1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
//! A subset of a mir body used for const evaluatability checking.
use crate::mir;
use crate::ty::visit::TypeVisitable;
use crate::ty::{self, DelaySpanBugEmitted, EarlyBinder, SubstsRef, Ty, TyCtxt};
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def_id::DefId;
use std::cmp;
use std::ops::ControlFlow;

rustc_index::newtype_index! {
    /// An index into an `AbstractConst`.
    pub struct NodeId {
        derive [HashStable]
        DEBUG_FORMAT = "n{}",
    }
}

/// A tree representing an anonymous constant.
///
/// This is only able to represent a subset of `MIR`,
/// and should not leak any information about desugarings.
#[derive(Debug, Clone, Copy)]
pub struct AbstractConst<'tcx> {
    // FIXME: Consider adding something like `IndexSlice`
    // and use this here.
    inner: &'tcx [Node<'tcx>],
    substs: SubstsRef<'tcx>,
}

impl<'tcx> AbstractConst<'tcx> {
    pub fn new(
        tcx: TyCtxt<'tcx>,
        uv: ty::UnevaluatedConst<'tcx>,
    ) -> Result<Option<AbstractConst<'tcx>>, ErrorGuaranteed> {
        let inner = tcx.thir_abstract_const_opt_const_arg(uv.def)?;
        debug!("AbstractConst::new({:?}) = {:?}", uv, inner);
        Ok(inner.map(|inner| AbstractConst { inner, substs: tcx.erase_regions(uv.substs) }))
    }

    pub fn from_const(
        tcx: TyCtxt<'tcx>,
        ct: ty::Const<'tcx>,
    ) -> Result<Option<AbstractConst<'tcx>>, ErrorGuaranteed> {
        match ct.kind() {
            ty::ConstKind::Unevaluated(uv) => AbstractConst::new(tcx, uv),
            ty::ConstKind::Error(DelaySpanBugEmitted { reported, .. }) => Err(reported),
            _ => Ok(None),
        }
    }

    #[inline]
    pub fn subtree(self, node: NodeId) -> AbstractConst<'tcx> {
        AbstractConst { inner: &self.inner[..=node.index()], substs: self.substs }
    }

    #[inline]
    pub fn root(self, tcx: TyCtxt<'tcx>) -> Node<'tcx> {
        let node = self.inner.last().copied().unwrap();
        match node {
            Node::Leaf(leaf) => Node::Leaf(EarlyBinder(leaf).subst(tcx, self.substs)),
            Node::Cast(kind, operand, ty) => {
                Node::Cast(kind, operand, EarlyBinder(ty).subst(tcx, self.substs))
            }
            // Don't perform substitution on the following as they can't directly contain generic params
            Node::Binop(_, _, _) | Node::UnaryOp(_, _) | Node::FunctionCall(_, _) => node,
        }
    }

    pub fn unify_failure_kind(self, tcx: TyCtxt<'tcx>) -> FailureKind {
        let mut failure_kind = FailureKind::Concrete;
        walk_abstract_const::<!, _>(tcx, self, |node| {
            match node.root(tcx) {
                Node::Leaf(leaf) => {
                    if leaf.has_infer_types_or_consts() {
                        failure_kind = FailureKind::MentionsInfer;
                    } else if leaf.has_param_types_or_consts() {
                        failure_kind = cmp::min(failure_kind, FailureKind::MentionsParam);
                    }
                }
                Node::Cast(_, _, ty) => {
                    if ty.has_infer_types_or_consts() {
                        failure_kind = FailureKind::MentionsInfer;
                    } else if ty.has_param_types_or_consts() {
                        failure_kind = cmp::min(failure_kind, FailureKind::MentionsParam);
                    }
                }
                Node::Binop(_, _, _) | Node::UnaryOp(_, _) | Node::FunctionCall(_, _) => {}
            }
            ControlFlow::CONTINUE
        });
        failure_kind
    }
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
pub enum CastKind {
    /// thir::ExprKind::As
    As,
    /// thir::ExprKind::Use
    Use,
}

/// A node of an `AbstractConst`.
#[derive(Debug, Clone, Copy, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
pub enum Node<'tcx> {
    Leaf(ty::Const<'tcx>),
    Binop(mir::BinOp, NodeId, NodeId),
    UnaryOp(mir::UnOp, NodeId),
    FunctionCall(NodeId, &'tcx [NodeId]),
    Cast(CastKind, NodeId, Ty<'tcx>),
}

#[derive(Debug, Copy, Clone, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
pub enum NotConstEvaluatable {
    Error(ErrorGuaranteed),
    MentionsInfer,
    MentionsParam,
}

impl From<ErrorGuaranteed> for NotConstEvaluatable {
    fn from(e: ErrorGuaranteed) -> NotConstEvaluatable {
        NotConstEvaluatable::Error(e)
    }
}

TrivialTypeTraversalAndLiftImpls! {
    NotConstEvaluatable,
}

impl<'tcx> TyCtxt<'tcx> {
    #[inline]
    pub fn thir_abstract_const_opt_const_arg(
        self,
        def: ty::WithOptConstParam<DefId>,
    ) -> Result<Option<&'tcx [Node<'tcx>]>, ErrorGuaranteed> {
        if let Some((did, param_did)) = def.as_const_arg() {
            self.thir_abstract_const_of_const_arg((did, param_did))
        } else {
            self.thir_abstract_const(def.did)
        }
    }
}

#[instrument(skip(tcx, f), level = "debug")]
pub fn walk_abstract_const<'tcx, R, F>(
    tcx: TyCtxt<'tcx>,
    ct: AbstractConst<'tcx>,
    mut f: F,
) -> ControlFlow<R>
where
    F: FnMut(AbstractConst<'tcx>) -> ControlFlow<R>,
{
    #[instrument(skip(tcx, f), level = "debug")]
    fn recurse<'tcx, R>(
        tcx: TyCtxt<'tcx>,
        ct: AbstractConst<'tcx>,
        f: &mut dyn FnMut(AbstractConst<'tcx>) -> ControlFlow<R>,
    ) -> ControlFlow<R> {
        f(ct)?;
        let root = ct.root(tcx);
        debug!(?root);
        match root {
            Node::Leaf(_) => ControlFlow::CONTINUE,
            Node::Binop(_, l, r) => {
                recurse(tcx, ct.subtree(l), f)?;
                recurse(tcx, ct.subtree(r), f)
            }
            Node::UnaryOp(_, v) => recurse(tcx, ct.subtree(v), f),
            Node::FunctionCall(func, args) => {
                recurse(tcx, ct.subtree(func), f)?;
                args.iter().try_for_each(|&arg| recurse(tcx, ct.subtree(arg), f))
            }
            Node::Cast(_, operand, _) => recurse(tcx, ct.subtree(operand), f),
        }
    }

    recurse(tcx, ct, &mut f)
}

// We were unable to unify the abstract constant with
// a constant found in the caller bounds, there are
// now three possible cases here.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub enum FailureKind {
    /// The abstract const still references an inference
    /// variable, in this case we return `TooGeneric`.
    MentionsInfer,
    /// The abstract const references a generic parameter,
    /// this means that we emit an error here.
    MentionsParam,
    /// The substs are concrete enough that we can simply
    /// try and evaluate the given constant.
    Concrete,
}