1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
//! Type checking expressions.
//!
//! See `mod.rs` for more context on type checking in general.
use crate::cast;
use crate::coercion::CoerceMany;
use crate::coercion::DynamicCoerceMany;
use crate::errors::ReturnLikeStatementKind;
use crate::errors::TypeMismatchFruTypo;
use crate::errors::{AddressOfTemporaryTaken, ReturnStmtOutsideOfFnBody, StructExprNonExhaustive};
use crate::errors::{
FieldMultiplySpecifiedInInitializer, FunctionalRecordUpdateOnNonStruct, HelpUseLatestEdition,
YieldExprOutsideOfGenerator,
};
use crate::fatally_break_rust;
use crate::method::{MethodCallComponents, SelfSource};
use crate::type_error_struct;
use crate::Expectation::{self, ExpectCastableToType, ExpectHasType, NoExpectation};
use crate::{
report_unexpected_variant_res, BreakableCtxt, Diverges, FnCtxt, Needs,
TupleArgumentsFlag::DontTupleArguments,
};
use rustc_ast as ast;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_errors::{
pluralize, struct_span_err, AddToDiagnostic, Applicability, Diagnostic, DiagnosticBuilder,
DiagnosticId, ErrorGuaranteed, StashKey,
};
use rustc_hir as hir;
use rustc_hir::def::{CtorKind, DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::Visitor;
use rustc_hir::lang_items::LangItem;
use rustc_hir::{ExprKind, HirId, QPath};
use rustc_hir_analysis::astconv::AstConv as _;
use rustc_hir_analysis::check::ty_kind_suggestion;
use rustc_infer::infer;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_infer::infer::DefineOpaqueTypes;
use rustc_infer::infer::InferOk;
use rustc_infer::traits::query::NoSolution;
use rustc_infer::traits::ObligationCause;
use rustc_middle::ty::adjustment::{Adjust, Adjustment, AllowTwoPhase};
use rustc_middle::ty::error::{
ExpectedFound,
TypeError::{FieldMisMatch, Sorts},
};
use rustc_middle::ty::GenericArgsRef;
use rustc_middle::ty::{self, AdtKind, Ty, TypeVisitableExt};
use rustc_session::errors::ExprParenthesesNeeded;
use rustc_session::parse::feature_err;
use rustc_span::edit_distance::find_best_match_for_name;
use rustc_span::hygiene::DesugaringKind;
use rustc_span::source_map::{Span, Spanned};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_target::abi::FieldIdx;
use rustc_target::spec::abi::Abi::RustIntrinsic;
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt;
use rustc_trait_selection::traits::ObligationCtxt;
use rustc_trait_selection::traits::{self, ObligationCauseCode};
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
pub fn check_expr_has_type_or_error(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected_ty: Ty<'tcx>,
extend_err: impl FnOnce(&mut Diagnostic),
) -> Ty<'tcx> {
let mut ty = self.check_expr_with_expectation(expr, ExpectHasType(expected_ty));
// While we don't allow *arbitrary* coercions here, we *do* allow
// coercions from ! to `expected`.
if ty.is_never() {
if let Some(adjustments) = self.typeck_results.borrow().adjustments().get(expr.hir_id) {
let reported = self.tcx().sess.delay_span_bug(
expr.span,
"expression with never type wound up being adjusted",
);
return if let [Adjustment { kind: Adjust::NeverToAny, target }] = &adjustments[..] {
target.to_owned()
} else {
Ty::new_error(self.tcx(), reported)
};
}
let adj_ty = self.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::AdjustmentType,
span: expr.span,
});
self.apply_adjustments(
expr,
vec![Adjustment { kind: Adjust::NeverToAny, target: adj_ty }],
);
ty = adj_ty;
}
if let Some(mut err) = self.demand_suptype_diag(expr.span, expected_ty, ty) {
let _ = self.emit_type_mismatch_suggestions(
&mut err,
expr.peel_drop_temps(),
ty,
expected_ty,
None,
None,
);
extend_err(&mut err);
err.emit();
}
ty
}
pub(super) fn check_expr_coercible_to_type(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected: Ty<'tcx>,
expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
) -> Ty<'tcx> {
let ty = self.check_expr_with_hint(expr, expected);
// checks don't need two phase
self.demand_coerce(expr, ty, expected, expected_ty_expr, AllowTwoPhase::No)
}
pub(super) fn check_expr_with_hint(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected: Ty<'tcx>,
) -> Ty<'tcx> {
self.check_expr_with_expectation(expr, ExpectHasType(expected))
}
fn check_expr_with_expectation_and_needs(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected: Expectation<'tcx>,
needs: Needs,
) -> Ty<'tcx> {
let ty = self.check_expr_with_expectation(expr, expected);
// If the expression is used in a place whether mutable place is required
// e.g. LHS of assignment, perform the conversion.
if let Needs::MutPlace = needs {
self.convert_place_derefs_to_mutable(expr);
}
ty
}
pub(super) fn check_expr(&self, expr: &'tcx hir::Expr<'tcx>) -> Ty<'tcx> {
self.check_expr_with_expectation(expr, NoExpectation)
}
pub(super) fn check_expr_with_needs(
&self,
expr: &'tcx hir::Expr<'tcx>,
needs: Needs,
) -> Ty<'tcx> {
self.check_expr_with_expectation_and_needs(expr, NoExpectation, needs)
}
/// Invariant:
/// If an expression has any sub-expressions that result in a type error,
/// inspecting that expression's type with `ty.references_error()` will return
/// true. Likewise, if an expression is known to diverge, inspecting its
/// type with `ty::type_is_bot` will return true (n.b.: since Rust is
/// strict, _|_ can appear in the type of an expression that does not,
/// itself, diverge: for example, fn() -> _|_.)
/// Note that inspecting a type's structure *directly* may expose the fact
/// that there are actually multiple representations for `Error`, so avoid
/// that when err needs to be handled differently.
#[instrument(skip(self, expr), level = "debug")]
pub(super) fn check_expr_with_expectation(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected: Expectation<'tcx>,
) -> Ty<'tcx> {
self.check_expr_with_expectation_and_args(expr, expected, &[])
}
/// Same as `check_expr_with_expectation`, but allows us to pass in the arguments of a
/// `ExprKind::Call` when evaluating its callee when it is an `ExprKind::Path`.
pub(super) fn check_expr_with_expectation_and_args(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected: Expectation<'tcx>,
args: &'tcx [hir::Expr<'tcx>],
) -> Ty<'tcx> {
if self.tcx().sess.verbose() {
// make this code only run with -Zverbose because it is probably slow
if let Ok(lint_str) = self.tcx.sess.source_map().span_to_snippet(expr.span) {
if !lint_str.contains('\n') {
debug!("expr text: {lint_str}");
} else {
let mut lines = lint_str.lines();
if let Some(line0) = lines.next() {
let remaining_lines = lines.count();
debug!("expr text: {line0}");
debug!("expr text: ...(and {remaining_lines} more lines)");
}
}
}
}
// True if `expr` is a `Try::from_ok(())` that is a result of desugaring a try block
// without the final expr (e.g. `try { return; }`). We don't want to generate an
// unreachable_code lint for it since warnings for autogenerated code are confusing.
let is_try_block_generated_unit_expr = match expr.kind {
ExprKind::Call(_, args) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {
args.len() == 1 && args[0].span.is_desugaring(DesugaringKind::TryBlock)
}
_ => false,
};
// Warn for expressions after diverging siblings.
if !is_try_block_generated_unit_expr {
self.warn_if_unreachable(expr.hir_id, expr.span, "expression");
}
// Hide the outer diverging and has_errors flags.
let old_diverges = self.diverges.replace(Diverges::Maybe);
let ty = ensure_sufficient_stack(|| match &expr.kind {
hir::ExprKind::Path(
qpath @ (hir::QPath::Resolved(..) | hir::QPath::TypeRelative(..)),
) => self.check_expr_path(qpath, expr, args),
_ => self.check_expr_kind(expr, expected),
});
let ty = self.resolve_vars_if_possible(ty);
// Warn for non-block expressions with diverging children.
match expr.kind {
ExprKind::Block(..)
| ExprKind::If(..)
| ExprKind::Let(..)
| ExprKind::Loop(..)
| ExprKind::Match(..) => {}
// If `expr` is a result of desugaring the try block and is an ok-wrapped
// diverging expression (e.g. it arose from desugaring of `try { return }`),
// we skip issuing a warning because it is autogenerated code.
ExprKind::Call(..) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {}
ExprKind::Call(callee, _) => self.warn_if_unreachable(expr.hir_id, callee.span, "call"),
ExprKind::MethodCall(segment, ..) => {
self.warn_if_unreachable(expr.hir_id, segment.ident.span, "call")
}
_ => self.warn_if_unreachable(expr.hir_id, expr.span, "expression"),
}
// Any expression that produces a value of type `!` must have diverged
if ty.is_never() {
self.diverges.set(self.diverges.get() | Diverges::always(expr.span));
}
// Record the type, which applies it effects.
// We need to do this after the warning above, so that
// we don't warn for the diverging expression itself.
self.write_ty(expr.hir_id, ty);
// Combine the diverging and has_error flags.
self.diverges.set(self.diverges.get() | old_diverges);
debug!("type of {} is...", self.tcx.hir().node_to_string(expr.hir_id));
debug!("... {:?}, expected is {:?}", ty, expected);
ty
}
#[instrument(skip(self, expr), level = "debug")]
fn check_expr_kind(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected: Expectation<'tcx>,
) -> Ty<'tcx> {
trace!("expr={:#?}", expr);
let tcx = self.tcx;
match expr.kind {
ExprKind::Lit(ref lit) => self.check_lit(&lit, expected),
ExprKind::Binary(op, lhs, rhs) => self.check_binop(expr, op, lhs, rhs, expected),
ExprKind::Assign(lhs, rhs, span) => {
self.check_expr_assign(expr, expected, lhs, rhs, span)
}
ExprKind::AssignOp(op, lhs, rhs) => {
self.check_binop_assign(expr, op, lhs, rhs, expected)
}
ExprKind::Unary(unop, oprnd) => self.check_expr_unary(unop, oprnd, expected, expr),
ExprKind::AddrOf(kind, mutbl, oprnd) => {
self.check_expr_addr_of(kind, mutbl, oprnd, expected, expr)
}
ExprKind::Path(QPath::LangItem(lang_item, _, hir_id)) => {
self.check_lang_item_path(lang_item, expr, hir_id)
}
ExprKind::Path(ref qpath) => self.check_expr_path(qpath, expr, &[]),
ExprKind::InlineAsm(asm) => {
// We defer some asm checks as we may not have resolved the input and output types yet (they may still be infer vars).
self.deferred_asm_checks.borrow_mut().push((asm, expr.hir_id));
self.check_expr_asm(asm)
}
ExprKind::OffsetOf(container, ref fields) => {
self.check_offset_of(container, fields, expr)
}
ExprKind::Break(destination, ref expr_opt) => {
self.check_expr_break(destination, expr_opt.as_deref(), expr)
}
ExprKind::Continue(destination) => {
if destination.target_id.is_ok() {
tcx.types.never
} else {
// There was an error; make type-check fail.
Ty::new_misc_error(tcx)
}
}
ExprKind::Ret(ref expr_opt) => self.check_expr_return(expr_opt.as_deref(), expr),
ExprKind::Become(call) => self.check_expr_become(call, expr),
ExprKind::Let(let_expr) => self.check_expr_let(let_expr),
ExprKind::Loop(body, _, source, _) => {
self.check_expr_loop(body, source, expected, expr)
}
ExprKind::Match(discrim, arms, match_src) => {
self.check_match(expr, &discrim, arms, expected, match_src)
}
ExprKind::Closure(closure) => self.check_expr_closure(closure, expr.span, expected),
ExprKind::Block(body, _) => self.check_block_with_expected(&body, expected),
ExprKind::Call(callee, args) => self.check_call(expr, &callee, args, expected),
ExprKind::MethodCall(segment, receiver, args, _) => {
self.check_method_call(expr, segment, receiver, args, expected)
}
ExprKind::Cast(e, t) => self.check_expr_cast(e, t, expr),
ExprKind::Type(e, t) => {
let ascribed_ty = self.to_ty_saving_user_provided_ty(&t);
let ty = self.check_expr_with_hint(e, ascribed_ty);
self.demand_eqtype(e.span, ascribed_ty, ty);
ascribed_ty
}
ExprKind::If(cond, then_expr, opt_else_expr) => {
self.check_then_else(cond, then_expr, opt_else_expr, expr.span, expected)
}
ExprKind::DropTemps(e) => self.check_expr_with_expectation(e, expected),
ExprKind::Array(args) => self.check_expr_array(args, expected, expr),
ExprKind::ConstBlock(ref block) => self.check_expr_const_block(block, expected, expr),
ExprKind::Repeat(element, ref count) => {
self.check_expr_repeat(element, count, expected, expr)
}
ExprKind::Tup(elts) => self.check_expr_tuple(elts, expected, expr),
ExprKind::Struct(qpath, fields, ref base_expr) => {
self.check_expr_struct(expr, expected, qpath, fields, base_expr)
}
ExprKind::Field(base, field) => self.check_field(expr, &base, field, expected),
ExprKind::Index(base, idx, brackets_span) => {
self.check_expr_index(base, idx, expr, brackets_span)
}
ExprKind::Yield(value, ref src) => self.check_expr_yield(value, expr, src),
hir::ExprKind::Err(guar) => Ty::new_error(tcx, guar),
}
}
fn check_expr_unary(
&self,
unop: hir::UnOp,
oprnd: &'tcx hir::Expr<'tcx>,
expected: Expectation<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
let expected_inner = match unop {
hir::UnOp::Not | hir::UnOp::Neg => expected,
hir::UnOp::Deref => NoExpectation,
};
let mut oprnd_t = self.check_expr_with_expectation(&oprnd, expected_inner);
if !oprnd_t.references_error() {
oprnd_t = self.structurally_resolve_type(expr.span, oprnd_t);
match unop {
hir::UnOp::Deref => {
if let Some(ty) = self.lookup_derefing(expr, oprnd, oprnd_t) {
oprnd_t = ty;
} else {
let mut err = type_error_struct!(
tcx.sess,
expr.span,
oprnd_t,
E0614,
"type `{oprnd_t}` cannot be dereferenced",
);
let sp = tcx.sess.source_map().start_point(expr.span).with_parent(None);
if let Some(sp) =
tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp)
{
err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
}
oprnd_t = Ty::new_error(tcx, err.emit());
}
}
hir::UnOp::Not => {
let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
// If it's builtin, we can reuse the type, this helps inference.
if !(oprnd_t.is_integral() || *oprnd_t.kind() == ty::Bool) {
oprnd_t = result;
}
}
hir::UnOp::Neg => {
let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
// If it's builtin, we can reuse the type, this helps inference.
if !oprnd_t.is_numeric() {
oprnd_t = result;
}
}
}
}
oprnd_t
}
fn check_expr_addr_of(
&self,
kind: hir::BorrowKind,
mutbl: hir::Mutability,
oprnd: &'tcx hir::Expr<'tcx>,
expected: Expectation<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
match ty.kind() {
ty::Ref(_, ty, _) | ty::RawPtr(ty::TypeAndMut { ty, .. }) => {
if oprnd.is_syntactic_place_expr() {
// Places may legitimately have unsized types.
// For example, dereferences of a fat pointer and
// the last field of a struct can be unsized.
ExpectHasType(*ty)
} else {
Expectation::rvalue_hint(self, *ty)
}
}
_ => NoExpectation,
}
});
let ty =
self.check_expr_with_expectation_and_needs(&oprnd, hint, Needs::maybe_mut_place(mutbl));
let tm = ty::TypeAndMut { ty, mutbl };
match kind {
_ if tm.ty.references_error() => Ty::new_misc_error(self.tcx),
hir::BorrowKind::Raw => {
self.check_named_place_expr(oprnd);
Ty::new_ptr(self.tcx, tm)
}
hir::BorrowKind::Ref => {
// Note: at this point, we cannot say what the best lifetime
// is to use for resulting pointer. We want to use the
// shortest lifetime possible so as to avoid spurious borrowck
// errors. Moreover, the longest lifetime will depend on the
// precise details of the value whose address is being taken
// (and how long it is valid), which we don't know yet until
// type inference is complete.
//
// Therefore, here we simply generate a region variable. The
// region inferencer will then select a suitable value.
// Finally, borrowck will infer the value of the region again,
// this time with enough precision to check that the value
// whose address was taken can actually be made to live as long
// as it needs to live.
let region = self.next_region_var(infer::AddrOfRegion(expr.span));
Ty::new_ref(self.tcx, region, tm)
}
}
}
/// Does this expression refer to a place that either:
/// * Is based on a local or static.
/// * Contains a dereference
/// Note that the adjustments for the children of `expr` should already
/// have been resolved.
fn check_named_place_expr(&self, oprnd: &'tcx hir::Expr<'tcx>) {
let is_named = oprnd.is_place_expr(|base| {
// Allow raw borrows if there are any deref adjustments.
//
// const VAL: (i32,) = (0,);
// const REF: &(i32,) = &(0,);
//
// &raw const VAL.0; // ERROR
// &raw const REF.0; // OK, same as &raw const (*REF).0;
//
// This is maybe too permissive, since it allows
// `let u = &raw const Box::new((1,)).0`, which creates an
// immediately dangling raw pointer.
self.typeck_results
.borrow()
.adjustments()
.get(base.hir_id)
.is_some_and(|x| x.iter().any(|adj| matches!(adj.kind, Adjust::Deref(_))))
});
if !is_named {
self.tcx.sess.emit_err(AddressOfTemporaryTaken { span: oprnd.span });
}
}
fn check_lang_item_path(
&self,
lang_item: hir::LangItem,
expr: &'tcx hir::Expr<'tcx>,
hir_id: Option<hir::HirId>,
) -> Ty<'tcx> {
self.resolve_lang_item_path(lang_item, expr.span, expr.hir_id, hir_id).1
}
pub(crate) fn check_expr_path(
&self,
qpath: &'tcx hir::QPath<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
args: &'tcx [hir::Expr<'tcx>],
) -> Ty<'tcx> {
let tcx = self.tcx;
let (res, opt_ty, segs) =
self.resolve_ty_and_res_fully_qualified_call(qpath, expr.hir_id, expr.span);
let ty = match res {
Res::Err => {
self.suggest_assoc_method_call(segs);
let e =
self.tcx.sess.delay_span_bug(qpath.span(), "`Res::Err` but no error emitted");
self.set_tainted_by_errors(e);
Ty::new_error(tcx, e)
}
Res::Def(DefKind::Variant, _) => {
let e = report_unexpected_variant_res(tcx, res, qpath, expr.span, "E0533", "value");
Ty::new_error(tcx, e)
}
_ => self.instantiate_value_path(segs, opt_ty, res, expr.span, expr.hir_id).0,
};
if let ty::FnDef(did, callee_args) = *ty.kind() {
let fn_sig = ty.fn_sig(tcx);
// HACK: whenever we get a FnDef in a non-const context, enforce effects to get the
// default `host = true` to avoid inference errors later.
if tcx.hir().body_const_context(self.body_id).is_none() {
self.enforce_context_effects(expr.hir_id, qpath.span(), did, callee_args);
}
if tcx.fn_sig(did).skip_binder().abi() == RustIntrinsic
&& tcx.item_name(did) == sym::transmute
{
let from = fn_sig.inputs().skip_binder()[0];
let to = fn_sig.output().skip_binder();
// We defer the transmute to the end of typeck, once all inference vars have
// been resolved or we errored. This is important as we can only check transmute
// on concrete types, but the output type may not be known yet (it would only
// be known if explicitly specified via turbofish).
self.deferred_transmute_checks.borrow_mut().push((from, to, expr.hir_id));
}
if !tcx.features().unsized_fn_params {
// We want to remove some Sized bounds from std functions,
// but don't want to expose the removal to stable Rust.
// i.e., we don't want to allow
//
// ```rust
// drop as fn(str);
// ```
//
// to work in stable even if the Sized bound on `drop` is relaxed.
for i in 0..fn_sig.inputs().skip_binder().len() {
// We just want to check sizedness, so instead of introducing
// placeholder lifetimes with probing, we just replace higher lifetimes
// with fresh vars.
let span = args.get(i).map(|a| a.span).unwrap_or(expr.span);
let input = self.instantiate_binder_with_fresh_vars(
span,
infer::LateBoundRegionConversionTime::FnCall,
fn_sig.input(i),
);
self.require_type_is_sized_deferred(
input,
span,
traits::SizedArgumentType(None),
);
}
}
// Here we want to prevent struct constructors from returning unsized types.
// There were two cases this happened: fn pointer coercion in stable
// and usual function call in presence of unsized_locals.
// Also, as we just want to check sizedness, instead of introducing
// placeholder lifetimes with probing, we just replace higher lifetimes
// with fresh vars.
let output = self.instantiate_binder_with_fresh_vars(
expr.span,
infer::LateBoundRegionConversionTime::FnCall,
fn_sig.output(),
);
self.require_type_is_sized_deferred(output, expr.span, traits::SizedReturnType);
}
// We always require that the type provided as the value for
// a type parameter outlives the moment of instantiation.
let args = self.typeck_results.borrow().node_args(expr.hir_id);
self.add_wf_bounds(args, expr);
ty
}
fn check_expr_break(
&self,
destination: hir::Destination,
expr_opt: Option<&'tcx hir::Expr<'tcx>>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
if let Ok(target_id) = destination.target_id {
let (e_ty, cause);
if let Some(e) = expr_opt {
// If this is a break with a value, we need to type-check
// the expression. Get an expected type from the loop context.
let opt_coerce_to = {
// We should release `enclosing_breakables` before the `check_expr_with_hint`
// below, so can't move this block of code to the enclosing scope and share
// `ctxt` with the second `enclosing_breakables` borrow below.
let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
match enclosing_breakables.opt_find_breakable(target_id) {
Some(ctxt) => ctxt.coerce.as_ref().map(|coerce| coerce.expected_ty()),
None => {
// Avoid ICE when `break` is inside a closure (#65383).
return Ty::new_error_with_message(
tcx,
expr.span,
"break was outside loop, but no error was emitted",
);
}
}
};
// If the loop context is not a `loop { }`, then break with
// a value is illegal, and `opt_coerce_to` will be `None`.
// Just set expectation to error in that case.
let coerce_to = opt_coerce_to.unwrap_or_else(|| Ty::new_misc_error(tcx));
// Recurse without `enclosing_breakables` borrowed.
e_ty = self.check_expr_with_hint(e, coerce_to);
cause = self.misc(e.span);
} else {
// Otherwise, this is a break *without* a value. That's
// always legal, and is equivalent to `break ()`.
e_ty = Ty::new_unit(tcx);
cause = self.misc(expr.span);
}
// Now that we have type-checked `expr_opt`, borrow
// the `enclosing_loops` field and let's coerce the
// type of `expr_opt` into what is expected.
let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
let Some(ctxt) = enclosing_breakables.opt_find_breakable(target_id) else {
// Avoid ICE when `break` is inside a closure (#65383).
return Ty::new_error_with_message(
tcx,
expr.span,
"break was outside loop, but no error was emitted",
);
};
if let Some(ref mut coerce) = ctxt.coerce {
if let Some(ref e) = expr_opt {
coerce.coerce(self, &cause, e, e_ty);
} else {
assert!(e_ty.is_unit());
let ty = coerce.expected_ty();
coerce.coerce_forced_unit(
self,
&cause,
|mut err| {
self.suggest_mismatched_types_on_tail(
&mut err, expr, ty, e_ty, target_id,
);
let error = Some(Sorts(ExpectedFound { expected: ty, found: e_ty }));
self.annotate_loop_expected_due_to_inference(&mut err, expr, error);
if let Some(val) = ty_kind_suggestion(ty) {
err.span_suggestion_verbose(
expr.span.shrink_to_hi(),
"give it a value of the expected type",
format!(" {val}"),
Applicability::HasPlaceholders,
);
}
},
false,
);
}
} else {
// If `ctxt.coerce` is `None`, we can just ignore
// the type of the expression. This is because
// either this was a break *without* a value, in
// which case it is always a legal type (`()`), or
// else an error would have been flagged by the
// `loops` pass for using break with an expression
// where you are not supposed to.
assert!(expr_opt.is_none() || self.tcx.sess.has_errors().is_some());
}
// If we encountered a `break`, then (no surprise) it may be possible to break from the
// loop... unless the value being returned from the loop diverges itself, e.g.
// `break return 5` or `break loop {}`.
ctxt.may_break |= !self.diverges.get().is_always();
// the type of a `break` is always `!`, since it diverges
tcx.types.never
} else {
// Otherwise, we failed to find the enclosing loop;
// this can only happen if the `break` was not
// inside a loop at all, which is caught by the
// loop-checking pass.
let err = Ty::new_error_with_message(
self.tcx,
expr.span,
"break was outside loop, but no error was emitted",
);
// We still need to assign a type to the inner expression to
// prevent the ICE in #43162.
if let Some(e) = expr_opt {
self.check_expr_with_hint(e, err);
// ... except when we try to 'break rust;'.
// ICE this expression in particular (see #43162).
if let ExprKind::Path(QPath::Resolved(_, path)) = e.kind {
if let [segment] = path.segments && segment.ident.name == sym::rust {
fatally_break_rust(self.tcx);
}
}
}
// There was an error; make type-check fail.
err
}
}
fn check_expr_return(
&self,
expr_opt: Option<&'tcx hir::Expr<'tcx>>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
if self.ret_coercion.is_none() {
self.emit_return_outside_of_fn_body(expr, ReturnLikeStatementKind::Return);
if let Some(e) = expr_opt {
// We still have to type-check `e` (issue #86188), but calling
// `check_return_expr` only works inside fn bodies.
self.check_expr(e);
}
} else if let Some(e) = expr_opt {
if self.ret_coercion_span.get().is_none() {
self.ret_coercion_span.set(Some(e.span));
}
self.check_return_expr(e, true);
} else {
let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
if self.ret_coercion_span.get().is_none() {
self.ret_coercion_span.set(Some(expr.span));
}
let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
if let Some((_, fn_decl, _)) = self.get_fn_decl(expr.hir_id) {
coercion.coerce_forced_unit(
self,
&cause,
|db| {
let span = fn_decl.output.span();
if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
db.span_label(
span,
format!("expected `{snippet}` because of this return type"),
);
}
},
true,
);
} else {
coercion.coerce_forced_unit(self, &cause, |_| (), true);
}
}
self.tcx.types.never
}
fn check_expr_become(
&self,
call: &'tcx hir::Expr<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
match &self.ret_coercion {
Some(ret_coercion) => {
let ret_ty = ret_coercion.borrow().expected_ty();
let call_expr_ty = self.check_expr_with_hint(call, ret_ty);
// N.B. don't coerce here, as tail calls can't support most/all coercions
// FIXME(explicit_tail_calls): add a diagnostic note that `become` doesn't allow coercions
self.demand_suptype(expr.span, ret_ty, call_expr_ty);
}
None => {
self.emit_return_outside_of_fn_body(expr, ReturnLikeStatementKind::Become);
// Fallback to simply type checking `call` without hint/demanding the right types.
// Best effort to highlight more errors.
self.check_expr(call);
}
}
self.tcx.types.never
}
/// Check an expression that _is being returned_.
/// For example, this is called with `return_expr: $expr` when `return $expr`
/// is encountered.
///
/// Note that this function must only be called in function bodies.
///
/// `explicit_return` is `true` if we're checking an explicit `return expr`,
/// and `false` if we're checking a trailing expression.
pub(super) fn check_return_expr(
&self,
return_expr: &'tcx hir::Expr<'tcx>,
explicit_return: bool,
) {
let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
span_bug!(return_expr.span, "check_return_expr called outside fn body")
});
let ret_ty = ret_coercion.borrow().expected_ty();
let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty);
let mut span = return_expr.span;
// Use the span of the trailing expression for our cause,
// not the span of the entire function
if !explicit_return
&& let ExprKind::Block(body, _) = return_expr.kind
&& let Some(last_expr) = body.expr
{
span = last_expr.span;
}
ret_coercion.borrow_mut().coerce(
self,
&self.cause(span, ObligationCauseCode::ReturnValue(return_expr.hir_id)),
return_expr,
return_expr_ty,
);
if let Some(fn_sig) = self.body_fn_sig()
&& fn_sig.output().has_opaque_types()
{
// Point any obligations that were registered due to opaque type
// inference at the return expression.
self.select_obligations_where_possible(|errors| {
self.point_at_return_for_opaque_ty_error(errors, span, return_expr_ty, return_expr.span);
});
}
}
/// Emit an error because `return` or `become` is used outside of a function body.
///
/// `expr` is the `return` (`become`) "statement", `kind` is the kind of the statement
/// either `Return` or `Become`.
fn emit_return_outside_of_fn_body(&self, expr: &hir::Expr<'_>, kind: ReturnLikeStatementKind) {
let mut err = ReturnStmtOutsideOfFnBody {
span: expr.span,
encl_body_span: None,
encl_fn_span: None,
statement_kind: kind,
};
let encl_item_id = self.tcx.hir().get_parent_item(expr.hir_id);
if let Some(hir::Node::Item(hir::Item {
kind: hir::ItemKind::Fn(..),
span: encl_fn_span,
..
}))
| Some(hir::Node::TraitItem(hir::TraitItem {
kind: hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)),
span: encl_fn_span,
..
}))
| Some(hir::Node::ImplItem(hir::ImplItem {
kind: hir::ImplItemKind::Fn(..),
span: encl_fn_span,
..
})) = self.tcx.hir().find_by_def_id(encl_item_id.def_id)
{
// We are inside a function body, so reporting "return statement
// outside of function body" needs an explanation.
let encl_body_owner_id = self.tcx.hir().enclosing_body_owner(expr.hir_id);
// If this didn't hold, we would not have to report an error in
// the first place.
assert_ne!(encl_item_id.def_id, encl_body_owner_id);
let encl_body_id = self.tcx.hir().body_owned_by(encl_body_owner_id);
let encl_body = self.tcx.hir().body(encl_body_id);
err.encl_body_span = Some(encl_body.value.span);
err.encl_fn_span = Some(*encl_fn_span);
}
self.tcx.sess.emit_err(err);
}
fn point_at_return_for_opaque_ty_error(
&self,
errors: &mut Vec<traits::FulfillmentError<'tcx>>,
span: Span,
return_expr_ty: Ty<'tcx>,
return_span: Span,
) {
// Don't point at the whole block if it's empty
if span == return_span {
return;
}
for err in errors {
let cause = &mut err.obligation.cause;
if let ObligationCauseCode::OpaqueReturnType(None) = cause.code() {
let new_cause = ObligationCause::new(
cause.span,
cause.body_id,
ObligationCauseCode::OpaqueReturnType(Some((return_expr_ty, span))),
);
*cause = new_cause;
}
}
}
pub(crate) fn check_lhs_assignable(
&self,
lhs: &'tcx hir::Expr<'tcx>,
err_code: &'static str,
op_span: Span,
adjust_err: impl FnOnce(&mut Diagnostic),
) {
if lhs.is_syntactic_place_expr() {
return;
}
// FIXME: Make this use Diagnostic once error codes can be dynamically set.
let mut err = self.tcx.sess.struct_span_err_with_code(
op_span,
"invalid left-hand side of assignment",
DiagnosticId::Error(err_code.into()),
);
err.span_label(lhs.span, "cannot assign to this expression");
self.comes_from_while_condition(lhs.hir_id, |expr| {
err.span_suggestion_verbose(
expr.span.shrink_to_lo(),
"you might have meant to use pattern destructuring",
"let ",
Applicability::MachineApplicable,
);
});
adjust_err(&mut err);
err.emit();
}
// Check if an expression `original_expr_id` comes from the condition of a while loop,
/// as opposed from the body of a while loop, which we can naively check by iterating
/// parents until we find a loop...
pub(super) fn comes_from_while_condition(
&self,
original_expr_id: HirId,
then: impl FnOnce(&hir::Expr<'_>),
) {
let mut parent = self.tcx.hir().parent_id(original_expr_id);
while let Some(node) = self.tcx.hir().find(parent) {
match node {
hir::Node::Expr(hir::Expr {
kind:
hir::ExprKind::Loop(
hir::Block {
expr:
Some(hir::Expr {
kind:
hir::ExprKind::Match(expr, ..) | hir::ExprKind::If(expr, ..),
..
}),
..
},
_,
hir::LoopSource::While,
_,
),
..
}) => {
// Check if our original expression is a child of the condition of a while loop
let expr_is_ancestor = std::iter::successors(Some(original_expr_id), |id| {
self.tcx.hir().opt_parent_id(*id)
})
.take_while(|id| *id != parent)
.any(|id| id == expr.hir_id);
// if it is, then we have a situation like `while Some(0) = value.get(0) {`,
// where `while let` was more likely intended.
if expr_is_ancestor {
then(expr);
}
break;
}
hir::Node::Item(_)
| hir::Node::ImplItem(_)
| hir::Node::TraitItem(_)
| hir::Node::Crate(_) => break,
_ => {
parent = self.tcx.hir().parent_id(parent);
}
}
}
}
// A generic function for checking the 'then' and 'else' clauses in an 'if'
// or 'if-else' expression.
fn check_then_else(
&self,
cond_expr: &'tcx hir::Expr<'tcx>,
then_expr: &'tcx hir::Expr<'tcx>,
opt_else_expr: Option<&'tcx hir::Expr<'tcx>>,
sp: Span,
orig_expected: Expectation<'tcx>,
) -> Ty<'tcx> {
let cond_ty = self.check_expr_has_type_or_error(cond_expr, self.tcx.types.bool, |_| {});
self.warn_if_unreachable(
cond_expr.hir_id,
then_expr.span,
"block in `if` or `while` expression",
);
let cond_diverges = self.diverges.get();
self.diverges.set(Diverges::Maybe);
let expected = orig_expected.adjust_for_branches(self);
let then_ty = self.check_expr_with_expectation(then_expr, expected);
let then_diverges = self.diverges.get();
self.diverges.set(Diverges::Maybe);
// We've already taken the expected type's preferences
// into account when typing the `then` branch. To figure
// out the initial shot at a LUB, we thus only consider
// `expected` if it represents a *hard* constraint
// (`only_has_type`); otherwise, we just go with a
// fresh type variable.
let coerce_to_ty = expected.coercion_target_type(self, sp);
let mut coerce: DynamicCoerceMany<'_> = CoerceMany::new(coerce_to_ty);
coerce.coerce(self, &self.misc(sp), then_expr, then_ty);
if let Some(else_expr) = opt_else_expr {
let else_ty = self.check_expr_with_expectation(else_expr, expected);
let else_diverges = self.diverges.get();
let opt_suggest_box_span = self.opt_suggest_box_span(then_ty, else_ty, orig_expected);
let if_cause = self.if_cause(
sp,
cond_expr.span,
then_expr,
else_expr,
then_ty,
else_ty,
opt_suggest_box_span,
);
coerce.coerce(self, &if_cause, else_expr, else_ty);
// We won't diverge unless both branches do (or the condition does).
self.diverges.set(cond_diverges | then_diverges & else_diverges);
} else {
self.if_fallback_coercion(sp, then_expr, &mut coerce);
// If the condition is false we can't diverge.
self.diverges.set(cond_diverges);
}
let result_ty = coerce.complete(self);
if let Err(guar) = cond_ty.error_reported() {
Ty::new_error(self.tcx, guar)
} else {
result_ty
}
}
/// Type check assignment expression `expr` of form `lhs = rhs`.
/// The expected type is `()` and is passed to the function for the purposes of diagnostics.
fn check_expr_assign(
&self,
expr: &'tcx hir::Expr<'tcx>,
expected: Expectation<'tcx>,
lhs: &'tcx hir::Expr<'tcx>,
rhs: &'tcx hir::Expr<'tcx>,
span: Span,
) -> Ty<'tcx> {
let expected_ty = expected.coercion_target_type(self, expr.span);
if expected_ty == self.tcx.types.bool {
// The expected type is `bool` but this will result in `()` so we can reasonably
// say that the user intended to write `lhs == rhs` instead of `lhs = rhs`.
// The likely cause of this is `if foo = bar { .. }`.
let actual_ty = Ty::new_unit(self.tcx);
let mut err = self.demand_suptype_diag(expr.span, expected_ty, actual_ty).unwrap();
let lhs_ty = self.check_expr(&lhs);
let rhs_ty = self.check_expr(&rhs);
let (applicability, eq) = if self.can_coerce(rhs_ty, lhs_ty) {
(Applicability::MachineApplicable, true)
} else if let ExprKind::Binary(
Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
_,
rhs_expr,
) = lhs.kind
{
// if x == 1 && y == 2 { .. }
// +
let actual_lhs_ty = self.check_expr(&rhs_expr);
(Applicability::MaybeIncorrect, self.can_coerce(rhs_ty, actual_lhs_ty))
} else if let ExprKind::Binary(
Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
lhs_expr,
_,
) = rhs.kind
{
// if x == 1 && y == 2 { .. }
// +
let actual_rhs_ty = self.check_expr(&lhs_expr);
(Applicability::MaybeIncorrect, self.can_coerce(actual_rhs_ty, lhs_ty))
} else {
(Applicability::MaybeIncorrect, false)
};
if !lhs.is_syntactic_place_expr()
&& lhs.is_approximately_pattern()
&& !matches!(lhs.kind, hir::ExprKind::Lit(_))
{
// Do not suggest `if let x = y` as `==` is way more likely to be the intention.
let hir = self.tcx.hir();
if let hir::Node::Expr(hir::Expr { kind: ExprKind::If { .. }, .. }) =
hir.get_parent(hir.parent_id(expr.hir_id))
{
err.span_suggestion_verbose(
expr.span.shrink_to_lo(),
"you might have meant to use pattern matching",
"let ",
applicability,
);
};
}
if eq {
err.span_suggestion_verbose(
span.shrink_to_hi(),
"you might have meant to compare for equality",
'=',
applicability,
);
}
// If the assignment expression itself is ill-formed, don't
// bother emitting another error
let reported = err.emit_unless(lhs_ty.references_error() || rhs_ty.references_error());
return Ty::new_error(self.tcx, reported);
}
let lhs_ty = self.check_expr_with_needs(&lhs, Needs::MutPlace);
let suggest_deref_binop = |err: &mut Diagnostic, rhs_ty: Ty<'tcx>| {
if let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty) {
// Can only assign if the type is sized, so if `DerefMut` yields a type that is
// unsized, do not suggest dereferencing it.
let lhs_deref_ty_is_sized = self
.infcx
.type_implements_trait(
self.tcx.require_lang_item(LangItem::Sized, None),
[lhs_deref_ty],
self.param_env,
)
.may_apply();
if lhs_deref_ty_is_sized && self.can_coerce(rhs_ty, lhs_deref_ty) {
err.span_suggestion_verbose(
lhs.span.shrink_to_lo(),
"consider dereferencing here to assign to the mutably borrowed value",
"*",
Applicability::MachineApplicable,
);
}
}
};
// This is (basically) inlined `check_expr_coercible_to_type`, but we want
// to suggest an additional fixup here in `suggest_deref_binop`.
let rhs_ty = self.check_expr_with_hint(&rhs, lhs_ty);
if let (_, Some(mut diag)) =
self.demand_coerce_diag(rhs, rhs_ty, lhs_ty, Some(lhs), AllowTwoPhase::No)
{
suggest_deref_binop(&mut diag, rhs_ty);
diag.emit();
}
self.check_lhs_assignable(lhs, "E0070", span, |err| {
if let Some(rhs_ty) = self.typeck_results.borrow().expr_ty_opt(rhs) {
suggest_deref_binop(err, rhs_ty);
}
});
self.require_type_is_sized(lhs_ty, lhs.span, traits::AssignmentLhsSized);
if let Err(guar) = (lhs_ty, rhs_ty).error_reported() {
Ty::new_error(self.tcx, guar)
} else {
Ty::new_unit(self.tcx)
}
}
pub(super) fn check_expr_let(&self, let_expr: &'tcx hir::Let<'tcx>) -> Ty<'tcx> {
// for let statements, this is done in check_stmt
let init = let_expr.init;
self.warn_if_unreachable(init.hir_id, init.span, "block in `let` expression");
// otherwise check exactly as a let statement
self.check_decl(let_expr.into());
// but return a bool, for this is a boolean expression
if let Some(error_guaranteed) = let_expr.is_recovered {
self.set_tainted_by_errors(error_guaranteed);
Ty::new_error(self.tcx, error_guaranteed)
} else {
self.tcx.types.bool
}
}
fn check_expr_loop(
&self,
body: &'tcx hir::Block<'tcx>,
source: hir::LoopSource,
expected: Expectation<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let coerce = match source {
// you can only use break with a value from a normal `loop { }`
hir::LoopSource::Loop => {
let coerce_to = expected.coercion_target_type(self, body.span);
Some(CoerceMany::new(coerce_to))
}
hir::LoopSource::While | hir::LoopSource::ForLoop => None,
};
let ctxt = BreakableCtxt {
coerce,
may_break: false, // Will get updated if/when we find a `break`.
};
let (ctxt, ()) = self.with_breakable_ctxt(expr.hir_id, ctxt, || {
self.check_block_no_value(&body);
});
if ctxt.may_break {
// No way to know whether it's diverging because
// of a `break` or an outer `break` or `return`.
self.diverges.set(Diverges::Maybe);
}
// If we permit break with a value, then result type is
// the LUB of the breaks (possibly ! if none); else, it
// is nil. This makes sense because infinite loops
// (which would have type !) are only possible iff we
// permit break with a value [1].
if ctxt.coerce.is_none() && !ctxt.may_break {
// [1]
self.tcx.sess.delay_span_bug(body.span, "no coercion, but loop may not break");
}
ctxt.coerce.map(|c| c.complete(self)).unwrap_or_else(|| Ty::new_unit(self.tcx))
}
/// Checks a method call.
fn check_method_call(
&self,
expr: &'tcx hir::Expr<'tcx>,
segment: &hir::PathSegment<'_>,
rcvr: &'tcx hir::Expr<'tcx>,
args: &'tcx [hir::Expr<'tcx>],
expected: Expectation<'tcx>,
) -> Ty<'tcx> {
let rcvr_t = self.check_expr(&rcvr);
// no need to check for bot/err -- callee does that
let rcvr_t = self.structurally_resolve_type(rcvr.span, rcvr_t);
let span = segment.ident.span;
let method = match self.lookup_method(rcvr_t, segment, span, expr, rcvr, args) {
Ok(method) => {
// We could add a "consider `foo::<params>`" suggestion here, but I wasn't able to
// trigger this codepath causing `structurally_resolve_type` to emit an error.
self.enforce_context_effects(expr.hir_id, expr.span, method.def_id, method.args);
self.write_method_call(expr.hir_id, method);
Ok(method)
}
Err(error) => {
if segment.ident.name != kw::Empty {
if let Some(mut err) = self.report_method_error(
span,
rcvr_t,
segment.ident,
SelfSource::MethodCall(rcvr),
error,
Some(MethodCallComponents { receiver: rcvr, args, full_expr: expr }),
expected,
false,
) {
err.emit();
}
}
Err(())
}
};
// Call the generic checker.
self.check_method_argument_types(span, expr, method, &args, DontTupleArguments, expected)
}
fn check_expr_cast(
&self,
e: &'tcx hir::Expr<'tcx>,
t: &'tcx hir::Ty<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
// Find the type of `e`. Supply hints based on the type we are casting to,
// if appropriate.
let t_cast = self.to_ty_saving_user_provided_ty(t);
let t_cast = self.resolve_vars_if_possible(t_cast);
let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
let t_expr = self.resolve_vars_if_possible(t_expr);
// Eagerly check for some obvious errors.
if let Err(guar) = (t_expr, t_cast).error_reported() {
Ty::new_error(self.tcx, guar)
} else {
// Defer other checks until we're done type checking.
let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
match cast::CastCheck::new(
self,
e,
t_expr,
t_cast,
t.span,
expr.span,
hir::Constness::NotConst,
) {
Ok(cast_check) => {
debug!(
"check_expr_cast: deferring cast from {:?} to {:?}: {:?}",
t_cast, t_expr, cast_check,
);
deferred_cast_checks.push(cast_check);
t_cast
}
Err(guar) => Ty::new_error(self.tcx, guar),
}
}
}
fn check_expr_array(
&self,
args: &'tcx [hir::Expr<'tcx>],
expected: Expectation<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let element_ty = if !args.is_empty() {
let coerce_to = expected
.to_option(self)
.and_then(|uty| match *uty.kind() {
ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
_ => None,
})
.unwrap_or_else(|| {
self.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::TypeInference,
span: expr.span,
})
});
let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
assert_eq!(self.diverges.get(), Diverges::Maybe);
for e in args {
let e_ty = self.check_expr_with_hint(e, coerce_to);
let cause = self.misc(e.span);
coerce.coerce(self, &cause, e, e_ty);
}
coerce.complete(self)
} else {
self.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::TypeInference,
span: expr.span,
})
};
let array_len = args.len() as u64;
self.suggest_array_len(expr, array_len);
Ty::new_array(self.tcx, element_ty, array_len)
}
fn suggest_array_len(&self, expr: &'tcx hir::Expr<'tcx>, array_len: u64) {
let parent_node = self.tcx.hir().parent_iter(expr.hir_id).find(|(_, node)| {
!matches!(node, hir::Node::Expr(hir::Expr { kind: hir::ExprKind::AddrOf(..), .. }))
});
let Some((
_,
hir::Node::Local(hir::Local { ty: Some(ty), .. })
| hir::Node::Item(hir::Item { kind: hir::ItemKind::Const(ty, _, _), .. }),
)) = parent_node
else {
return;
};
if let hir::TyKind::Array(_, length) = ty.peel_refs().kind
&& let hir::ArrayLen::Body(hir::AnonConst { hir_id, .. }) = length
&& let Some(span) = self.tcx.hir().opt_span(hir_id)
{
match self.tcx.sess.diagnostic().steal_diagnostic(span, StashKey::UnderscoreForArrayLengths) {
Some(mut err) => {
err.span_suggestion(
span,
"consider specifying the array length",
array_len,
Applicability::MaybeIncorrect,
);
err.emit();
}
None => ()
}
}
}
fn check_expr_const_block(
&self,
block: &'tcx hir::ConstBlock,
expected: Expectation<'tcx>,
_expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let body = self.tcx.hir().body(block.body);
// Create a new function context.
let def_id = block.def_id;
let fcx = FnCtxt::new(self, self.param_env, def_id);
crate::GatherLocalsVisitor::new(&fcx).visit_body(body);
let ty = fcx.check_expr_with_expectation(&body.value, expected);
fcx.require_type_is_sized(ty, body.value.span, traits::ConstSized);
fcx.write_ty(block.hir_id, ty);
ty
}
fn check_expr_repeat(
&self,
element: &'tcx hir::Expr<'tcx>,
count: &'tcx hir::ArrayLen,
expected: Expectation<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
let count = self.array_length_to_const(count);
if let Some(count) = count.try_eval_target_usize(tcx, self.param_env) {
self.suggest_array_len(expr, count);
}
let uty = match expected {
ExpectHasType(uty) => match *uty.kind() {
ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
_ => None,
},
_ => None,
};
let (element_ty, t) = match uty {
Some(uty) => {
self.check_expr_coercible_to_type(&element, uty, None);
(uty, uty)
}
None => {
let ty = self.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::MiscVariable,
span: element.span,
});
let element_ty = self.check_expr_has_type_or_error(&element, ty, |_| {});
(element_ty, ty)
}
};
if let Err(guar) = element_ty.error_reported() {
return Ty::new_error(tcx, guar);
}
self.check_repeat_element_needs_copy_bound(element, count, element_ty);
self.register_wf_obligation(
Ty::new_array_with_const_len(tcx, t, count).into(),
expr.span,
traits::WellFormed(None),
);
Ty::new_array_with_const_len(tcx, t, count)
}
fn check_repeat_element_needs_copy_bound(
&self,
element: &hir::Expr<'_>,
count: ty::Const<'tcx>,
element_ty: Ty<'tcx>,
) {
let tcx = self.tcx;
// Actual constants as the repeat element get inserted repeatedly instead of getting copied via Copy.
match &element.kind {
hir::ExprKind::ConstBlock(..) => return,
hir::ExprKind::Path(qpath) => {
let res = self.typeck_results.borrow().qpath_res(qpath, element.hir_id);
if let Res::Def(DefKind::Const | DefKind::AssocConst | DefKind::AnonConst, _) = res
{
return;
}
}
_ => {}
}
// If someone calls a const fn, they can extract that call out into a separate constant (or a const
// block in the future), so we check that to tell them that in the diagnostic. Does not affect typeck.
let is_const_fn = match element.kind {
hir::ExprKind::Call(func, _args) => match *self.node_ty(func.hir_id).kind() {
ty::FnDef(def_id, _) => tcx.is_const_fn(def_id),
_ => false,
},
_ => false,
};
// If the length is 0, we don't create any elements, so we don't copy any. If the length is 1, we
// don't copy that one element, we move it. Only check for Copy if the length is larger.
if count.try_eval_target_usize(tcx, self.param_env).map_or(true, |len| len > 1) {
let lang_item = self.tcx.require_lang_item(LangItem::Copy, None);
let code = traits::ObligationCauseCode::RepeatElementCopy { is_const_fn };
self.require_type_meets(element_ty, element.span, code, lang_item);
}
}
fn check_expr_tuple(
&self,
elts: &'tcx [hir::Expr<'tcx>],
expected: Expectation<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let flds = expected.only_has_type(self).and_then(|ty| {
let ty = self.resolve_vars_with_obligations(ty);
match ty.kind() {
ty::Tuple(flds) => Some(&flds[..]),
_ => None,
}
});
let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| match flds {
Some(fs) if i < fs.len() => {
let ety = fs[i];
self.check_expr_coercible_to_type(&e, ety, None);
ety
}
_ => self.check_expr_with_expectation(&e, NoExpectation),
});
let tuple = Ty::new_tup_from_iter(self.tcx, elt_ts_iter);
if let Err(guar) = tuple.error_reported() {
Ty::new_error(self.tcx, guar)
} else {
self.require_type_is_sized(tuple, expr.span, traits::TupleInitializerSized);
tuple
}
}
fn check_expr_struct(
&self,
expr: &hir::Expr<'_>,
expected: Expectation<'tcx>,
qpath: &QPath<'_>,
fields: &'tcx [hir::ExprField<'tcx>],
base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
) -> Ty<'tcx> {
// Find the relevant variant
let (variant, adt_ty) = match self.check_struct_path(qpath, expr.hir_id) {
Ok(data) => data,
Err(guar) => {
self.check_struct_fields_on_error(fields, base_expr);
return Ty::new_error(self.tcx, guar);
}
};
// Prohibit struct expressions when non-exhaustive flag is set.
let adt = adt_ty.ty_adt_def().expect("`check_struct_path` returned non-ADT type");
if !adt.did().is_local() && variant.is_field_list_non_exhaustive() {
self.tcx
.sess
.emit_err(StructExprNonExhaustive { span: expr.span, what: adt.variant_descr() });
}
self.check_expr_struct_fields(
adt_ty,
expected,
expr,
qpath.span(),
variant,
fields,
base_expr,
);
self.require_type_is_sized(adt_ty, expr.span, traits::StructInitializerSized);
adt_ty
}
fn check_expr_struct_fields(
&self,
adt_ty: Ty<'tcx>,
expected: Expectation<'tcx>,
expr: &hir::Expr<'_>,
span: Span,
variant: &'tcx ty::VariantDef,
ast_fields: &'tcx [hir::ExprField<'tcx>],
base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
) {
let tcx = self.tcx;
let expected_inputs =
self.expected_inputs_for_expected_output(span, expected, adt_ty, &[adt_ty]);
let adt_ty_hint = if let Some(expected_inputs) = expected_inputs {
expected_inputs.get(0).cloned().unwrap_or(adt_ty)
} else {
adt_ty
};
// re-link the regions that EIfEO can erase.
self.demand_eqtype(span, adt_ty_hint, adt_ty);
let ty::Adt(adt, args) = adt_ty.kind() else {
span_bug!(span, "non-ADT passed to check_expr_struct_fields");
};
let adt_kind = adt.adt_kind();
let mut remaining_fields = variant
.fields
.iter_enumerated()
.map(|(i, field)| (field.ident(tcx).normalize_to_macros_2_0(), (i, field)))
.collect::<FxHashMap<_, _>>();
let mut seen_fields = FxHashMap::default();
let mut error_happened = false;
// Type-check each field.
for (idx, field) in ast_fields.iter().enumerate() {
let ident = tcx.adjust_ident(field.ident, variant.def_id);
let field_type = if let Some((i, v_field)) = remaining_fields.remove(&ident) {
seen_fields.insert(ident, field.span);
self.write_field_index(field.hir_id, i);
// We don't look at stability attributes on
// struct-like enums (yet...), but it's definitely not
// a bug to have constructed one.
if adt_kind != AdtKind::Enum {
tcx.check_stability(v_field.did, Some(expr.hir_id), field.span, None);
}
self.field_ty(field.span, v_field, args)
} else {
error_happened = true;
let guar = if let Some(prev_span) = seen_fields.get(&ident) {
tcx.sess.emit_err(FieldMultiplySpecifiedInInitializer {
span: field.ident.span,
prev_span: *prev_span,
ident,
})
} else {
self.report_unknown_field(
adt_ty,
variant,
expr,
field,
ast_fields,
adt.variant_descr(),
)
};
Ty::new_error(tcx, guar)
};
// Make sure to give a type to the field even if there's
// an error, so we can continue type-checking.
let ty = self.check_expr_with_hint(&field.expr, field_type);
let (_, diag) =
self.demand_coerce_diag(&field.expr, ty, field_type, None, AllowTwoPhase::No);
if let Some(mut diag) = diag {
if idx == ast_fields.len() - 1 {
if remaining_fields.is_empty() {
self.suggest_fru_from_range(field, variant, args, &mut diag);
diag.emit();
} else {
diag.stash(field.span, StashKey::MaybeFruTypo);
}
} else {
diag.emit();
}
}
}
// Make sure the programmer specified correct number of fields.
if adt_kind == AdtKind::Union {
if ast_fields.len() != 1 {
struct_span_err!(
tcx.sess,
span,
E0784,
"union expressions should have exactly one field",
)
.emit();
}
}
// If check_expr_struct_fields hit an error, do not attempt to populate
// the fields with the base_expr. This could cause us to hit errors later
// when certain fields are assumed to exist that in fact do not.
if error_happened {
if let Some(base_expr) = base_expr {
self.check_expr(base_expr);
}
return;
}
if let Some(base_expr) = base_expr {
// FIXME: We are currently creating two branches here in order to maintain
// consistency. But they should be merged as much as possible.
let fru_tys = if self.tcx.features().type_changing_struct_update {
if adt.is_struct() {
// Make some fresh substitutions for our ADT type.
let fresh_args = self.fresh_args_for_item(base_expr.span, adt.did());
// We do subtyping on the FRU fields first, so we can
// learn exactly what types we expect the base expr
// needs constrained to be compatible with the struct
// type we expect from the expectation value.
let fru_tys = variant
.fields
.iter()
.map(|f| {
let fru_ty = self
.normalize(expr.span, self.field_ty(base_expr.span, f, fresh_args));
let ident = self.tcx.adjust_ident(f.ident(self.tcx), variant.def_id);
if let Some(_) = remaining_fields.remove(&ident) {
let target_ty = self.field_ty(base_expr.span, f, args);
let cause = self.misc(base_expr.span);
match self.at(&cause, self.param_env).sup(
DefineOpaqueTypes::No,
target_ty,
fru_ty,
) {
Ok(InferOk { obligations, value: () }) => {
self.register_predicates(obligations)
}
Err(_) => {
// This should never happen, since we're just subtyping the
// remaining_fields, but it's fine to emit this, I guess.
self.err_ctxt()
.report_mismatched_types(
&cause,
target_ty,
fru_ty,
FieldMisMatch(variant.name, ident.name),
)
.emit();
}
}
}
self.resolve_vars_if_possible(fru_ty)
})
.collect();
// The use of fresh args that we have subtyped against
// our base ADT type's fields allows us to guide inference
// along so that, e.g.
// ```
// MyStruct<'a, F1, F2, const C: usize> {
// f: F1,
// // Other fields that reference `'a`, `F2`, and `C`
// }
//
// let x = MyStruct {
// f: 1usize,
// ..other_struct
// };
// ```
// will have the `other_struct` expression constrained to
// `MyStruct<'a, _, F2, C>`, as opposed to just `_`...
// This is important to allow coercions to happen in
// `other_struct` itself. See `coerce-in-base-expr.rs`.
let fresh_base_ty = Ty::new_adt(self.tcx, *adt, fresh_args);
self.check_expr_has_type_or_error(
base_expr,
self.resolve_vars_if_possible(fresh_base_ty),
|_| {},
);
fru_tys
} else {
// Check the base_expr, regardless of a bad expected adt_ty, so we can get
// type errors on that expression, too.
self.check_expr(base_expr);
self.tcx
.sess
.emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
return;
}
} else {
self.check_expr_has_type_or_error(base_expr, adt_ty, |_| {
let base_ty = self.typeck_results.borrow().expr_ty(*base_expr);
let same_adt = matches!((adt_ty.kind(), base_ty.kind()),
(ty::Adt(adt, _), ty::Adt(base_adt, _)) if adt == base_adt);
if self.tcx.sess.is_nightly_build() && same_adt {
feature_err(
&self.tcx.sess.parse_sess,
sym::type_changing_struct_update,
base_expr.span,
"type changing struct updating is experimental",
)
.emit();
}
});
match adt_ty.kind() {
ty::Adt(adt, args) if adt.is_struct() => variant
.fields
.iter()
.map(|f| self.normalize(expr.span, f.ty(self.tcx, args)))
.collect(),
_ => {
self.tcx
.sess
.emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
return;
}
}
};
self.typeck_results.borrow_mut().fru_field_types_mut().insert(expr.hir_id, fru_tys);
} else if adt_kind != AdtKind::Union && !remaining_fields.is_empty() {
debug!(?remaining_fields);
let private_fields: Vec<&ty::FieldDef> = variant
.fields
.iter()
.filter(|field| !field.vis.is_accessible_from(tcx.parent_module(expr.hir_id), tcx))
.collect();
if !private_fields.is_empty() {
self.report_private_fields(adt_ty, span, private_fields, ast_fields);
} else {
self.report_missing_fields(
adt_ty,
span,
remaining_fields,
variant,
ast_fields,
args,
);
}
}
}
fn check_struct_fields_on_error(
&self,
fields: &'tcx [hir::ExprField<'tcx>],
base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
) {
for field in fields {
self.check_expr(&field.expr);
}
if let Some(base) = *base_expr {
self.check_expr(&base);
}
}
/// Report an error for a struct field expression when there are fields which aren't provided.
///
/// ```text
/// error: missing field `you_can_use_this_field` in initializer of `foo::Foo`
/// --> src/main.rs:8:5
/// |
/// 8 | foo::Foo {};
/// | ^^^^^^^^ missing `you_can_use_this_field`
///
/// error: aborting due to previous error
/// ```
fn report_missing_fields(
&self,
adt_ty: Ty<'tcx>,
span: Span,
remaining_fields: FxHashMap<Ident, (FieldIdx, &ty::FieldDef)>,
variant: &'tcx ty::VariantDef,
ast_fields: &'tcx [hir::ExprField<'tcx>],
args: GenericArgsRef<'tcx>,
) {
let len = remaining_fields.len();
let mut displayable_field_names: Vec<&str> =
remaining_fields.keys().map(|ident| ident.as_str()).collect();
// sorting &str primitives here, sort_unstable is ok
displayable_field_names.sort_unstable();
let mut truncated_fields_error = String::new();
let remaining_fields_names = match &displayable_field_names[..] {
[field1] => format!("`{field1}`"),
[field1, field2] => format!("`{field1}` and `{field2}`"),
[field1, field2, field3] => format!("`{field1}`, `{field2}` and `{field3}`"),
_ => {
truncated_fields_error =
format!(" and {} other field{}", len - 3, pluralize!(len - 3));
displayable_field_names
.iter()
.take(3)
.map(|n| format!("`{n}`"))
.collect::<Vec<_>>()
.join(", ")
}
};
let mut err = struct_span_err!(
self.tcx.sess,
span,
E0063,
"missing field{} {}{} in initializer of `{}`",
pluralize!(len),
remaining_fields_names,
truncated_fields_error,
adt_ty
);
err.span_label(span, format!("missing {remaining_fields_names}{truncated_fields_error}"));
if let Some(last) = ast_fields.last() {
self.suggest_fru_from_range(last, variant, args, &mut err);
}
err.emit();
}
/// If the last field is a range literal, but it isn't supposed to be, then they probably
/// meant to use functional update syntax.
fn suggest_fru_from_range(
&self,
last_expr_field: &hir::ExprField<'tcx>,
variant: &ty::VariantDef,
args: GenericArgsRef<'tcx>,
err: &mut Diagnostic,
) {
// I don't use 'is_range_literal' because only double-sided, half-open ranges count.
if let ExprKind::Struct(
QPath::LangItem(LangItem::Range, ..),
[range_start, range_end],
_,
) = last_expr_field.expr.kind
&& let variant_field =
variant.fields.iter().find(|field| field.ident(self.tcx) == last_expr_field.ident)
&& let range_def_id = self.tcx.lang_items().range_struct()
&& variant_field
.and_then(|field| field.ty(self.tcx, args).ty_adt_def())
.map(|adt| adt.did())
!= range_def_id
{
// Suppress any range expr type mismatches
if let Some(mut diag) = self
.tcx
.sess
.diagnostic()
.steal_diagnostic(last_expr_field.span, StashKey::MaybeFruTypo)
{
diag.delay_as_bug();
}
// Use a (somewhat arbitrary) filtering heuristic to avoid printing
// expressions that are either too long, or have control character
//such as newlines in them.
let expr = self
.tcx
.sess
.source_map()
.span_to_snippet(range_end.expr.span)
.ok()
.filter(|s| s.len() < 25 && !s.contains(|c: char| c.is_control()));
let fru_span = self
.tcx
.sess
.source_map()
.span_extend_while(range_start.span, |c| c.is_whitespace())
.unwrap_or(range_start.span).shrink_to_hi().to(range_end.span);
err.subdiagnostic(TypeMismatchFruTypo {
expr_span: range_start.span,
fru_span,
expr,
});
}
}
/// Report an error for a struct field expression when there are invisible fields.
///
/// ```text
/// error: cannot construct `Foo` with struct literal syntax due to private fields
/// --> src/main.rs:8:5
/// |
/// 8 | foo::Foo {};
/// | ^^^^^^^^
///
/// error: aborting due to previous error
/// ```
fn report_private_fields(
&self,
adt_ty: Ty<'tcx>,
span: Span,
private_fields: Vec<&ty::FieldDef>,
used_fields: &'tcx [hir::ExprField<'tcx>],
) {
let mut err =
self.tcx.sess.struct_span_err(
span,
format!(
"cannot construct `{adt_ty}` with struct literal syntax due to private fields",
),
);
let (used_private_fields, remaining_private_fields): (
Vec<(Symbol, Span, bool)>,
Vec<(Symbol, Span, bool)>,
) = private_fields
.iter()
.map(|field| {
match used_fields.iter().find(|used_field| field.name == used_field.ident.name) {
Some(used_field) => (field.name, used_field.span, true),
None => (field.name, self.tcx.def_span(field.did), false),
}
})
.partition(|field| field.2);
err.span_labels(used_private_fields.iter().map(|(_, span, _)| *span), "private field");
if !remaining_private_fields.is_empty() {
let remaining_private_fields_len = remaining_private_fields.len();
let names = match &remaining_private_fields
.iter()
.map(|(name, _, _)| name)
.collect::<Vec<_>>()[..]
{
_ if remaining_private_fields_len > 6 => String::new(),
[name] => format!("`{name}` "),
[names @ .., last] => {
let names = names.iter().map(|name| format!("`{name}`")).collect::<Vec<_>>();
format!("{} and `{last}` ", names.join(", "))
}
[] => unreachable!(),
};
err.note(format!(
"... and other private field{s} {names}that {were} not provided",
s = pluralize!(remaining_private_fields_len),
were = pluralize!("was", remaining_private_fields_len),
));
}
err.emit();
}
fn report_unknown_field(
&self,
ty: Ty<'tcx>,
variant: &'tcx ty::VariantDef,
expr: &hir::Expr<'_>,
field: &hir::ExprField<'_>,
skip_fields: &[hir::ExprField<'_>],
kind_name: &str,
) -> ErrorGuaranteed {
if variant.is_recovered() {
let guar = self
.tcx
.sess
.delay_span_bug(expr.span, "parser recovered but no error was emitted");
self.set_tainted_by_errors(guar);
return guar;
}
let mut err = self.err_ctxt().type_error_struct_with_diag(
field.ident.span,
|actual| match ty.kind() {
ty::Adt(adt, ..) if adt.is_enum() => struct_span_err!(
self.tcx.sess,
field.ident.span,
E0559,
"{} `{}::{}` has no field named `{}`",
kind_name,
actual,
variant.name,
field.ident
),
_ => struct_span_err!(
self.tcx.sess,
field.ident.span,
E0560,
"{} `{}` has no field named `{}`",
kind_name,
actual,
field.ident
),
},
ty,
);
let variant_ident_span = self.tcx.def_ident_span(variant.def_id).unwrap();
match variant.ctor_kind() {
Some(CtorKind::Fn) => match ty.kind() {
ty::Adt(adt, ..) if adt.is_enum() => {
err.span_label(
variant_ident_span,
format!(
"`{adt}::{variant}` defined here",
adt = ty,
variant = variant.name,
),
);
err.span_label(field.ident.span, "field does not exist");
err.span_suggestion_verbose(
expr.span,
format!(
"`{adt}::{variant}` is a tuple {kind_name}, use the appropriate syntax",
adt = ty,
variant = variant.name,
),
format!(
"{adt}::{variant}(/* fields */)",
adt = ty,
variant = variant.name,
),
Applicability::HasPlaceholders,
);
}
_ => {
err.span_label(variant_ident_span, format!("`{ty}` defined here"));
err.span_label(field.ident.span, "field does not exist");
err.span_suggestion_verbose(
expr.span,
format!("`{ty}` is a tuple {kind_name}, use the appropriate syntax",),
format!("{ty}(/* fields */)"),
Applicability::HasPlaceholders,
);
}
},
_ => {
// prevent all specified fields from being suggested
let available_field_names = self.available_field_names(variant, expr, skip_fields);
if let Some(field_name) =
find_best_match_for_name(&available_field_names, field.ident.name, None)
{
err.span_suggestion(
field.ident.span,
"a field with a similar name exists",
field_name,
Applicability::MaybeIncorrect,
);
} else {
match ty.kind() {
ty::Adt(adt, ..) => {
if adt.is_enum() {
err.span_label(
field.ident.span,
format!("`{}::{}` does not have this field", ty, variant.name),
);
} else {
err.span_label(
field.ident.span,
format!("`{ty}` does not have this field"),
);
}
if available_field_names.is_empty() {
err.note("all struct fields are already assigned");
} else {
err.note(format!(
"available fields are: {}",
self.name_series_display(available_field_names)
));
}
}
_ => bug!("non-ADT passed to report_unknown_field"),
}
};
}
}
err.emit()
}
fn available_field_names(
&self,
variant: &'tcx ty::VariantDef,
expr: &hir::Expr<'_>,
skip_fields: &[hir::ExprField<'_>],
) -> Vec<Symbol> {
variant
.fields
.iter()
.filter(|field| {
skip_fields.iter().all(|&skip| skip.ident.name != field.name)
&& self.is_field_suggestable(field, expr.hir_id, expr.span)
})
.map(|field| field.name)
.collect()
}
fn name_series_display(&self, names: Vec<Symbol>) -> String {
// dynamic limit, to never omit just one field
let limit = if names.len() == 6 { 6 } else { 5 };
let mut display =
names.iter().take(limit).map(|n| format!("`{n}`")).collect::<Vec<_>>().join(", ");
if names.len() > limit {
display = format!("{} ... and {} others", display, names.len() - limit);
}
display
}
// Check field access expressions
fn check_field(
&self,
expr: &'tcx hir::Expr<'tcx>,
base: &'tcx hir::Expr<'tcx>,
field: Ident,
expected: Expectation<'tcx>,
) -> Ty<'tcx> {
debug!("check_field(expr: {:?}, base: {:?}, field: {:?})", expr, base, field);
let base_ty = self.check_expr(base);
let base_ty = self.structurally_resolve_type(base.span, base_ty);
let mut private_candidate = None;
let mut autoderef = self.autoderef(expr.span, base_ty);
while let Some((deref_base_ty, _)) = autoderef.next() {
debug!("deref_base_ty: {:?}", deref_base_ty);
match deref_base_ty.kind() {
ty::Adt(base_def, args) if !base_def.is_enum() => {
debug!("struct named {:?}", deref_base_ty);
let body_hir_id = self.tcx.hir().local_def_id_to_hir_id(self.body_id);
let (ident, def_scope) =
self.tcx.adjust_ident_and_get_scope(field, base_def.did(), body_hir_id);
let fields = &base_def.non_enum_variant().fields;
if let Some((index, field)) = fields
.iter_enumerated()
.find(|(_, f)| f.ident(self.tcx).normalize_to_macros_2_0() == ident)
{
let field_ty = self.field_ty(expr.span, field, args);
// Save the index of all fields regardless of their visibility in case
// of error recovery.
self.write_field_index(expr.hir_id, index);
let adjustments = self.adjust_steps(&autoderef);
if field.vis.is_accessible_from(def_scope, self.tcx) {
self.apply_adjustments(base, adjustments);
self.register_predicates(autoderef.into_obligations());
self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
return field_ty;
}
private_candidate = Some((adjustments, base_def.did()));
}
}
ty::Tuple(tys) => {
if let Ok(index) = field.as_str().parse::<usize>() {
if field.name == sym::integer(index) {
if let Some(&field_ty) = tys.get(index) {
let adjustments = self.adjust_steps(&autoderef);
self.apply_adjustments(base, adjustments);
self.register_predicates(autoderef.into_obligations());
self.write_field_index(expr.hir_id, FieldIdx::from_usize(index));
return field_ty;
}
}
}
}
_ => {}
}
}
self.structurally_resolve_type(autoderef.span(), autoderef.final_ty(false));
if let Some((adjustments, did)) = private_candidate {
// (#90483) apply adjustments to avoid ExprUseVisitor from
// creating erroneous projection.
self.apply_adjustments(base, adjustments);
let guar = self.ban_private_field_access(
expr,
base_ty,
field,
did,
expected.only_has_type(self),
);
return Ty::new_error(self.tcx(), guar);
}
let guar = if field.name == kw::Empty {
self.tcx.sess.delay_span_bug(field.span, "field name with no name")
} else if self.method_exists(field, base_ty, expr.hir_id, expected.only_has_type(self)) {
self.ban_take_value_of_method(expr, base_ty, field)
} else if !base_ty.is_primitive_ty() {
self.ban_nonexisting_field(field, base, expr, base_ty)
} else {
let field_name = field.to_string();
let mut err = type_error_struct!(
self.tcx().sess,
field.span,
base_ty,
E0610,
"`{base_ty}` is a primitive type and therefore doesn't have fields",
);
let is_valid_suffix = |field: &str| {
if field == "f32" || field == "f64" {
return true;
}
let mut chars = field.chars().peekable();
match chars.peek() {
Some('e') | Some('E') => {
chars.next();
if let Some(c) = chars.peek()
&& !c.is_numeric() && *c != '-' && *c != '+'
{
return false;
}
while let Some(c) = chars.peek() {
if !c.is_numeric() {
break;
}
chars.next();
}
}
_ => (),
}
let suffix = chars.collect::<String>();
suffix.is_empty() || suffix == "f32" || suffix == "f64"
};
let maybe_partial_suffix = |field: &str| -> Option<&str> {
let first_chars = ['f', 'l'];
if field.len() >= 1
&& field.to_lowercase().starts_with(first_chars)
&& field[1..].chars().all(|c| c.is_ascii_digit())
{
if field.to_lowercase().starts_with(['f']) { Some("f32") } else { Some("f64") }
} else {
None
}
};
if let ty::Infer(ty::IntVar(_)) = base_ty.kind()
&& let ExprKind::Lit(Spanned {
node: ast::LitKind::Int(_, ast::LitIntType::Unsuffixed),
..
}) = base.kind
&& !base.span.from_expansion()
{
if is_valid_suffix(&field_name) {
err.span_suggestion_verbose(
field.span.shrink_to_lo(),
"if intended to be a floating point literal, consider adding a `0` after the period",
'0',
Applicability::MaybeIncorrect,
);
} else if let Some(correct_suffix) = maybe_partial_suffix(&field_name) {
err.span_suggestion_verbose(
field.span,
format!("if intended to be a floating point literal, consider adding a `0` after the period and a `{correct_suffix}` suffix"),
format!("0{correct_suffix}"),
Applicability::MaybeIncorrect,
);
}
}
err.emit()
};
Ty::new_error(self.tcx(), guar)
}
fn suggest_await_on_field_access(
&self,
err: &mut Diagnostic,
field_ident: Ident,
base: &'tcx hir::Expr<'tcx>,
ty: Ty<'tcx>,
) {
let Some(output_ty) = self.get_impl_future_output_ty(ty) else {
return;
};
let mut add_label = true;
if let ty::Adt(def, _) = output_ty.kind() {
// no field access on enum type
if !def.is_enum() {
if def
.non_enum_variant()
.fields
.iter()
.any(|field| field.ident(self.tcx) == field_ident)
{
add_label = false;
err.span_label(
field_ident.span,
"field not available in `impl Future`, but it is available in its `Output`",
);
err.span_suggestion_verbose(
base.span.shrink_to_hi(),
"consider `await`ing on the `Future` and access the field of its `Output`",
".await",
Applicability::MaybeIncorrect,
);
}
}
}
if add_label {
err.span_label(field_ident.span, format!("field not found in `{ty}`"));
}
}
fn ban_nonexisting_field(
&self,
ident: Ident,
base: &'tcx hir::Expr<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
base_ty: Ty<'tcx>,
) -> ErrorGuaranteed {
debug!(
"ban_nonexisting_field: field={:?}, base={:?}, expr={:?}, base_ty={:?}",
ident, base, expr, base_ty
);
let mut err = self.no_such_field_err(ident, base_ty, base.hir_id);
match *base_ty.peel_refs().kind() {
ty::Array(_, len) => {
self.maybe_suggest_array_indexing(&mut err, expr, base, ident, len);
}
ty::RawPtr(..) => {
self.suggest_first_deref_field(&mut err, expr, base, ident);
}
ty::Adt(def, _) if !def.is_enum() => {
self.suggest_fields_on_recordish(&mut err, expr, def, ident);
}
ty::Param(param_ty) => {
self.point_at_param_definition(&mut err, param_ty);
}
ty::Alias(ty::Opaque, _) => {
self.suggest_await_on_field_access(&mut err, ident, base, base_ty.peel_refs());
}
_ => {}
}
self.suggest_fn_call(&mut err, base, base_ty, |output_ty| {
if let ty::Adt(def, _) = output_ty.kind() && !def.is_enum() {
def.non_enum_variant().fields.iter().any(|field| {
field.ident(self.tcx) == ident
&& field.vis.is_accessible_from(expr.hir_id.owner.def_id, self.tcx)
})
} else if let ty::Tuple(tys) = output_ty.kind()
&& let Ok(idx) = ident.as_str().parse::<usize>()
{
idx < tys.len()
} else {
false
}
});
if ident.name == kw::Await {
// We know by construction that `<expr>.await` is either on Rust 2015
// or results in `ExprKind::Await`. Suggest switching the edition to 2018.
err.note("to `.await` a `Future`, switch to Rust 2018 or later");
HelpUseLatestEdition::new().add_to_diagnostic(&mut err);
}
err.emit()
}
fn ban_private_field_access(
&self,
expr: &hir::Expr<'tcx>,
expr_t: Ty<'tcx>,
field: Ident,
base_did: DefId,
return_ty: Option<Ty<'tcx>>,
) -> ErrorGuaranteed {
let mut err = self.private_field_err(field, base_did);
// Also check if an accessible method exists, which is often what is meant.
if self.method_exists(field, expr_t, expr.hir_id, return_ty)
&& !self.expr_in_place(expr.hir_id)
{
self.suggest_method_call(
&mut err,
format!("a method `{field}` also exists, call it with parentheses"),
field,
expr_t,
expr,
None,
);
}
err.emit()
}
fn ban_take_value_of_method(
&self,
expr: &hir::Expr<'tcx>,
expr_t: Ty<'tcx>,
field: Ident,
) -> ErrorGuaranteed {
let mut err = type_error_struct!(
self.tcx().sess,
field.span,
expr_t,
E0615,
"attempted to take value of method `{field}` on type `{expr_t}`",
);
err.span_label(field.span, "method, not a field");
let expr_is_call =
if let hir::Node::Expr(hir::Expr { kind: ExprKind::Call(callee, _args), .. }) =
self.tcx.hir().get_parent(expr.hir_id)
{
expr.hir_id == callee.hir_id
} else {
false
};
let expr_snippet =
self.tcx.sess.source_map().span_to_snippet(expr.span).unwrap_or_default();
let is_wrapped = expr_snippet.starts_with('(') && expr_snippet.ends_with(')');
let after_open = expr.span.lo() + rustc_span::BytePos(1);
let before_close = expr.span.hi() - rustc_span::BytePos(1);
if expr_is_call && is_wrapped {
err.multipart_suggestion(
"remove wrapping parentheses to call the method",
vec![
(expr.span.with_hi(after_open), String::new()),
(expr.span.with_lo(before_close), String::new()),
],
Applicability::MachineApplicable,
);
} else if !self.expr_in_place(expr.hir_id) {
// Suggest call parentheses inside the wrapping parentheses
let span = if is_wrapped {
expr.span.with_lo(after_open).with_hi(before_close)
} else {
expr.span
};
self.suggest_method_call(
&mut err,
"use parentheses to call the method",
field,
expr_t,
expr,
Some(span),
);
} else if let ty::RawPtr(ty_and_mut) = expr_t.kind()
&& let ty::Adt(adt_def, _) = ty_and_mut.ty.kind()
&& let ExprKind::Field(base_expr, _) = expr.kind
&& adt_def.variants().len() == 1
&& adt_def
.variants()
.iter()
.next()
.unwrap()
.fields
.iter()
.any(|f| f.ident(self.tcx) == field)
{
err.multipart_suggestion(
"to access the field, dereference first",
vec![
(base_expr.span.shrink_to_lo(), "(*".to_string()),
(base_expr.span.shrink_to_hi(), ")".to_string()),
],
Applicability::MaybeIncorrect,
);
} else {
err.help("methods are immutable and cannot be assigned to");
}
err.emit()
}
fn point_at_param_definition(&self, err: &mut Diagnostic, param: ty::ParamTy) {
let generics = self.tcx.generics_of(self.body_id);
let generic_param = generics.type_param(¶m, self.tcx);
if let ty::GenericParamDefKind::Type { synthetic: true, .. } = generic_param.kind {
return;
}
let param_def_id = generic_param.def_id;
let param_hir_id = match param_def_id.as_local() {
Some(x) => self.tcx.hir().local_def_id_to_hir_id(x),
None => return,
};
let param_span = self.tcx.hir().span(param_hir_id);
let param_name = self.tcx.hir().ty_param_name(param_def_id.expect_local());
err.span_label(param_span, format!("type parameter '{param_name}' declared here"));
}
fn suggest_fields_on_recordish(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
def: ty::AdtDef<'tcx>,
field: Ident,
) {
let available_field_names = self.available_field_names(def.non_enum_variant(), expr, &[]);
if let Some(suggested_field_name) =
find_best_match_for_name(&available_field_names, field.name, None)
{
err.span_suggestion(
field.span,
"a field with a similar name exists",
suggested_field_name,
Applicability::MaybeIncorrect,
);
} else {
err.span_label(field.span, "unknown field");
if !available_field_names.is_empty() {
err.note(format!(
"available fields are: {}",
self.name_series_display(available_field_names),
));
}
}
}
fn maybe_suggest_array_indexing(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
base: &hir::Expr<'_>,
field: Ident,
len: ty::Const<'tcx>,
) {
if let (Some(len), Ok(user_index)) =
(len.try_eval_target_usize(self.tcx, self.param_env), field.as_str().parse::<u64>())
&& let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span)
{
let help = "instead of using tuple indexing, use array indexing";
let suggestion = format!("{base}[{field}]");
let applicability = if len < user_index {
Applicability::MachineApplicable
} else {
Applicability::MaybeIncorrect
};
err.span_suggestion(expr.span, help, suggestion, applicability);
}
}
fn suggest_first_deref_field(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
base: &hir::Expr<'_>,
field: Ident,
) {
if let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span) {
let msg = format!("`{base}` is a raw pointer; try dereferencing it");
let suggestion = format!("(*{base}).{field}");
err.span_suggestion(expr.span, msg, suggestion, Applicability::MaybeIncorrect);
}
}
fn no_such_field_err(
&self,
field: Ident,
expr_t: Ty<'tcx>,
id: HirId,
) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
let span = field.span;
debug!("no_such_field_err(span: {:?}, field: {:?}, expr_t: {:?})", span, field, expr_t);
let mut err = type_error_struct!(
self.tcx().sess,
field.span,
expr_t,
E0609,
"no field `{field}` on type `{expr_t}`",
);
// try to add a suggestion in case the field is a nested field of a field of the Adt
let mod_id = self.tcx.parent_module(id).to_def_id();
if let Some((fields, args)) =
self.get_field_candidates_considering_privacy(span, expr_t, mod_id)
{
let candidate_fields: Vec<_> = fields
.filter_map(|candidate_field| {
self.check_for_nested_field_satisfying(
span,
&|candidate_field, _| candidate_field.ident(self.tcx()) == field,
candidate_field,
args,
vec![],
mod_id,
)
})
.map(|mut field_path| {
field_path.pop();
field_path
.iter()
.map(|id| id.name.to_ident_string())
.collect::<Vec<String>>()
.join(".")
})
.collect::<Vec<_>>();
let len = candidate_fields.len();
if len > 0 {
err.span_suggestions(
field.span.shrink_to_lo(),
format!(
"{} of the expressions' fields {} a field of the same name",
if len > 1 { "some" } else { "one" },
if len > 1 { "have" } else { "has" },
),
candidate_fields.iter().map(|path| format!("{path}.")),
Applicability::MaybeIncorrect,
);
}
}
err
}
fn private_field_err(
&self,
field: Ident,
base_did: DefId,
) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
let struct_path = self.tcx().def_path_str(base_did);
let kind_name = self.tcx().def_descr(base_did);
let mut err = struct_span_err!(
self.tcx().sess,
field.span,
E0616,
"field `{field}` of {kind_name} `{struct_path}` is private",
);
err.span_label(field.span, "private field");
err
}
pub(crate) fn get_field_candidates_considering_privacy(
&self,
span: Span,
base_ty: Ty<'tcx>,
mod_id: DefId,
) -> Option<(impl Iterator<Item = &'tcx ty::FieldDef> + 'tcx, GenericArgsRef<'tcx>)> {
debug!("get_field_candidates(span: {:?}, base_t: {:?}", span, base_ty);
for (base_t, _) in self.autoderef(span, base_ty) {
match base_t.kind() {
ty::Adt(base_def, args) if !base_def.is_enum() => {
let tcx = self.tcx;
let fields = &base_def.non_enum_variant().fields;
// Some struct, e.g. some that impl `Deref`, have all private fields
// because you're expected to deref them to access the _real_ fields.
// This, for example, will help us suggest accessing a field through a `Box<T>`.
if fields.iter().all(|field| !field.vis.is_accessible_from(mod_id, tcx)) {
continue;
}
return Some((
fields
.iter()
.filter(move |field| field.vis.is_accessible_from(mod_id, tcx))
// For compile-time reasons put a limit on number of fields we search
.take(100),
args,
));
}
_ => {}
}
}
None
}
/// This method is called after we have encountered a missing field error to recursively
/// search for the field
pub(crate) fn check_for_nested_field_satisfying(
&self,
span: Span,
matches: &impl Fn(&ty::FieldDef, Ty<'tcx>) -> bool,
candidate_field: &ty::FieldDef,
subst: GenericArgsRef<'tcx>,
mut field_path: Vec<Ident>,
mod_id: DefId,
) -> Option<Vec<Ident>> {
debug!(
"check_for_nested_field_satisfying(span: {:?}, candidate_field: {:?}, field_path: {:?}",
span, candidate_field, field_path
);
if field_path.len() > 3 {
// For compile-time reasons and to avoid infinite recursion we only check for fields
// up to a depth of three
None
} else {
field_path.push(candidate_field.ident(self.tcx).normalize_to_macros_2_0());
let field_ty = candidate_field.ty(self.tcx, subst);
if matches(candidate_field, field_ty) {
return Some(field_path);
} else if let Some((nested_fields, subst)) =
self.get_field_candidates_considering_privacy(span, field_ty, mod_id)
{
// recursively search fields of `candidate_field` if it's a ty::Adt
for field in nested_fields {
if let Some(field_path) = self.check_for_nested_field_satisfying(
span,
matches,
field,
subst,
field_path.clone(),
mod_id,
) {
return Some(field_path);
}
}
}
None
}
}
fn check_expr_index(
&self,
base: &'tcx hir::Expr<'tcx>,
idx: &'tcx hir::Expr<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
brackets_span: Span,
) -> Ty<'tcx> {
let base_t = self.check_expr(&base);
let idx_t = self.check_expr(&idx);
if base_t.references_error() {
base_t
} else if idx_t.references_error() {
idx_t
} else {
let base_t = self.structurally_resolve_type(base.span, base_t);
match self.lookup_indexing(expr, base, base_t, idx, idx_t) {
Some((index_ty, element_ty)) => {
// two-phase not needed because index_ty is never mutable
self.demand_coerce(idx, idx_t, index_ty, None, AllowTwoPhase::No);
self.select_obligations_where_possible(|errors| {
self.point_at_index_if_possible(errors, idx.span)
});
element_ty
}
None => {
// Attempt to *shallowly* search for an impl which matches,
// but has nested obligations which are unsatisfied.
for (base_t, _) in self.autoderef(base.span, base_t).silence_errors() {
if let Some((_, index_ty, element_ty)) =
self.find_and_report_unsatisfied_index_impl(base, base_t)
{
self.demand_coerce(idx, idx_t, index_ty, None, AllowTwoPhase::No);
return element_ty;
}
}
let mut err = type_error_struct!(
self.tcx.sess,
brackets_span,
base_t,
E0608,
"cannot index into a value of type `{base_t}`",
);
// Try to give some advice about indexing tuples.
if let ty::Tuple(types) = base_t.kind() {
let mut needs_note = true;
// If the index is an integer, we can show the actual
// fixed expression:
if let ExprKind::Lit(ref lit) = idx.kind
&& let ast::LitKind::Int(i, ast::LitIntType::Unsuffixed) = lit.node
&& i < types.len().try_into().expect("expected tuple index to be < usize length")
{
err.span_suggestion(
brackets_span,
"to access tuple elements, use",
format!(".{i}"),
Applicability::MachineApplicable,
);
needs_note = false;
} else if let ExprKind::Path(..) = idx.peel_borrows().kind {
err.span_label(idx.span, "cannot access tuple elements at a variable index");
}
if needs_note {
err.help(
"to access tuple elements, use tuple indexing \
syntax (e.g., `tuple.0`)",
);
}
}
if base_t.is_unsafe_ptr() && idx_t.is_integral() {
err.multipart_suggestion(
"consider using `wrapping_add` or `add` for indexing into raw pointer",
vec![
(base.span.between(idx.span), ".wrapping_add(".to_owned()),
(
idx.span.shrink_to_hi().until(expr.span.shrink_to_hi()),
")".to_owned(),
),
],
Applicability::MaybeIncorrect,
);
}
let reported = err.emit();
Ty::new_error(self.tcx, reported)
}
}
}
}
/// Try to match an implementation of `Index` against a self type, and report
/// the unsatisfied predicates that result from confirming this impl.
///
/// Given an index expression, sometimes the `Self` type shallowly but does not
/// deeply satisfy an impl predicate. Instead of simply saying that the type
/// does not support being indexed, we want to point out exactly what nested
/// predicates cause this to be, so that the user can add them to fix their code.
fn find_and_report_unsatisfied_index_impl(
&self,
base_expr: &hir::Expr<'_>,
base_ty: Ty<'tcx>,
) -> Option<(ErrorGuaranteed, Ty<'tcx>, Ty<'tcx>)> {
let index_trait_def_id = self.tcx.lang_items().index_trait()?;
let index_trait_output_def_id = self.tcx.get_diagnostic_item(sym::IndexOutput)?;
let mut relevant_impls = vec![];
self.tcx.for_each_relevant_impl(index_trait_def_id, base_ty, |impl_def_id| {
relevant_impls.push(impl_def_id);
});
let [impl_def_id] = relevant_impls[..] else {
// Only report unsatisfied impl predicates if there's one impl
return None;
};
self.commit_if_ok(|_| {
let ocx = ObligationCtxt::new(self);
let impl_args = self.fresh_args_for_item(base_expr.span, impl_def_id);
let impl_trait_ref =
self.tcx.impl_trait_ref(impl_def_id).unwrap().instantiate(self.tcx, impl_args);
let cause = self.misc(base_expr.span);
// Match the impl self type against the base ty. If this fails,
// we just skip this impl, since it's not particularly useful.
let impl_trait_ref = ocx.normalize(&cause, self.param_env, impl_trait_ref);
ocx.eq(&cause, self.param_env, impl_trait_ref.self_ty(), base_ty)?;
// Register the impl's predicates. One of these predicates
// must be unsatisfied, or else we wouldn't have gotten here
// in the first place.
ocx.register_obligations(traits::predicates_for_generics(
|idx, span| {
cause.clone().derived_cause(
ty::Binder::dummy(ty::TraitPredicate {
trait_ref: impl_trait_ref,
polarity: ty::ImplPolarity::Positive,
}),
|derived| {
traits::ImplDerivedObligation(Box::new(
traits::ImplDerivedObligationCause {
derived,
impl_or_alias_def_id: impl_def_id,
impl_def_predicate_index: Some(idx),
span,
},
))
},
)
},
self.param_env,
self.tcx.predicates_of(impl_def_id).instantiate(self.tcx, impl_args),
));
// Normalize the output type, which we can use later on as the
// return type of the index expression...
let element_ty = ocx.normalize(
&cause,
self.param_env,
Ty::new_projection(self.tcx, index_trait_output_def_id, impl_trait_ref.args),
);
let errors = ocx.select_where_possible();
// There should be at least one error reported. If not, we
// will still delay a span bug in `report_fulfillment_errors`.
Ok::<_, NoSolution>((
self.err_ctxt().report_fulfillment_errors(errors),
impl_trait_ref.args.type_at(1),
element_ty,
))
})
.ok()
}
fn point_at_index_if_possible(
&self,
errors: &mut Vec<traits::FulfillmentError<'tcx>>,
span: Span,
) {
for error in errors {
match error.obligation.predicate.kind().skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Trait(predicate))
if self.tcx.is_diagnostic_item(sym::SliceIndex, predicate.trait_ref.def_id) => {
}
_ => continue,
}
error.obligation.cause.span = span;
}
}
fn check_expr_yield(
&self,
value: &'tcx hir::Expr<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
src: &'tcx hir::YieldSource,
) -> Ty<'tcx> {
match self.resume_yield_tys {
Some((resume_ty, yield_ty)) => {
self.check_expr_coercible_to_type(&value, yield_ty, None);
resume_ty
}
// Given that this `yield` expression was generated as a result of lowering a `.await`,
// we know that the yield type must be `()`; however, the context won't contain this
// information. Hence, we check the source of the yield expression here and check its
// value's type against `()` (this check should always hold).
None if src.is_await() => {
self.check_expr_coercible_to_type(&value, Ty::new_unit(self.tcx), None);
Ty::new_unit(self.tcx)
}
_ => {
self.tcx.sess.emit_err(YieldExprOutsideOfGenerator { span: expr.span });
// Avoid expressions without types during writeback (#78653).
self.check_expr(value);
Ty::new_unit(self.tcx)
}
}
}
fn check_expr_asm_operand(&self, expr: &'tcx hir::Expr<'tcx>, is_input: bool) {
let needs = if is_input { Needs::None } else { Needs::MutPlace };
let ty = self.check_expr_with_needs(expr, needs);
self.require_type_is_sized(ty, expr.span, traits::InlineAsmSized);
if !is_input && !expr.is_syntactic_place_expr() {
let mut err = self.tcx.sess.struct_span_err(expr.span, "invalid asm output");
err.span_label(expr.span, "cannot assign to this expression");
err.emit();
}
// If this is an input value, we require its type to be fully resolved
// at this point. This allows us to provide helpful coercions which help
// pass the type candidate list in a later pass.
//
// We don't require output types to be resolved at this point, which
// allows them to be inferred based on how they are used later in the
// function.
if is_input {
let ty = self.structurally_resolve_type(expr.span, ty);
match *ty.kind() {
ty::FnDef(..) => {
let fnptr_ty = Ty::new_fn_ptr(self.tcx, ty.fn_sig(self.tcx));
self.demand_coerce(expr, ty, fnptr_ty, None, AllowTwoPhase::No);
}
ty::Ref(_, base_ty, mutbl) => {
let ptr_ty = Ty::new_ptr(self.tcx, ty::TypeAndMut { ty: base_ty, mutbl });
self.demand_coerce(expr, ty, ptr_ty, None, AllowTwoPhase::No);
}
_ => {}
}
}
}
fn check_expr_asm(&self, asm: &'tcx hir::InlineAsm<'tcx>) -> Ty<'tcx> {
for (op, _op_sp) in asm.operands {
match op {
hir::InlineAsmOperand::In { expr, .. } => {
self.check_expr_asm_operand(expr, true);
}
hir::InlineAsmOperand::Out { expr: Some(expr), .. }
| hir::InlineAsmOperand::InOut { expr, .. } => {
self.check_expr_asm_operand(expr, false);
}
hir::InlineAsmOperand::Out { expr: None, .. } => {}
hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
self.check_expr_asm_operand(in_expr, true);
if let Some(out_expr) = out_expr {
self.check_expr_asm_operand(out_expr, false);
}
}
// `AnonConst`s have their own body and is type-checked separately.
// As they don't flow into the type system we don't need them to
// be well-formed.
hir::InlineAsmOperand::Const { .. } | hir::InlineAsmOperand::SymFn { .. } => {}
hir::InlineAsmOperand::SymStatic { .. } => {}
}
}
if asm.options.contains(ast::InlineAsmOptions::NORETURN) {
self.tcx.types.never
} else {
Ty::new_unit(self.tcx)
}
}
fn check_offset_of(
&self,
container: &'tcx hir::Ty<'tcx>,
fields: &[Ident],
expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let container = self.to_ty(container).normalized;
let mut field_indices = Vec::with_capacity(fields.len());
let mut current_container = container;
for &field in fields {
let container = self.structurally_resolve_type(expr.span, current_container);
match container.kind() {
ty::Adt(container_def, args) if !container_def.is_enum() => {
let block = self.tcx.hir().local_def_id_to_hir_id(self.body_id);
let (ident, def_scope) =
self.tcx.adjust_ident_and_get_scope(field, container_def.did(), block);
let fields = &container_def.non_enum_variant().fields;
if let Some((index, field)) = fields
.iter_enumerated()
.find(|(_, f)| f.ident(self.tcx).normalize_to_macros_2_0() == ident)
{
let field_ty = self.field_ty(expr.span, field, args);
// FIXME: DSTs with static alignment should be allowed
self.require_type_is_sized(field_ty, expr.span, traits::MiscObligation);
if field.vis.is_accessible_from(def_scope, self.tcx) {
self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
} else {
self.private_field_err(ident, container_def.did()).emit();
}
// Save the index of all fields regardless of their visibility in case
// of error recovery.
field_indices.push(index);
current_container = field_ty;
continue;
}
}
ty::Tuple(tys) => {
if let Ok(index) = field.as_str().parse::<usize>()
&& field.name == sym::integer(index)
{
for ty in tys.iter().take(index + 1) {
self.require_type_is_sized(ty, expr.span, traits::MiscObligation);
}
if let Some(&field_ty) = tys.get(index) {
field_indices.push(index.into());
current_container = field_ty;
continue;
}
}
}
_ => (),
};
self.no_such_field_err(field, container, expr.hir_id).emit();
break;
}
self.typeck_results
.borrow_mut()
.offset_of_data_mut()
.insert(expr.hir_id, (container, field_indices));
self.tcx.types.usize
}
}