1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
use libffi::{high::call as ffi, low::CodePtr};
use std::ops::Deref;
use rustc_middle::ty::{self as ty, IntTy, Ty, UintTy};
use rustc_span::Symbol;
use rustc_target::abi::HasDataLayout;
use crate::*;
impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriInterpCx<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriInterpCxExt<'mir, 'tcx> {
/// Extract the scalar value from the result of reading a scalar from the machine,
/// and convert it to a `CArg`.
fn scalar_to_carg(
k: Scalar<Provenance>,
arg_type: Ty<'tcx>,
cx: &impl HasDataLayout,
) -> InterpResult<'tcx, CArg> {
match arg_type.kind() {
// If the primitive provided can be converted to a type matching the type pattern
// then create a `CArg` of this primitive value with the corresponding `CArg` constructor.
// the ints
ty::Int(IntTy::I8) => {
return Ok(CArg::Int8(k.to_i8()?));
}
ty::Int(IntTy::I16) => {
return Ok(CArg::Int16(k.to_i16()?));
}
ty::Int(IntTy::I32) => {
return Ok(CArg::Int32(k.to_i32()?));
}
ty::Int(IntTy::I64) => {
return Ok(CArg::Int64(k.to_i64()?));
}
ty::Int(IntTy::Isize) => {
// This will fail if host != target, but then the entire FFI thing probably won't work well
// in that situation.
return Ok(CArg::ISize(k.to_machine_isize(cx)?.try_into().unwrap()));
}
// the uints
ty::Uint(UintTy::U8) => {
return Ok(CArg::UInt8(k.to_u8()?));
}
ty::Uint(UintTy::U16) => {
return Ok(CArg::UInt16(k.to_u16()?));
}
ty::Uint(UintTy::U32) => {
return Ok(CArg::UInt32(k.to_u32()?));
}
ty::Uint(UintTy::U64) => {
return Ok(CArg::UInt64(k.to_u64()?));
}
ty::Uint(UintTy::Usize) => {
// This will fail if host != target, but then the entire FFI thing probably won't work well
// in that situation.
return Ok(CArg::USize(k.to_machine_usize(cx)?.try_into().unwrap()));
}
_ => {}
}
// If no primitives were returned then we have an unsupported type.
throw_unsup_format!(
"unsupported scalar argument type to external C function: {:?}",
arg_type
);
}
/// Call external C function and
/// store output, depending on return type in the function signature.
fn call_external_c_and_store_return<'a>(
&mut self,
link_name: Symbol,
dest: &PlaceTy<'tcx, Provenance>,
ptr: CodePtr,
libffi_args: Vec<libffi::high::Arg<'a>>,
) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
// Unsafe because of the call to external C code.
// Because this is calling a C function it is not necessarily sound,
// but there is no way around this and we've checked as much as we can.
unsafe {
// If the return type of a function is a primitive integer type,
// then call the function (`ptr`) with arguments `libffi_args`, store the return value as the specified
// primitive integer type, and then write this value out to the miri memory as an integer.
match dest.layout.ty.kind() {
// ints
ty::Int(IntTy::I8) => {
let x = ffi::call::<i8>(ptr, libffi_args.as_slice());
this.write_int(x, dest)?;
return Ok(());
}
ty::Int(IntTy::I16) => {
let x = ffi::call::<i16>(ptr, libffi_args.as_slice());
this.write_int(x, dest)?;
return Ok(());
}
ty::Int(IntTy::I32) => {
let x = ffi::call::<i32>(ptr, libffi_args.as_slice());
this.write_int(x, dest)?;
return Ok(());
}
ty::Int(IntTy::I64) => {
let x = ffi::call::<i64>(ptr, libffi_args.as_slice());
this.write_int(x, dest)?;
return Ok(());
}
ty::Int(IntTy::Isize) => {
let x = ffi::call::<isize>(ptr, libffi_args.as_slice());
// `isize` doesn't `impl Into<i128>`, so convert manually.
// Convert to `i64` since this covers both 32- and 64-bit machines.
this.write_int(i64::try_from(x).unwrap(), dest)?;
return Ok(());
}
// uints
ty::Uint(UintTy::U8) => {
let x = ffi::call::<u8>(ptr, libffi_args.as_slice());
this.write_int(x, dest)?;
return Ok(());
}
ty::Uint(UintTy::U16) => {
let x = ffi::call::<u16>(ptr, libffi_args.as_slice());
this.write_int(x, dest)?;
return Ok(());
}
ty::Uint(UintTy::U32) => {
let x = ffi::call::<u32>(ptr, libffi_args.as_slice());
this.write_int(x, dest)?;
return Ok(());
}
ty::Uint(UintTy::U64) => {
let x = ffi::call::<u64>(ptr, libffi_args.as_slice());
this.write_int(x, dest)?;
return Ok(());
}
ty::Uint(UintTy::Usize) => {
let x = ffi::call::<usize>(ptr, libffi_args.as_slice());
// `usize` doesn't `impl Into<i128>`, so convert manually.
// Convert to `u64` since this covers both 32- and 64-bit machines.
this.write_int(u64::try_from(x).unwrap(), dest)?;
return Ok(());
}
// Functions with no declared return type (i.e., the default return)
// have the output_type `Tuple([])`.
ty::Tuple(t_list) =>
if t_list.len() == 0 {
ffi::call::<()>(ptr, libffi_args.as_slice());
return Ok(());
},
_ => {}
}
// FIXME ellen! deal with all the other return types
throw_unsup_format!("unsupported return type to external C function: {:?}", link_name);
}
}
/// Get the pointer to the function of the specified name in the shared object file,
/// if it exists. The function must be in the shared object file specified: we do *not*
/// return pointers to functions in dependencies of the library.
fn get_func_ptr_explicitly_from_lib(&mut self, link_name: Symbol) -> Option<CodePtr> {
let this = self.eval_context_mut();
// Try getting the function from the shared library.
// On windows `_lib_path` will be unused, hence the name starting with `_`.
let (lib, _lib_path) = this.machine.external_so_lib.as_ref().unwrap();
let func: libloading::Symbol<'_, unsafe extern "C" fn()> = unsafe {
match lib.get(link_name.as_str().as_bytes()) {
Ok(x) => x,
Err(_) => {
return None;
}
}
};
// FIXME: this is a hack!
// The `libloading` crate will automatically load system libraries like `libc`.
// On linux `libloading` is based on `dlsym`: https://docs.rs/libloading/0.7.3/src/libloading/os/unix/mod.rs.html#202
// and `dlsym`(https://linux.die.net/man/3/dlsym) looks through the dependency tree of the
// library if it can't find the symbol in the library itself.
// So, in order to check if the function was actually found in the specified
// `machine.external_so_lib` we need to check its `dli_fname` and compare it to
// the specified SO file path.
// This code is a reimplementation of the mechanism for getting `dli_fname` in `libloading`,
// from: https://docs.rs/libloading/0.7.3/src/libloading/os/unix/mod.rs.html#411
// using the `libc` crate where this interface is public.
// No `libc::dladdr` on windows.
#[cfg(unix)]
let mut info = std::mem::MaybeUninit::<libc::Dl_info>::uninit();
#[cfg(unix)]
unsafe {
if libc::dladdr(*func.deref() as *const _, info.as_mut_ptr()) != 0 {
if std::ffi::CStr::from_ptr(info.assume_init().dli_fname).to_str().unwrap()
!= _lib_path.to_str().unwrap()
{
return None;
}
}
}
// Return a pointer to the function.
Some(CodePtr(*func.deref() as *mut _))
}
/// Call specified external C function, with supplied arguments.
/// Need to convert all the arguments from their hir representations to
/// a form compatible with C (through `libffi` call).
/// Then, convert return from the C call into a corresponding form that
/// can be stored in Miri internal memory.
fn call_external_c_fct(
&mut self,
link_name: Symbol,
dest: &PlaceTy<'tcx, Provenance>,
args: &[OpTy<'tcx, Provenance>],
) -> InterpResult<'tcx, bool> {
// Get the pointer to the function in the shared object file if it exists.
let code_ptr = match self.get_func_ptr_explicitly_from_lib(link_name) {
Some(ptr) => ptr,
None => {
// Shared object file does not export this function -- try the shims next.
return Ok(false);
}
};
let this = self.eval_context_mut();
// Get the function arguments, and convert them to `libffi`-compatible form.
let mut libffi_args = Vec::<CArg>::with_capacity(args.len());
for cur_arg in args.iter() {
libffi_args.push(Self::scalar_to_carg(
this.read_scalar(cur_arg)?,
cur_arg.layout.ty,
this,
)?);
}
// Convert them to `libffi::high::Arg` type.
let libffi_args = libffi_args
.iter()
.map(|cur_arg| cur_arg.arg_downcast())
.collect::<Vec<libffi::high::Arg<'_>>>();
// Call the function and store output, depending on return type in the function signature.
self.call_external_c_and_store_return(link_name, dest, code_ptr, libffi_args)?;
Ok(true)
}
}
#[derive(Debug, Clone)]
/// Enum of supported arguments to external C functions.
// We introduce this enum instead of just calling `ffi::arg` and storing a list
// of `libffi::high::Arg` directly, because the `libffi::high::Arg` just wraps a reference
// to the value it represents: https://docs.rs/libffi/latest/libffi/high/call/struct.Arg.html
// and we need to store a copy of the value, and pass a reference to this copy to C instead.
pub enum CArg {
/// 8-bit signed integer.
Int8(i8),
/// 16-bit signed integer.
Int16(i16),
/// 32-bit signed integer.
Int32(i32),
/// 64-bit signed integer.
Int64(i64),
/// isize.
ISize(isize),
/// 8-bit unsigned integer.
UInt8(u8),
/// 16-bit unsigned integer.
UInt16(u16),
/// 32-bit unsigned integer.
UInt32(u32),
/// 64-bit unsigned integer.
UInt64(u64),
/// usize.
USize(usize),
}
impl<'a> CArg {
/// Convert a `CArg` to a `libffi` argument type.
fn arg_downcast(&'a self) -> libffi::high::Arg<'a> {
match self {
CArg::Int8(i) => ffi::arg(i),
CArg::Int16(i) => ffi::arg(i),
CArg::Int32(i) => ffi::arg(i),
CArg::Int64(i) => ffi::arg(i),
CArg::ISize(i) => ffi::arg(i),
CArg::UInt8(i) => ffi::arg(i),
CArg::UInt16(i) => ffi::arg(i),
CArg::UInt32(i) => ffi::arg(i),
CArg::UInt64(i) => ffi::arg(i),
CArg::USize(i) => ffi::arg(i),
}
}
}