1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
//! This is an incomplete implementation of mmap/munmap which is restricted in order to be
//! implementable on top of the existing memory system. The point of these function as-written is
//! to allow memory allocators written entirely in Rust to be executed by Miri. This implementation
//! does not support other uses of mmap such as file mappings.
//!
//! mmap/munmap behave a lot like alloc/dealloc, and for simple use they are exactly
//! equivalent. That is the only part we support: no MAP_FIXED or MAP_SHARED or anything
//! else that goes beyond a basic allocation API.

use crate::*;
use rustc_target::abi::Size;

impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriInterpCx<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriInterpCxExt<'mir, 'tcx> {
    fn mmap(
        &mut self,
        addr: &OpTy<'tcx, Provenance>,
        length: &OpTy<'tcx, Provenance>,
        prot: &OpTy<'tcx, Provenance>,
        flags: &OpTy<'tcx, Provenance>,
        fd: &OpTy<'tcx, Provenance>,
        offset: &OpTy<'tcx, Provenance>,
    ) -> InterpResult<'tcx, Scalar<Provenance>> {
        let this = self.eval_context_mut();

        // We do not support MAP_FIXED, so the addr argument is always ignored (except for the MacOS hack)
        let addr = this.read_target_usize(addr)?;
        let length = this.read_target_usize(length)?;
        let prot = this.read_scalar(prot)?.to_i32()?;
        let flags = this.read_scalar(flags)?.to_i32()?;
        let fd = this.read_scalar(fd)?.to_i32()?;
        let offset = this.read_target_usize(offset)?;

        let map_private = this.eval_libc_i32("MAP_PRIVATE");
        let map_anonymous = this.eval_libc_i32("MAP_ANONYMOUS");
        let map_shared = this.eval_libc_i32("MAP_SHARED");
        let map_fixed = this.eval_libc_i32("MAP_FIXED");

        // This is a horrible hack, but on MacOS the guard page mechanism uses mmap
        // in a way we do not support. We just give it the return value it expects.
        if this.frame_in_std() && this.tcx.sess.target.os == "macos" && (flags & map_fixed) != 0 {
            return Ok(Scalar::from_maybe_pointer(Pointer::from_addr_invalid(addr), this));
        }

        let prot_read = this.eval_libc_i32("PROT_READ");
        let prot_write = this.eval_libc_i32("PROT_WRITE");

        // First, we do some basic argument validation as required by mmap
        if (flags & (map_private | map_shared)).count_ones() != 1 {
            this.set_last_error(Scalar::from_i32(this.eval_libc_i32("EINVAL")))?;
            return Ok(Scalar::from_maybe_pointer(Pointer::null(), this));
        }
        if length == 0 {
            this.set_last_error(Scalar::from_i32(this.eval_libc_i32("EINVAL")))?;
            return Ok(Scalar::from_maybe_pointer(Pointer::null(), this));
        }

        // If a user tries to map a file, we want to loudly inform them that this is not going
        // to work. It is possible that POSIX gives us enough leeway to return an error, but the
        // outcome for the user (I need to add cfg(miri)) is the same, just more frustrating.
        if fd != -1 {
            throw_unsup_format!("Miri does not support file-backed memory mappings");
        }

        // POSIX says:
        // [ENOTSUP]
        // * MAP_FIXED or MAP_PRIVATE was specified in the flags argument and the implementation
        // does not support this functionality.
        // * The implementation does not support the combination of accesses requested in the
        // prot argument.
        //
        // Miri doesn't support MAP_FIXED or any any protections other than PROT_READ|PROT_WRITE.
        if flags & map_fixed != 0 || prot != prot_read | prot_write {
            this.set_last_error(Scalar::from_i32(this.eval_libc_i32("ENOTSUP")))?;
            return Ok(Scalar::from_maybe_pointer(Pointer::null(), this));
        }

        // Miri does not support shared mappings, or any of the other extensions that for example
        // Linux has added to the flags arguments.
        if flags != map_private | map_anonymous {
            throw_unsup_format!(
                "Miri only supports calls to mmap which set the flags argument to MAP_PRIVATE|MAP_ANONYMOUS"
            );
        }

        // This is only used for file mappings, which we don't support anyway.
        if offset != 0 {
            throw_unsup_format!("Miri does not support non-zero offsets to mmap");
        }

        let align = this.machine.page_align();
        let map_length = this.machine.round_up_to_multiple_of_page_size(length).unwrap_or(u64::MAX);

        let ptr =
            this.allocate_ptr(Size::from_bytes(map_length), align, MiriMemoryKind::Mmap.into())?;
        // We just allocated this, the access is definitely in-bounds and fits into our address space.
        // mmap guarantees new mappings are zero-init.
        this.write_bytes_ptr(
            ptr.into(),
            std::iter::repeat(0u8).take(usize::try_from(map_length).unwrap()),
        )
        .unwrap();
        // Memory mappings don't use provenance, and are always exposed.
        Machine::expose_ptr(this, ptr)?;

        Ok(Scalar::from_pointer(ptr, this))
    }

    fn munmap(
        &mut self,
        addr: &OpTy<'tcx, Provenance>,
        length: &OpTy<'tcx, Provenance>,
    ) -> InterpResult<'tcx, Scalar<Provenance>> {
        let this = self.eval_context_mut();

        let addr = this.read_target_usize(addr)?;
        let length = this.read_target_usize(length)?;

        // addr must be a multiple of the page size
        #[allow(clippy::arithmetic_side_effects)] // PAGE_SIZE is nonzero
        if addr % this.machine.page_size != 0 {
            this.set_last_error(Scalar::from_i32(this.eval_libc_i32("EINVAL")))?;
            return Ok(Scalar::from_i32(-1));
        }

        let length = this.machine.round_up_to_multiple_of_page_size(length).unwrap_or(u64::MAX);

        let ptr = Machine::ptr_from_addr_cast(this, addr)?;

        let Ok(ptr) = ptr.into_pointer_or_addr() else {
            throw_unsup_format!("Miri only supports munmap on memory allocated directly by mmap");
        };
        let Some((alloc_id, offset, _prov)) = Machine::ptr_get_alloc(this, ptr) else {
            throw_unsup_format!("Miri only supports munmap on memory allocated directly by mmap");
        };

        // Elsewhere in this function we are careful to check what we can and throw an unsupported
        // error instead of Undefined Behavior when use of this function falls outside of the
        // narrow scope we support. We deliberately do not check the MemoryKind of this allocation,
        // because we want to report UB on attempting to unmap memory that Rust "understands", such
        // the stack, heap, or statics.
        let (_kind, alloc) = this.memory.alloc_map().get(alloc_id).unwrap();
        if offset != Size::ZERO || alloc.len() as u64 != length {
            throw_unsup_format!(
                "Miri only supports munmap calls that exactly unmap a region previously returned by mmap"
            );
        }

        let len = Size::from_bytes(alloc.len() as u64);
        this.deallocate_ptr(
            ptr.into(),
            Some((len, this.machine.page_align())),
            MemoryKind::Machine(MiriMemoryKind::Mmap),
        )?;

        Ok(Scalar::from_i32(0))
    }
}