1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
use rustc_middle::mir;
use rustc_span::Symbol;
use rustc_target::abi::Size;
use rustc_target::spec::abi::Abi;

use crate::*;
use helpers::bool_to_simd_element;
use shims::foreign_items::EmulateByNameResult;

mod sse;
mod sse2;
mod sse3;
mod ssse3;

impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriInterpCx<'mir, 'tcx> {}
pub(super) trait EvalContextExt<'mir, 'tcx: 'mir>:
    crate::MiriInterpCxExt<'mir, 'tcx>
{
    fn emulate_x86_intrinsic(
        &mut self,
        link_name: Symbol,
        abi: Abi,
        args: &[OpTy<'tcx, Provenance>],
        dest: &PlaceTy<'tcx, Provenance>,
    ) -> InterpResult<'tcx, EmulateByNameResult<'mir, 'tcx>> {
        let this = self.eval_context_mut();
        // Prefix should have already been checked.
        let unprefixed_name = link_name.as_str().strip_prefix("llvm.x86.").unwrap();
        match unprefixed_name {
            // Used to implement the `_addcarry_u32` and `_addcarry_u64` functions.
            // Computes a + b with input and output carry. The input carry is an 8-bit
            // value, which is interpreted as 1 if it is non-zero. The output carry is
            // an 8-bit value that will be 0 or 1.
            // https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/addcarry-u32-addcarry-u64.html
            "addcarry.32" | "addcarry.64" => {
                if unprefixed_name == "addcarry.64" && this.tcx.sess.target.arch != "x86_64" {
                    return Ok(EmulateByNameResult::NotSupported);
                }

                let [c_in, a, b] = this.check_shim(abi, Abi::Unadjusted, link_name, args)?;
                let c_in = this.read_scalar(c_in)?.to_u8()? != 0;
                let a = this.read_immediate(a)?;
                let b = this.read_immediate(b)?;

                let (sum, overflow1) = this.overflowing_binary_op(mir::BinOp::Add, &a, &b)?;
                let (sum, overflow2) = this.overflowing_binary_op(
                    mir::BinOp::Add,
                    &sum,
                    &ImmTy::from_uint(c_in, a.layout),
                )?;
                let c_out = overflow1 | overflow2;

                this.write_scalar(Scalar::from_u8(c_out.into()), &this.project_field(dest, 0)?)?;
                this.write_immediate(*sum, &this.project_field(dest, 1)?)?;
            }
            // Used to implement the `_subborrow_u32` and `_subborrow_u64` functions.
            // Computes a - b with input and output borrow. The input borrow is an 8-bit
            // value, which is interpreted as 1 if it is non-zero. The output borrow is
            // an 8-bit value that will be 0 or 1.
            // https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/subborrow-u32-subborrow-u64.html
            "subborrow.32" | "subborrow.64" => {
                if unprefixed_name == "subborrow.64" && this.tcx.sess.target.arch != "x86_64" {
                    return Ok(EmulateByNameResult::NotSupported);
                }

                let [b_in, a, b] = this.check_shim(abi, Abi::Unadjusted, link_name, args)?;
                let b_in = this.read_scalar(b_in)?.to_u8()? != 0;
                let a = this.read_immediate(a)?;
                let b = this.read_immediate(b)?;

                let (sub, overflow1) = this.overflowing_binary_op(mir::BinOp::Sub, &a, &b)?;
                let (sub, overflow2) = this.overflowing_binary_op(
                    mir::BinOp::Sub,
                    &sub,
                    &ImmTy::from_uint(b_in, a.layout),
                )?;
                let b_out = overflow1 | overflow2;

                this.write_scalar(Scalar::from_u8(b_out.into()), &this.project_field(dest, 0)?)?;
                this.write_immediate(*sub, &this.project_field(dest, 1)?)?;
            }

            name if name.starts_with("sse.") => {
                return sse::EvalContextExt::emulate_x86_sse_intrinsic(
                    this, link_name, abi, args, dest,
                );
            }
            name if name.starts_with("sse2.") => {
                return sse2::EvalContextExt::emulate_x86_sse2_intrinsic(
                    this, link_name, abi, args, dest,
                );
            }
            name if name.starts_with("sse3.") => {
                return sse3::EvalContextExt::emulate_x86_sse3_intrinsic(
                    this, link_name, abi, args, dest,
                );
            }
            name if name.starts_with("ssse3.") => {
                return ssse3::EvalContextExt::emulate_x86_ssse3_intrinsic(
                    this, link_name, abi, args, dest,
                );
            }
            _ => return Ok(EmulateByNameResult::NotSupported),
        }
        Ok(EmulateByNameResult::NeedsJumping)
    }
}

/// Floating point comparison operation
///
/// <https://www.felixcloutier.com/x86/cmpss>
/// <https://www.felixcloutier.com/x86/cmpps>
/// <https://www.felixcloutier.com/x86/cmpsd>
/// <https://www.felixcloutier.com/x86/cmppd>
#[derive(Copy, Clone)]
enum FloatCmpOp {
    Eq,
    Lt,
    Le,
    Unord,
    Neq,
    /// Not less-than
    Nlt,
    /// Not less-or-equal
    Nle,
    /// Ordered, i.e. neither of them is NaN
    Ord,
}

impl FloatCmpOp {
    /// Convert from the `imm` argument used to specify the comparison
    /// operation in intrinsics such as `llvm.x86.sse.cmp.ss`.
    fn from_intrinsic_imm(imm: i8, intrinsic: &str) -> InterpResult<'_, Self> {
        match imm {
            0 => Ok(Self::Eq),
            1 => Ok(Self::Lt),
            2 => Ok(Self::Le),
            3 => Ok(Self::Unord),
            4 => Ok(Self::Neq),
            5 => Ok(Self::Nlt),
            6 => Ok(Self::Nle),
            7 => Ok(Self::Ord),
            imm => {
                throw_unsup_format!("invalid `imm` parameter of {intrinsic}: {imm}");
            }
        }
    }
}

#[derive(Copy, Clone)]
enum FloatBinOp {
    /// Arithmetic operation
    Arith(mir::BinOp),
    /// Comparison
    Cmp(FloatCmpOp),
    /// Minimum value (with SSE semantics)
    ///
    /// <https://www.felixcloutier.com/x86/minss>
    /// <https://www.felixcloutier.com/x86/minps>
    /// <https://www.felixcloutier.com/x86/minsd>
    /// <https://www.felixcloutier.com/x86/minpd>
    Min,
    /// Maximum value (with SSE semantics)
    ///
    /// <https://www.felixcloutier.com/x86/maxss>
    /// <https://www.felixcloutier.com/x86/maxps>
    /// <https://www.felixcloutier.com/x86/maxsd>
    /// <https://www.felixcloutier.com/x86/maxpd>
    Max,
}

/// Performs `which` scalar operation on `left` and `right` and returns
/// the result.
fn bin_op_float<'tcx, F: rustc_apfloat::Float>(
    this: &crate::MiriInterpCx<'_, 'tcx>,
    which: FloatBinOp,
    left: &ImmTy<'tcx, Provenance>,
    right: &ImmTy<'tcx, Provenance>,
) -> InterpResult<'tcx, Scalar<Provenance>> {
    match which {
        FloatBinOp::Arith(which) => {
            let res = this.wrapping_binary_op(which, left, right)?;
            Ok(res.to_scalar())
        }
        FloatBinOp::Cmp(which) => {
            let left = left.to_scalar().to_float::<F>()?;
            let right = right.to_scalar().to_float::<F>()?;
            // FIXME: Make sure that these operations match the semantics
            // of cmpps/cmpss/cmppd/cmpsd
            let res = match which {
                FloatCmpOp::Eq => left == right,
                FloatCmpOp::Lt => left < right,
                FloatCmpOp::Le => left <= right,
                FloatCmpOp::Unord => left.is_nan() || right.is_nan(),
                FloatCmpOp::Neq => left != right,
                FloatCmpOp::Nlt => !(left < right),
                FloatCmpOp::Nle => !(left <= right),
                FloatCmpOp::Ord => !left.is_nan() && !right.is_nan(),
            };
            Ok(bool_to_simd_element(res, Size::from_bits(F::BITS)))
        }
        FloatBinOp::Min => {
            let left_scalar = left.to_scalar();
            let left = left_scalar.to_float::<F>()?;
            let right_scalar = right.to_scalar();
            let right = right_scalar.to_float::<F>()?;
            // SSE semantics to handle zero and NaN. Note that `x == F::ZERO`
            // is true when `x` is either +0 or -0.
            if (left == F::ZERO && right == F::ZERO)
                || left.is_nan()
                || right.is_nan()
                || left >= right
            {
                Ok(right_scalar)
            } else {
                Ok(left_scalar)
            }
        }
        FloatBinOp::Max => {
            let left_scalar = left.to_scalar();
            let left = left_scalar.to_float::<F>()?;
            let right_scalar = right.to_scalar();
            let right = right_scalar.to_float::<F>()?;
            // SSE semantics to handle zero and NaN. Note that `x == F::ZERO`
            // is true when `x` is either +0 or -0.
            if (left == F::ZERO && right == F::ZERO)
                || left.is_nan()
                || right.is_nan()
                || left <= right
            {
                Ok(right_scalar)
            } else {
                Ok(left_scalar)
            }
        }
    }
}

/// Performs `which` operation on the first component of `left` and `right`
/// and copies the other components from `left`. The result is stored in `dest`.
fn bin_op_simd_float_first<'tcx, F: rustc_apfloat::Float>(
    this: &mut crate::MiriInterpCx<'_, 'tcx>,
    which: FloatBinOp,
    left: &OpTy<'tcx, Provenance>,
    right: &OpTy<'tcx, Provenance>,
    dest: &PlaceTy<'tcx, Provenance>,
) -> InterpResult<'tcx, ()> {
    let (left, left_len) = this.operand_to_simd(left)?;
    let (right, right_len) = this.operand_to_simd(right)?;
    let (dest, dest_len) = this.place_to_simd(dest)?;

    assert_eq!(dest_len, left_len);
    assert_eq!(dest_len, right_len);

    let res0 = bin_op_float::<F>(
        this,
        which,
        &this.read_immediate(&this.project_index(&left, 0)?)?,
        &this.read_immediate(&this.project_index(&right, 0)?)?,
    )?;
    this.write_scalar(res0, &this.project_index(&dest, 0)?)?;

    for i in 1..dest_len {
        this.copy_op(
            &this.project_index(&left, i)?,
            &this.project_index(&dest, i)?,
            /*allow_transmute*/ false,
        )?;
    }

    Ok(())
}

/// Performs `which` operation on each component of `left` and
/// `right`, storing the result is stored in `dest`.
fn bin_op_simd_float_all<'tcx, F: rustc_apfloat::Float>(
    this: &mut crate::MiriInterpCx<'_, 'tcx>,
    which: FloatBinOp,
    left: &OpTy<'tcx, Provenance>,
    right: &OpTy<'tcx, Provenance>,
    dest: &PlaceTy<'tcx, Provenance>,
) -> InterpResult<'tcx, ()> {
    let (left, left_len) = this.operand_to_simd(left)?;
    let (right, right_len) = this.operand_to_simd(right)?;
    let (dest, dest_len) = this.place_to_simd(dest)?;

    assert_eq!(dest_len, left_len);
    assert_eq!(dest_len, right_len);

    for i in 0..dest_len {
        let left = this.read_immediate(&this.project_index(&left, i)?)?;
        let right = this.read_immediate(&this.project_index(&right, i)?)?;
        let dest = this.project_index(&dest, i)?;

        let res = bin_op_float::<F>(this, which, &left, &right)?;
        this.write_scalar(res, &dest)?;
    }

    Ok(())
}

/// Horizontaly performs `which` operation on adjacent values of
/// `left` and `right` SIMD vectors and stores the result in `dest`.
fn horizontal_bin_op<'tcx>(
    this: &mut crate::MiriInterpCx<'_, 'tcx>,
    which: mir::BinOp,
    saturating: bool,
    left: &OpTy<'tcx, Provenance>,
    right: &OpTy<'tcx, Provenance>,
    dest: &PlaceTy<'tcx, Provenance>,
) -> InterpResult<'tcx, ()> {
    let (left, left_len) = this.operand_to_simd(left)?;
    let (right, right_len) = this.operand_to_simd(right)?;
    let (dest, dest_len) = this.place_to_simd(dest)?;

    assert_eq!(dest_len, left_len);
    assert_eq!(dest_len, right_len);
    assert_eq!(dest_len % 2, 0);

    let middle = dest_len / 2;
    for i in 0..dest_len {
        // `i` is the index in `dest`
        // `j` is the index of the 2-item chunk in `src`
        let (j, src) =
            if i < middle { (i, &left) } else { (i.checked_sub(middle).unwrap(), &right) };
        // `base_i` is the index of the first item of the 2-item chunk in `src`
        let base_i = j.checked_mul(2).unwrap();
        let lhs = this.read_immediate(&this.project_index(src, base_i)?)?;
        let rhs = this.read_immediate(&this.project_index(src, base_i.checked_add(1).unwrap())?)?;

        let res = if saturating {
            Immediate::from(this.saturating_arith(which, &lhs, &rhs)?)
        } else {
            *this.wrapping_binary_op(which, &lhs, &rhs)?
        };

        this.write_immediate(res, &this.project_index(&dest, i)?)?;
    }

    Ok(())
}