1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
use rustc_data_structures::fx::FxHashMap;
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::LocalDefId;
use rustc_middle::query::Providers;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_span::Span;
use std::iter;

pub fn provide(providers: &mut Providers) {
    *providers = Providers {
        assumed_wf_types,
        assumed_wf_types_for_rpitit: |tcx, def_id| {
            assert!(tcx.is_impl_trait_in_trait(def_id.to_def_id()));
            tcx.assumed_wf_types(def_id)
        },
        ..*providers
    };
}

fn assumed_wf_types<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &'tcx [(Ty<'tcx>, Span)] {
    match tcx.def_kind(def_id) {
        DefKind::Fn => {
            let sig = tcx.fn_sig(def_id).instantiate_identity();
            let liberated_sig = tcx.liberate_late_bound_regions(def_id.to_def_id(), sig);
            tcx.arena.alloc_from_iter(itertools::zip_eq(
                liberated_sig.inputs_and_output,
                fn_sig_spans(tcx, def_id),
            ))
        }
        DefKind::AssocFn => {
            let sig = tcx.fn_sig(def_id).instantiate_identity();
            let liberated_sig = tcx.liberate_late_bound_regions(def_id.to_def_id(), sig);
            let mut assumed_wf_types: Vec<_> =
                tcx.assumed_wf_types(tcx.local_parent(def_id)).into();
            assumed_wf_types.extend(itertools::zip_eq(
                liberated_sig.inputs_and_output,
                fn_sig_spans(tcx, def_id),
            ));
            tcx.arena.alloc_slice(&assumed_wf_types)
        }
        DefKind::Impl { .. } => {
            // Trait arguments and the self type for trait impls or only the self type for
            // inherent impls.
            let tys = match tcx.impl_trait_ref(def_id) {
                Some(trait_ref) => trait_ref.skip_binder().args.types().collect(),
                None => vec![tcx.type_of(def_id).instantiate_identity()],
            };

            let mut impl_spans = impl_spans(tcx, def_id);
            tcx.arena.alloc_from_iter(tys.into_iter().map(|ty| (ty, impl_spans.next().unwrap())))
        }
        DefKind::AssocTy if let Some(data) = tcx.opt_rpitit_info(def_id.to_def_id()) => match data {
            ty::ImplTraitInTraitData::Trait { fn_def_id, .. } => {
                // We need to remap all of the late-bound lifetimes in theassumed wf types
                // of the fn (which are represented as ReFree) to the early-bound lifetimes
                // of the RPITIT (which are represented by ReEarlyBound owned by the opaque).
                // Luckily, this is very easy to do because we already have that mapping
                // stored in the HIR of this RPITIT.
                //
                // Side-note: We don't really need to do this remapping for early-bound
                // lifetimes because they're already "linked" by the bidirectional outlives
                // predicates we insert in the `explicit_predicates_of` query for RPITITs.
                let mut mapping = FxHashMap::default();
                let generics = tcx.generics_of(def_id);

                // For each captured opaque lifetime, if it's late-bound (`ReFree` in this case,
                // since it has been liberated), map it back to the early-bound lifetime of
                // the GAT. Since RPITITs also have all of the fn's generics, we slice only
                // the end of the list corresponding to the opaque's generics.
                for param in &generics.params[tcx.generics_of(fn_def_id).params.len()..] {
                    let orig_lt = tcx.map_rpit_lifetime_to_fn_lifetime(param.def_id.expect_local());
                    if matches!(*orig_lt, ty::ReFree(..)) {
                        mapping.insert(
                            orig_lt,
                            ty::Region::new_early_bound(
                                tcx,
                                ty::EarlyBoundRegion {
                                    def_id: param.def_id,
                                    index: param.index,
                                    name: param.name,
                                },
                            ),
                        );
                    }
                }
                // FIXME: This could use a real folder, I guess.
                let remapped_wf_tys = tcx.fold_regions(
                    tcx.assumed_wf_types(fn_def_id.expect_local()).to_vec(),
                    |region, _| {
                        // If `region` is a `ReFree` that is captured by the
                        // opaque, remap it to its corresponding the early-
                        // bound region.
                        if let Some(remapped_region) = mapping.get(&region) {
                            *remapped_region
                        } else {
                            region
                        }
                    },
                );
                tcx.arena.alloc_from_iter(remapped_wf_tys)
            }
            // Assumed wf types for RPITITs in an impl just inherit (and instantiate)
            // the assumed wf types of the trait's RPITIT GAT.
            ty::ImplTraitInTraitData::Impl { .. } => {
                let impl_def_id = tcx.local_parent(def_id);
                let rpitit_def_id = tcx.associated_item(def_id).trait_item_def_id.unwrap();
                let args = ty::GenericArgs::identity_for_item(tcx, def_id).rebase_onto(
                    tcx,
                    impl_def_id.to_def_id(),
                    tcx.impl_trait_ref(impl_def_id).unwrap().instantiate_identity().args,
                );
                tcx.arena.alloc_from_iter(
                    ty::EarlyBinder::bind(tcx.assumed_wf_types_for_rpitit(rpitit_def_id))
                        .iter_instantiated_copied(tcx, args)
                        .chain(tcx.assumed_wf_types(impl_def_id).into_iter().copied()),
                )
            }
        },
        DefKind::AssocConst | DefKind::AssocTy => tcx.assumed_wf_types(tcx.local_parent(def_id)),
        DefKind::OpaqueTy => match tcx.def_kind(tcx.local_parent(def_id)) {
            DefKind::TyAlias => ty::List::empty(),
            DefKind::AssocTy => tcx.assumed_wf_types(tcx.local_parent(def_id)),
            // Nested opaque types only occur in associated types:
            // ` type Opaque<T> = impl Trait<&'static T, AssocTy = impl Nested>; `
            // assumed_wf_types should include those of `Opaque<T>`, `Opaque<T>` itself
            // and `&'static T`.
            DefKind::OpaqueTy => bug!("unimplemented implied bounds for nested opaque types"),
            def_kind => {
                bug!("unimplemented implied bounds for opaque types with parent {def_kind:?}")
            }
        },
        DefKind::Mod
        | DefKind::Struct
        | DefKind::Union
        | DefKind::Enum
        | DefKind::Variant
        | DefKind::Trait
        | DefKind::TyAlias
        | DefKind::ForeignTy
        | DefKind::TraitAlias
        | DefKind::TyParam
        | DefKind::Const
        | DefKind::ConstParam
        | DefKind::Static(_)
        | DefKind::Ctor(_, _)
        | DefKind::Macro(_)
        | DefKind::ExternCrate
        | DefKind::Use
        | DefKind::ForeignMod
        | DefKind::AnonConst
        | DefKind::InlineConst
        | DefKind::Field
        | DefKind::LifetimeParam
        | DefKind::GlobalAsm
        | DefKind::Closure
        | DefKind::Generator => ty::List::empty(),
    }
}

fn fn_sig_spans(tcx: TyCtxt<'_>, def_id: LocalDefId) -> impl Iterator<Item = Span> + '_ {
    let node = tcx.hir().get(tcx.local_def_id_to_hir_id(def_id));
    if let Some(decl) = node.fn_decl() {
        decl.inputs.iter().map(|ty| ty.span).chain(iter::once(decl.output.span()))
    } else {
        bug!("unexpected item for fn {def_id:?}: {node:?}")
    }
}

fn impl_spans(tcx: TyCtxt<'_>, def_id: LocalDefId) -> impl Iterator<Item = Span> + '_ {
    let item = tcx.hir().expect_item(def_id);
    if let hir::ItemKind::Impl(impl_) = item.kind {
        let trait_args = impl_
            .of_trait
            .into_iter()
            .flat_map(|trait_ref| trait_ref.path.segments.last().unwrap().args().args)
            .map(|arg| arg.span());
        let dummy_spans_for_default_args =
            impl_.of_trait.into_iter().flat_map(|trait_ref| iter::repeat(trait_ref.path.span));
        iter::once(impl_.self_ty.span).chain(trait_args).chain(dummy_spans_for_default_args)
    } else {
        bug!("unexpected item for impl {def_id:?}: {item:?}")
    }
}