}", key),
}
}
pub fn store_tls(
&mut self,
key: TlsKey,
thread_id: ThreadId,
new_data: Scalar<Provenance>,
cx: &impl HasDataLayout,
) -> InterpResult<'tcx> {
match self.keys.get_mut(&key) {
Some(TlsEntry { data, .. }) => {
if new_data.to_machine_usize(cx)? != 0 {
trace!("TLS key {} for thread {:?} stored: {:?}", key, thread_id, new_data);
data.insert(thread_id, new_data);
} else {
trace!("TLS key {} for thread {:?} removed", key, thread_id);
data.remove(&thread_id);
}
Ok(())
}
None => throw_ub_format!("storing to a non-existing TLS key: {}", key),
}
}
/// Set the thread wide destructor of the thread local storage for the given
/// thread. This function is used to implement `_tlv_atexit` shim on MacOS.
///
/// Thread wide dtors are available only on MacOS. There is one destructor
/// per thread as can be guessed from the following comment in the
/// [`_tlv_atexit`
/// implementation](https://github.com/opensource-apple/dyld/blob/195030646877261f0c8c7ad8b001f52d6a26f514/src/threadLocalVariables.c#L389):
///
/// NOTE: this does not need locks because it only operates on current thread data
pub fn set_macos_thread_dtor(
&mut self,
thread: ThreadId,
dtor: ty::Instance<'tcx>,
data: Scalar<Provenance>,
) -> InterpResult<'tcx> {
if self.dtors_running.contains_key(&thread) {
// UB, according to libstd docs.
throw_ub_format!(
"setting thread's local storage destructor while destructors are already running"
);
}
if self.macos_thread_dtors.insert(thread, (dtor, data)).is_some() {
throw_unsup_format!(
"setting more than one thread local storage destructor for the same thread is not supported"
);
}
Ok(())
}
/// Returns a dtor, its argument and its index, if one is supposed to run.
/// `key` is the last dtors that was run; we return the *next* one after that.
///
/// An optional destructor function may be associated with each key value.
/// At thread exit, if a key value has a non-NULL destructor pointer,
/// and the thread has a non-NULL value associated with that key,
/// the value of the key is set to NULL, and then the function pointed
/// to is called with the previously associated value as its sole argument.
/// **The order of destructor calls is unspecified if more than one destructor
/// exists for a thread when it exits.**
///
/// If, after all the destructors have been called for all non-NULL values
/// with associated destructors, there are still some non-NULL values with
/// associated destructors, then the process is repeated.
/// If, after at least {PTHREAD_DESTRUCTOR_ITERATIONS} iterations of destructor
/// calls for outstanding non-NULL values, there are still some non-NULL values
/// with associated destructors, implementations may stop calling destructors,
/// or they may continue calling destructors until no non-NULL values with
/// associated destructors exist, even though this might result in an infinite loop.
fn fetch_tls_dtor(
&mut self,
key: Option<TlsKey>,
thread_id: ThreadId,
) -> Option<(ty::Instance<'tcx>, Scalar<Provenance>, TlsKey)> {
use std::ops::Bound::*;
let thread_local = &mut self.keys;
let start = match key {
Some(key) => Excluded(key),
None => Unbounded,
};
// We interpret the documentaion above (taken from POSIX) as saying that we need to iterate
// over all keys and run each destructor at least once before running any destructor a 2nd
// time. That's why we have `key` to indicate how far we got in the current iteration. If we
// return `None`, `schedule_next_pthread_tls_dtor` will re-try with `ket` set to `None` to
// start the next round.
// TODO: In the future, we might consider randomizing destructor order, but we still have to
// uphold this requirement.
for (&key, TlsEntry { data, dtor }) in thread_local.range_mut((start, Unbounded)) {
match data.entry(thread_id) {
BTreeEntry::Occupied(entry) => {
if let Some(dtor) = dtor {
// Set TLS data to NULL, and call dtor with old value.
let data_scalar = entry.remove();
let ret = Some((*dtor, data_scalar, key));
return ret;
}
}
BTreeEntry::Vacant(_) => {}
}
}
None
}
/// Set that dtors are running for `thread`. It is guaranteed not to change
/// the existing values stored in `dtors_running` for this thread. Returns
/// `true` if dtors for `thread` are already running.
fn set_dtors_running_for_thread(&mut self, thread: ThreadId) -> bool {
match self.dtors_running.entry(thread) {
HashMapEntry::Occupied(_) => true,
HashMapEntry::Vacant(entry) => {
// We cannot just do `self.dtors_running.insert` because that
// would overwrite `last_dtor_key` with `None`.
entry.insert(RunningDtorsState { last_dtor_key: None });
false
}
}
}
/// Delete all TLS entries for the given thread. This function should be
/// called after all TLS destructors have already finished.
fn delete_all_thread_tls(&mut self, thread_id: ThreadId) {
for TlsEntry { data, .. } in self.keys.values_mut() {
data.remove(&thread_id);
}
}
pub fn iter(&self, mut visitor: impl FnMut(&Scalar<Provenance>)) {
for scalar in self.keys.values().flat_map(|v| v.data.values()) {
visitor(scalar);
}
}
}
impl<'mir, 'tcx: 'mir> EvalContextPrivExt<'mir, 'tcx> for crate::MiriInterpCx<'mir, 'tcx> {}
trait EvalContextPrivExt<'mir, 'tcx: 'mir>: crate::MiriInterpCxExt<'mir, 'tcx> {
/// Schedule TLS destructors for Windows.
/// On windows, TLS destructors are managed by std.
fn schedule_windows_tls_dtors(&mut self) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let active_thread = this.get_active_thread();
// Windows has a special magic linker section that is run on certain events.
// Instead of searching for that section and supporting arbitrary hooks in there
// (that would be basically https://github.com/rust-lang/miri/issues/450),
// we specifically look up the static in libstd that we know is placed
// in that section.
let thread_callback =
this.eval_windows("thread_local_key", "p_thread_callback")?.to_pointer(this)?;
let thread_callback = this.get_ptr_fn(thread_callback)?.as_instance()?;
// FIXME: Technically, the reason should be `DLL_PROCESS_DETACH` when the main thread exits
// but std treats both the same.
let reason = this.eval_windows("c", "DLL_THREAD_DETACH")?;
// The signature of this function is `unsafe extern "system" fn(h: c::LPVOID, dwReason: c::DWORD, pv: c::LPVOID)`.
// FIXME: `h` should be a handle to the current module and what `pv` should be is unknown
// but both are ignored by std
this.call_function(
thread_callback,
Abi::System { unwind: false },
&[Scalar::null_ptr(this).into(), reason.into(), Scalar::null_ptr(this).into()],
None,
StackPopCleanup::Root { cleanup: true },
)?;
this.enable_thread(active_thread);
Ok(())
}
/// Schedule the MacOS thread destructor of the thread local storage to be
/// executed. Returns `true` if scheduled.
///
/// Note: It is safe to call this function also on other Unixes.
fn schedule_macos_tls_dtor(&mut self) -> InterpResult<'tcx, bool> {
let this = self.eval_context_mut();
let thread_id = this.get_active_thread();
if let Some((instance, data)) = this.machine.tls.macos_thread_dtors.remove(&thread_id) {
trace!("Running macos dtor {:?} on {:?} at {:?}", instance, data, thread_id);
this.call_function(
instance,
Abi::C { unwind: false },
&[data.into()],
None,
StackPopCleanup::Root { cleanup: true },
)?;
// Enable the thread so that it steps through the destructor which
// we just scheduled. Since we deleted the destructor, it is
// guaranteed that we will schedule it again. The `dtors_running`
// flag will prevent the code from adding the destructor again.
this.enable_thread(thread_id);
Ok(true)
} else {
Ok(false)
}
}
/// Schedule a pthread TLS destructor. Returns `true` if found
/// a destructor to schedule, and `false` otherwise.
fn schedule_next_pthread_tls_dtor(&mut self) -> InterpResult<'tcx, bool> {
let this = self.eval_context_mut();
let active_thread = this.get_active_thread();
assert!(this.has_terminated(active_thread), "running TLS dtors for non-terminated thread");
// Fetch next dtor after `key`.
let last_key = this.machine.tls.dtors_running[&active_thread].last_dtor_key;
let dtor = match this.machine.tls.fetch_tls_dtor(last_key, active_thread) {
dtor @ Some(_) => dtor,
// We ran each dtor once, start over from the beginning.
None => this.machine.tls.fetch_tls_dtor(None, active_thread),
};
if let Some((instance, ptr, key)) = dtor {
this.machine.tls.dtors_running.get_mut(&active_thread).unwrap().last_dtor_key =
Some(key);
trace!("Running TLS dtor {:?} on {:?} at {:?}", instance, ptr, active_thread);
assert!(
!ptr.to_machine_usize(this).unwrap() != 0,
"data can't be NULL when dtor is called!"
);
this.call_function(
instance,
Abi::C { unwind: false },
&[ptr.into()],
None,
StackPopCleanup::Root { cleanup: true },
)?;
this.enable_thread(active_thread);
return Ok(true);
}
this.machine.tls.dtors_running.get_mut(&active_thread).unwrap().last_dtor_key = None;
Ok(false)
}
}
impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriInterpCx<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriInterpCxExt<'mir, 'tcx> {
/// Schedule an active thread's TLS destructor to run on the active thread.
/// Note that this function does not run the destructors itself, it just
/// schedules them one by one each time it is called and reenables the
/// thread so that it can be executed normally by the main execution loop.
///
/// Note: we consistently run TLS destructors for all threads, including the
/// main thread. However, it is not clear that we should run the TLS
/// destructors for the main thread. See issue:
/// <https://github.com/rust-lang/rust/issues/28129>.
fn schedule_next_tls_dtor_for_active_thread(&mut self) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let active_thread = this.get_active_thread();
trace!("schedule_next_tls_dtor_for_active_thread on thread {:?}", active_thread);
if !this.machine.tls.set_dtors_running_for_thread(active_thread) {
// This is the first time we got asked to schedule a destructor. The
// Windows schedule destructor function must be called exactly once,
// this is why it is in this block.
if this.tcx.sess.target.os == "windows" {
// On Windows, we signal that the thread quit by starting the
// relevant function, reenabling the thread, and going back to
// the scheduler.
this.schedule_windows_tls_dtors()?;
return Ok(());
}
}
// The remaining dtors make some progress each time around the scheduler loop,
// until they return `false` to indicate that they are done.
// The macOS thread wide destructor runs "before any TLS slots get
// freed", so do that first.
if this.schedule_macos_tls_dtor()? {
// We have scheduled a MacOS dtor to run on the thread. Execute it
// to completion and come back here. Scheduling a destructor
// destroys it, so we will not enter this branch again.
return Ok(());
}
if this.schedule_next_pthread_tls_dtor()? {
// We have scheduled a pthread destructor and removed it from the
// destructors list. Run it to completion and come back here.
return Ok(());
}
// All dtors done!
this.machine.tls.delete_all_thread_tls(active_thread);
this.thread_terminated()?;
Ok(())
}
}