1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
use rustc_middle::ty::{
layout::{LayoutCx, TyAndLayout},
TyCtxt,
};
use rustc_target::abi::*;
use std::assert_matches::assert_matches;
/// Enforce some basic invariants on layouts.
pub(super) fn sanity_check_layout<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
layout: &TyAndLayout<'tcx>,
) {
// Type-level uninhabitedness should always imply ABI uninhabitedness.
if layout.ty.is_privately_uninhabited(cx.tcx, cx.param_env) {
assert!(layout.abi.is_uninhabited());
}
if layout.size.bytes() % layout.align.abi.bytes() != 0 {
bug!("size is not a multiple of align, in the following layout:\n{layout:#?}");
}
if !cfg!(debug_assertions) {
// Stop here, the rest is kind of expensive.
return;
}
/// Yields non-ZST fields of the type
fn non_zst_fields<'tcx, 'a>(
cx: &'a LayoutCx<'tcx, TyCtxt<'tcx>>,
layout: &'a TyAndLayout<'tcx>,
) -> impl Iterator<Item = (Size, TyAndLayout<'tcx>)> + 'a {
(0..layout.layout.fields().count()).filter_map(|i| {
let field = layout.field(cx, i);
// Also checking `align == 1` here leads to test failures in
// `layout/zero-sized-array-union.rs`, where a type has a zero-size field with
// alignment 4 that still gets ignored during layout computation (which is okay
// since other fields already force alignment 4).
let zst = field.is_zst();
(!zst).then(|| (layout.fields.offset(i), field))
})
}
fn skip_newtypes<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
layout: &TyAndLayout<'tcx>,
) -> TyAndLayout<'tcx> {
if matches!(layout.layout.variants(), Variants::Multiple { .. }) {
// Definitely not a newtype of anything.
return *layout;
}
let mut fields = non_zst_fields(cx, layout);
let Some(first) = fields.next() else {
// No fields here, so this could be a primitive or enum -- either way it's not a newtype around a thing
return *layout;
};
if fields.next().is_none() {
let (offset, first) = first;
if offset == Size::ZERO && first.layout.size() == layout.size {
// This is a newtype, so keep recursing.
// FIXME(RalfJung): I don't think it would be correct to do any checks for
// alignment here, so we don't. Is that correct?
return skip_newtypes(cx, &first);
}
}
// No more newtypes here.
*layout
}
fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>) {
// Verify the ABI mandated alignment and size.
let align = layout.abi.inherent_align(cx).map(|align| align.abi);
let size = layout.abi.inherent_size(cx);
let Some((align, size)) = align.zip(size) else {
assert_matches!(
layout.layout.abi(),
Abi::Uninhabited | Abi::Aggregate { .. },
"ABI unexpectedly missing alignment and/or size in {layout:#?}"
);
return;
};
assert_eq!(
layout.layout.align().abi,
align,
"alignment mismatch between ABI and layout in {layout:#?}"
);
assert_eq!(
layout.layout.size(),
size,
"size mismatch between ABI and layout in {layout:#?}"
);
// Verify per-ABI invariants
match layout.layout.abi() {
Abi::Scalar(_) => {
// Check that this matches the underlying field.
let inner = skip_newtypes(cx, layout);
assert!(
matches!(inner.layout.abi(), Abi::Scalar(_)),
"`Scalar` type {} is newtype around non-`Scalar` type {}",
layout.ty,
inner.ty
);
match inner.layout.fields() {
FieldsShape::Primitive => {
// Fine.
}
FieldsShape::Union(..) => {
// FIXME: I guess we could also check something here? Like, look at all fields?
return;
}
FieldsShape::Arbitrary { .. } => {
// Should be an enum, the only field is the discriminant.
assert!(
inner.ty.is_enum(),
"`Scalar` layout for non-primitive non-enum type {}",
inner.ty
);
assert_eq!(
inner.layout.fields().count(),
1,
"`Scalar` layout for multiple-field type in {inner:#?}",
);
let offset = inner.layout.fields().offset(0);
let field = inner.field(cx, 0);
// The field should be at the right offset, and match the `scalar` layout.
assert_eq!(
offset,
Size::ZERO,
"`Scalar` field at non-0 offset in {inner:#?}",
);
assert_eq!(field.size, size, "`Scalar` field with bad size in {inner:#?}",);
assert_eq!(
field.align.abi, align,
"`Scalar` field with bad align in {inner:#?}",
);
assert!(
matches!(field.abi, Abi::Scalar(_)),
"`Scalar` field with bad ABI in {inner:#?}",
);
}
_ => {
panic!("`Scalar` layout for non-primitive non-enum type {}", inner.ty);
}
}
}
Abi::ScalarPair(scalar1, scalar2) => {
// Check that the underlying pair of fields matches.
let inner = skip_newtypes(cx, layout);
assert!(
matches!(inner.layout.abi(), Abi::ScalarPair(..)),
"`ScalarPair` type {} is newtype around non-`ScalarPair` type {}",
layout.ty,
inner.ty
);
if matches!(inner.layout.variants(), Variants::Multiple { .. }) {
// FIXME: ScalarPair for enums is enormously complicated and it is very hard
// to check anything about them.
return;
}
match inner.layout.fields() {
FieldsShape::Arbitrary { .. } => {
// Checked below.
}
FieldsShape::Union(..) => {
// FIXME: I guess we could also check something here? Like, look at all fields?
return;
}
_ => {
panic!("`ScalarPair` layout with unexpected field shape in {inner:#?}");
}
}
let mut fields = non_zst_fields(cx, &inner);
let (offset1, field1) = fields.next().unwrap_or_else(|| {
panic!(
"`ScalarPair` layout for type with not even one non-ZST field: {inner:#?}"
)
});
let (offset2, field2) = fields.next().unwrap_or_else(|| {
panic!(
"`ScalarPair` layout for type with less than two non-ZST fields: {inner:#?}"
)
});
assert_matches!(
fields.next(),
None,
"`ScalarPair` layout for type with at least three non-ZST fields: {inner:#?}"
);
// The fields might be in opposite order.
let (offset1, field1, offset2, field2) = if offset1 <= offset2 {
(offset1, field1, offset2, field2)
} else {
(offset2, field2, offset1, field1)
};
// The fields should be at the right offset, and match the `scalar` layout.
let size1 = scalar1.size(cx);
let align1 = scalar1.align(cx).abi;
let size2 = scalar2.size(cx);
let align2 = scalar2.align(cx).abi;
assert_eq!(
offset1,
Size::ZERO,
"`ScalarPair` first field at non-0 offset in {inner:#?}",
);
assert_eq!(
field1.size, size1,
"`ScalarPair` first field with bad size in {inner:#?}",
);
assert_eq!(
field1.align.abi, align1,
"`ScalarPair` first field with bad align in {inner:#?}",
);
assert_matches!(
field1.abi,
Abi::Scalar(_),
"`ScalarPair` first field with bad ABI in {inner:#?}",
);
let field2_offset = size1.align_to(align2);
assert_eq!(
offset2, field2_offset,
"`ScalarPair` second field at bad offset in {inner:#?}",
);
assert_eq!(
field2.size, size2,
"`ScalarPair` second field with bad size in {inner:#?}",
);
assert_eq!(
field2.align.abi, align2,
"`ScalarPair` second field with bad align in {inner:#?}",
);
assert_matches!(
field2.abi,
Abi::Scalar(_),
"`ScalarPair` second field with bad ABI in {inner:#?}",
);
}
Abi::Vector { element, .. } => {
assert!(align >= element.align(cx).abi); // just sanity-checking `vector_align`.
// FIXME: Do some kind of check of the inner type, like for Scalar and ScalarPair.
}
Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check.
}
}
check_layout_abi(cx, layout);
if let Variants::Multiple { variants, .. } = &layout.variants {
for variant in variants.iter() {
// No nested "multiple".
assert!(matches!(variant.variants, Variants::Single { .. }));
// Variants should have the same or a smaller size as the full thing,
// and same for alignment.
if variant.size > layout.size {
bug!(
"Type with size {} bytes has variant with size {} bytes: {layout:#?}",
layout.size.bytes(),
variant.size.bytes(),
)
}
if variant.align.abi > layout.align.abi {
bug!(
"Type with alignment {} bytes has variant with alignment {} bytes: {layout:#?}",
layout.align.abi.bytes(),
variant.align.abi.bytes(),
)
}
// Skip empty variants.
if variant.size == Size::ZERO
|| variant.fields.count() == 0
|| variant.abi.is_uninhabited()
{
// These are never actually accessed anyway, so we can skip the coherence check
// for them. They also fail that check, since they have
// `Aggregate`/`Uninhabited` ABI even when the main type is
// `Scalar`/`ScalarPair`. (Note that sometimes, variants with fields have size
// 0, and sometimes, variants without fields have non-0 size.)
continue;
}
// The top-level ABI and the ABI of the variants should be coherent.
let scalar_coherent =
|s1: Scalar, s2: Scalar| s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx);
let abi_coherent = match (layout.abi, variant.abi) {
(Abi::Scalar(s1), Abi::Scalar(s2)) => scalar_coherent(s1, s2),
(Abi::ScalarPair(a1, b1), Abi::ScalarPair(a2, b2)) => {
scalar_coherent(a1, a2) && scalar_coherent(b1, b2)
}
(Abi::Uninhabited, _) => true,
(Abi::Aggregate { .. }, _) => true,
_ => false,
};
if !abi_coherent {
bug!(
"Variant ABI is incompatible with top-level ABI:\nvariant={:#?}\nTop-level: {layout:#?}",
variant
);
}
}
}
}