1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
use crate::{LateContext, LateLintPass, LintContext};
use rustc_errors::{fluent, Applicability};
use rustc_hir as hir;
use rustc_middle::ty;
use rustc_middle::ty::adjustment::{Adjust, Adjustment};
use rustc_session::lint::FutureIncompatibilityReason;
use rustc_span::edition::Edition;
use rustc_span::symbol::sym;
use rustc_span::Span;

declare_lint! {
    /// The `array_into_iter` lint detects calling `into_iter` on arrays.
    ///
    /// ### Example
    ///
    /// ```rust,edition2018
    /// # #![allow(unused)]
    /// [1, 2, 3].into_iter().for_each(|n| { *n; });
    /// ```
    ///
    /// {{produces}}
    ///
    /// ### Explanation
    ///
    /// Since Rust 1.53, arrays implement `IntoIterator`. However, to avoid
    /// breakage, `array.into_iter()` in Rust 2015 and 2018 code will still
    /// behave as `(&array).into_iter()`, returning an iterator over
    /// references, just like in Rust 1.52 and earlier.
    /// This only applies to the method call syntax `array.into_iter()`, not to
    /// any other syntax such as `for _ in array` or `IntoIterator::into_iter(array)`.
    pub ARRAY_INTO_ITER,
    Warn,
    "detects calling `into_iter` on arrays in Rust 2015 and 2018",
    @future_incompatible = FutureIncompatibleInfo {
        reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/IntoIterator-for-arrays.html>",
        reason: FutureIncompatibilityReason::EditionSemanticsChange(Edition::Edition2021),
    };
}

#[derive(Copy, Clone, Default)]
pub struct ArrayIntoIter {
    for_expr_span: Span,
}

impl_lint_pass!(ArrayIntoIter => [ARRAY_INTO_ITER]);

impl<'tcx> LateLintPass<'tcx> for ArrayIntoIter {
    fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
        // Save the span of expressions in `for _ in expr` syntax,
        // so we can give a better suggestion for those later.
        if let hir::ExprKind::Match(arg, [_], hir::MatchSource::ForLoopDesugar) = &expr.kind {
            if let hir::ExprKind::Call(path, [arg]) = &arg.kind {
                if let hir::ExprKind::Path(hir::QPath::LangItem(
                    hir::LangItem::IntoIterIntoIter,
                    ..,
                )) = &path.kind
                {
                    self.for_expr_span = arg.span;
                }
            }
        }

        // We only care about method call expressions.
        if let hir::ExprKind::MethodCall(call, receiver_arg, ..) = &expr.kind {
            if call.ident.name != sym::into_iter {
                return;
            }

            // Check if the method call actually calls the libcore
            // `IntoIterator::into_iter`.
            let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id).unwrap();
            match cx.tcx.trait_of_item(def_id) {
                Some(trait_id) if cx.tcx.is_diagnostic_item(sym::IntoIterator, trait_id) => {}
                _ => return,
            };

            // As this is a method call expression, we have at least one argument.
            let receiver_ty = cx.typeck_results().expr_ty(receiver_arg);
            let adjustments = cx.typeck_results().expr_adjustments(receiver_arg);

            let Some(Adjustment { kind: Adjust::Borrow(_), target }) = adjustments.last() else {
                return
            };

            let types =
                std::iter::once(receiver_ty).chain(adjustments.iter().map(|adj| adj.target));

            let mut found_array = false;

            for ty in types {
                match ty.kind() {
                    // If we run into a &[T; N] or &[T] first, there's nothing to warn about.
                    // It'll resolve to the reference version.
                    ty::Ref(_, inner_ty, _) if inner_ty.is_array() => return,
                    ty::Ref(_, inner_ty, _) if matches!(inner_ty.kind(), ty::Slice(..)) => return,
                    // Found an actual array type without matching a &[T; N] first.
                    // This is the problematic case.
                    ty::Array(..) => {
                        found_array = true;
                        break;
                    }
                    _ => {}
                }
            }

            if !found_array {
                return;
            }

            // Emit lint diagnostic.
            let target = match *target.kind() {
                ty::Ref(_, inner_ty, _) if inner_ty.is_array() => "[T; N]",
                ty::Ref(_, inner_ty, _) if matches!(inner_ty.kind(), ty::Slice(..)) => "[T]",
                // We know the original first argument type is an array type,
                // we know that the first adjustment was an autoref coercion
                // and we know that `IntoIterator` is the trait involved. The
                // array cannot be coerced to something other than a reference
                // to an array or to a slice.
                _ => bug!("array type coerced to something other than array or slice"),
            };
            cx.struct_span_lint(
                ARRAY_INTO_ITER,
                call.ident.span,
                fluent::lint::array_into_iter,
                |diag| {
                    diag.set_arg("target", target);
                    diag.span_suggestion(
                        call.ident.span,
                        fluent::lint::use_iter_suggestion,
                        "iter",
                        Applicability::MachineApplicable,
                    );
                    if self.for_expr_span == expr.span {
                        diag.span_suggestion(
                            receiver_arg.span.shrink_to_hi().to(expr.span.shrink_to_hi()),
                            fluent::lint::remove_into_iter_suggestion,
                            "",
                            Applicability::MaybeIncorrect,
                        );
                    } else if receiver_ty.is_array() {
                        diag.multipart_suggestion(
                            fluent::lint::use_explicit_into_iter_suggestion,
                            vec![
                                (expr.span.shrink_to_lo(), "IntoIterator::into_iter(".into()),
                                (
                                    receiver_arg.span.shrink_to_hi().to(expr.span.shrink_to_hi()),
                                    ")".into(),
                                ),
                            ],
                            Applicability::MaybeIncorrect,
                        );
                    }
                    diag
                },
            )
        }
    }
}