1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
//! The arena, a fast but limited type of allocator.
//!
//! Arenas are a type of allocator that destroy the objects within, all at
//! once, once the arena itself is destroyed. They do not support deallocation
//! of individual objects while the arena itself is still alive. The benefit
//! of an arena is very fast allocation; just a pointer bump.
//!
//! This crate implements several kinds of arena.
#![doc(
html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/",
test(no_crate_inject, attr(deny(warnings)))
)]
#![cfg_attr(not(bootstrap), doc(rust_logo))]
#![cfg_attr(not(bootstrap), feature(rustdoc_internals))]
#![feature(core_intrinsics)]
#![feature(dropck_eyepatch)]
#![feature(new_uninit)]
#![feature(maybe_uninit_slice)]
#![feature(decl_macro)]
#![feature(pointer_byte_offsets)]
#![feature(rustc_attrs)]
#![cfg_attr(test, feature(test))]
#![feature(strict_provenance)]
#![deny(unsafe_op_in_unsafe_fn)]
#![deny(rustc::untranslatable_diagnostic)]
#![deny(rustc::diagnostic_outside_of_impl)]
#![allow(internal_features)]
#![allow(clippy::mut_from_ref)] // Arena allocators are one of the places where this pattern is fine.
use smallvec::SmallVec;
use std::alloc::Layout;
use std::cell::{Cell, RefCell};
use std::marker::PhantomData;
use std::mem::{self, MaybeUninit};
use std::ptr::{self, NonNull};
use std::slice;
use std::{cmp, intrinsics};
/// This calls the passed function while ensuring it won't be inlined into the caller.
#[inline(never)]
#[cold]
fn outline<F: FnOnce() -> R, R>(f: F) -> R {
f()
}
struct ArenaChunk<T = u8> {
/// The raw storage for the arena chunk.
storage: NonNull<[MaybeUninit<T>]>,
/// The number of valid entries in the chunk.
entries: usize,
}
unsafe impl<#[may_dangle] T> Drop for ArenaChunk<T> {
fn drop(&mut self) {
unsafe { drop(Box::from_raw(self.storage.as_mut())) }
}
}
impl<T> ArenaChunk<T> {
#[inline]
unsafe fn new(capacity: usize) -> ArenaChunk<T> {
ArenaChunk {
storage: NonNull::from(Box::leak(Box::new_uninit_slice(capacity))),
entries: 0,
}
}
/// Destroys this arena chunk.
///
/// # Safety
///
/// The caller must ensure that `len` elements of this chunk have been initialized.
#[inline]
unsafe fn destroy(&mut self, len: usize) {
// The branch on needs_drop() is an -O1 performance optimization.
// Without the branch, dropping TypedArena<T> takes linear time.
if mem::needs_drop::<T>() {
// SAFETY: The caller must ensure that `len` elements of this chunk have
// been initialized.
unsafe {
let slice = self.storage.as_mut();
ptr::drop_in_place(MaybeUninit::slice_assume_init_mut(&mut slice[..len]));
}
}
}
// Returns a pointer to the first allocated object.
#[inline]
fn start(&mut self) -> *mut T {
self.storage.as_ptr() as *mut T
}
// Returns a pointer to the end of the allocated space.
#[inline]
fn end(&mut self) -> *mut T {
unsafe {
if mem::size_of::<T>() == 0 {
// A pointer as large as possible for zero-sized elements.
ptr::invalid_mut(!0)
} else {
self.start().add(self.storage.len())
}
}
}
}
// The arenas start with PAGE-sized chunks, and then each new chunk is twice as
// big as its predecessor, up until we reach HUGE_PAGE-sized chunks, whereupon
// we stop growing. This scales well, from arenas that are barely used up to
// arenas that are used for 100s of MiBs. Note also that the chosen sizes match
// the usual sizes of pages and huge pages on Linux.
const PAGE: usize = 4096;
const HUGE_PAGE: usize = 2 * 1024 * 1024;
/// An arena that can hold objects of only one type.
pub struct TypedArena<T> {
/// A pointer to the next object to be allocated.
ptr: Cell<*mut T>,
/// A pointer to the end of the allocated area. When this pointer is
/// reached, a new chunk is allocated.
end: Cell<*mut T>,
/// A vector of arena chunks.
chunks: RefCell<Vec<ArenaChunk<T>>>,
/// Marker indicating that dropping the arena causes its owned
/// instances of `T` to be dropped.
_own: PhantomData<T>,
}
impl<T> Default for TypedArena<T> {
/// Creates a new `TypedArena`.
fn default() -> TypedArena<T> {
TypedArena {
// We set both `ptr` and `end` to 0 so that the first call to
// alloc() will trigger a grow().
ptr: Cell::new(ptr::null_mut()),
end: Cell::new(ptr::null_mut()),
chunks: Default::default(),
_own: PhantomData,
}
}
}
impl<T> TypedArena<T> {
/// Allocates an object in the `TypedArena`, returning a reference to it.
#[inline]
pub fn alloc(&self, object: T) -> &mut T {
if self.ptr == self.end {
self.grow(1)
}
unsafe {
if mem::size_of::<T>() == 0 {
self.ptr.set(self.ptr.get().wrapping_byte_add(1));
let ptr = ptr::NonNull::<T>::dangling().as_ptr();
// Don't drop the object. This `write` is equivalent to `forget`.
ptr::write(ptr, object);
&mut *ptr
} else {
let ptr = self.ptr.get();
// Advance the pointer.
self.ptr.set(self.ptr.get().add(1));
// Write into uninitialized memory.
ptr::write(ptr, object);
&mut *ptr
}
}
}
#[inline]
fn can_allocate(&self, additional: usize) -> bool {
// FIXME: this should *likely* use `offset_from`, but more
// investigation is needed (including running tests in miri).
let available_bytes = self.end.get().addr() - self.ptr.get().addr();
let additional_bytes = additional.checked_mul(mem::size_of::<T>()).unwrap();
available_bytes >= additional_bytes
}
#[inline]
fn alloc_raw_slice(&self, len: usize) -> *mut T {
assert!(mem::size_of::<T>() != 0);
assert!(len != 0);
// Ensure the current chunk can fit `len` objects.
if !self.can_allocate(len) {
self.grow(len);
debug_assert!(self.can_allocate(len));
}
let start_ptr = self.ptr.get();
// SAFETY: `can_allocate`/`grow` ensures that there is enough space for
// `len` elements.
unsafe { self.ptr.set(start_ptr.add(len)) };
start_ptr
}
#[inline]
pub fn alloc_from_iter<I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
// This implementation is entirely separate to
// `DroplessIterator::alloc_from_iter`, even though conceptually they
// are the same.
//
// `DroplessIterator` (in the fast case) writes elements from the
// iterator one at a time into the allocated memory. That's easy
// because the elements don't implement `Drop`. But for `TypedArena`
// they do implement `Drop`, which means that if the iterator panics we
// could end up with some allocated-but-uninitialized elements, which
// will then cause UB in `TypedArena::drop`.
//
// Instead we use an approach where any iterator panic will occur
// before the memory is allocated. This function is much less hot than
// `DroplessArena::alloc_from_iter`, so it doesn't need to be
// hyper-optimized.
assert!(mem::size_of::<T>() != 0);
let mut vec: SmallVec<[_; 8]> = iter.into_iter().collect();
if vec.is_empty() {
return &mut [];
}
// Move the content to the arena by copying and then forgetting it.
let len = vec.len();
let start_ptr = self.alloc_raw_slice(len);
unsafe {
vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
vec.set_len(0);
slice::from_raw_parts_mut(start_ptr, len)
}
}
/// Grows the arena.
#[inline(never)]
#[cold]
fn grow(&self, additional: usize) {
unsafe {
// We need the element size to convert chunk sizes (ranging from
// PAGE to HUGE_PAGE bytes) to element counts.
let elem_size = cmp::max(1, mem::size_of::<T>());
let mut chunks = self.chunks.borrow_mut();
let mut new_cap;
if let Some(last_chunk) = chunks.last_mut() {
// If a type is `!needs_drop`, we don't need to keep track of how many elements
// the chunk stores - the field will be ignored anyway.
if mem::needs_drop::<T>() {
// FIXME: this should *likely* use `offset_from`, but more
// investigation is needed (including running tests in miri).
let used_bytes = self.ptr.get().addr() - last_chunk.start().addr();
last_chunk.entries = used_bytes / mem::size_of::<T>();
}
// If the previous chunk's len is less than HUGE_PAGE
// bytes, then this chunk will be least double the previous
// chunk's size.
new_cap = last_chunk.storage.len().min(HUGE_PAGE / elem_size / 2);
new_cap *= 2;
} else {
new_cap = PAGE / elem_size;
}
// Also ensure that this chunk can fit `additional`.
new_cap = cmp::max(additional, new_cap);
let mut chunk = ArenaChunk::<T>::new(new_cap);
self.ptr.set(chunk.start());
self.end.set(chunk.end());
chunks.push(chunk);
}
}
// Drops the contents of the last chunk. The last chunk is partially empty, unlike all other
// chunks.
fn clear_last_chunk(&self, last_chunk: &mut ArenaChunk<T>) {
// Determine how much was filled.
let start = last_chunk.start().addr();
// We obtain the value of the pointer to the first uninitialized element.
let end = self.ptr.get().addr();
// We then calculate the number of elements to be dropped in the last chunk,
// which is the filled area's length.
let diff = if mem::size_of::<T>() == 0 {
// `T` is ZST. It can't have a drop flag, so the value here doesn't matter. We get
// the number of zero-sized values in the last and only chunk, just out of caution.
// Recall that `end` was incremented for each allocated value.
end - start
} else {
// FIXME: this should *likely* use `offset_from`, but more
// investigation is needed (including running tests in miri).
(end - start) / mem::size_of::<T>()
};
// Pass that to the `destroy` method.
unsafe {
last_chunk.destroy(diff);
}
// Reset the chunk.
self.ptr.set(last_chunk.start());
}
}
unsafe impl<#[may_dangle] T> Drop for TypedArena<T> {
fn drop(&mut self) {
unsafe {
// Determine how much was filled.
let mut chunks_borrow = self.chunks.borrow_mut();
if let Some(mut last_chunk) = chunks_borrow.pop() {
// Drop the contents of the last chunk.
self.clear_last_chunk(&mut last_chunk);
// The last chunk will be dropped. Destroy all other chunks.
for chunk in chunks_borrow.iter_mut() {
chunk.destroy(chunk.entries);
}
}
// Box handles deallocation of `last_chunk` and `self.chunks`.
}
}
}
unsafe impl<T: Send> Send for TypedArena<T> {}
#[inline(always)]
fn align_down(val: usize, align: usize) -> usize {
debug_assert!(align.is_power_of_two());
val & !(align - 1)
}
#[inline(always)]
fn align_up(val: usize, align: usize) -> usize {
debug_assert!(align.is_power_of_two());
(val + align - 1) & !(align - 1)
}
// Pointer alignment is common in compiler types, so keep `DroplessArena` aligned to them
// to optimize away alignment code.
const DROPLESS_ALIGNMENT: usize = mem::align_of::<usize>();
/// An arena that can hold objects of multiple different types that impl `Copy`
/// and/or satisfy `!mem::needs_drop`.
pub struct DroplessArena {
/// A pointer to the start of the free space.
start: Cell<*mut u8>,
/// A pointer to the end of free space.
///
/// The allocation proceeds downwards from the end of the chunk towards the
/// start. (This is slightly simpler and faster than allocating upwards,
/// see <https://fitzgeraldnick.com/2019/11/01/always-bump-downwards.html>.)
/// When this pointer crosses the start pointer, a new chunk is allocated.
///
/// This is kept aligned to DROPLESS_ALIGNMENT.
end: Cell<*mut u8>,
/// A vector of arena chunks.
chunks: RefCell<Vec<ArenaChunk>>,
}
unsafe impl Send for DroplessArena {}
impl Default for DroplessArena {
#[inline]
fn default() -> DroplessArena {
DroplessArena {
// We set both `start` and `end` to 0 so that the first call to
// alloc() will trigger a grow().
start: Cell::new(ptr::null_mut()),
end: Cell::new(ptr::null_mut()),
chunks: Default::default(),
}
}
}
impl DroplessArena {
#[inline(never)]
#[cold]
fn grow(&self, layout: Layout) {
// Add some padding so we can align `self.end` while
// still fitting in a `layout` allocation.
let additional = layout.size() + cmp::max(DROPLESS_ALIGNMENT, layout.align()) - 1;
unsafe {
let mut chunks = self.chunks.borrow_mut();
let mut new_cap;
if let Some(last_chunk) = chunks.last_mut() {
// There is no need to update `last_chunk.entries` because that
// field isn't used by `DroplessArena`.
// If the previous chunk's len is less than HUGE_PAGE
// bytes, then this chunk will be least double the previous
// chunk's size.
new_cap = last_chunk.storage.len().min(HUGE_PAGE / 2);
new_cap *= 2;
} else {
new_cap = PAGE;
}
// Also ensure that this chunk can fit `additional`.
new_cap = cmp::max(additional, new_cap);
let mut chunk = ArenaChunk::new(align_up(new_cap, PAGE));
self.start.set(chunk.start());
// Align the end to DROPLESS_ALIGNMENT.
let end = align_down(chunk.end().addr(), DROPLESS_ALIGNMENT);
// Make sure we don't go past `start`. This should not happen since the allocation
// should be at least DROPLESS_ALIGNMENT - 1 bytes.
debug_assert!(chunk.start().addr() <= end);
self.end.set(chunk.end().with_addr(end));
chunks.push(chunk);
}
}
#[inline]
pub fn alloc_raw(&self, layout: Layout) -> *mut u8 {
assert!(layout.size() != 0);
// This loop executes once or twice: if allocation fails the first
// time, the `grow` ensures it will succeed the second time.
loop {
let start = self.start.get().addr();
let old_end = self.end.get();
let end = old_end.addr();
// Align allocated bytes so that `self.end` stays aligned to
// DROPLESS_ALIGNMENT.
let bytes = align_up(layout.size(), DROPLESS_ALIGNMENT);
// Tell LLVM that `end` is aligned to DROPLESS_ALIGNMENT.
unsafe { intrinsics::assume(end == align_down(end, DROPLESS_ALIGNMENT)) };
if let Some(sub) = end.checked_sub(bytes) {
let new_end = align_down(sub, layout.align());
if start <= new_end {
let new_end = old_end.with_addr(new_end);
// `new_end` is aligned to DROPLESS_ALIGNMENT as `align_down`
// preserves alignment as both `end` and `bytes` are already
// aligned to DROPLESS_ALIGNMENT.
self.end.set(new_end);
return new_end;
}
}
// No free space left. Allocate a new chunk to satisfy the request.
// On failure the grow will panic or abort.
self.grow(layout);
}
}
#[inline]
pub fn alloc<T>(&self, object: T) -> &mut T {
assert!(!mem::needs_drop::<T>());
assert!(mem::size_of::<T>() != 0);
let mem = self.alloc_raw(Layout::new::<T>()) as *mut T;
unsafe {
// Write into uninitialized memory.
ptr::write(mem, object);
&mut *mem
}
}
/// Allocates a slice of objects that are copied into the `DroplessArena`, returning a mutable
/// reference to it. Will panic if passed a zero-sized type.
///
/// Panics:
///
/// - Zero-sized types
/// - Zero-length slices
#[inline]
pub fn alloc_slice<T>(&self, slice: &[T]) -> &mut [T]
where
T: Copy,
{
assert!(!mem::needs_drop::<T>());
assert!(mem::size_of::<T>() != 0);
assert!(!slice.is_empty());
let mem = self.alloc_raw(Layout::for_value::<[T]>(slice)) as *mut T;
unsafe {
mem.copy_from_nonoverlapping(slice.as_ptr(), slice.len());
slice::from_raw_parts_mut(mem, slice.len())
}
}
/// # Safety
///
/// The caller must ensure that `mem` is valid for writes up to
/// `size_of::<T>() * len`.
#[inline]
unsafe fn write_from_iter<T, I: Iterator<Item = T>>(
&self,
mut iter: I,
len: usize,
mem: *mut T,
) -> &mut [T] {
let mut i = 0;
// Use a manual loop since LLVM manages to optimize it better for
// slice iterators
loop {
// SAFETY: The caller must ensure that `mem` is valid for writes up to
// `size_of::<T>() * len`.
unsafe {
match iter.next() {
Some(value) if i < len => mem.add(i).write(value),
Some(_) | None => {
// We only return as many items as the iterator gave us, even
// though it was supposed to give us `len`
return slice::from_raw_parts_mut(mem, i);
}
}
}
i += 1;
}
}
#[inline]
pub fn alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
let iter = iter.into_iter();
assert!(mem::size_of::<T>() != 0);
assert!(!mem::needs_drop::<T>());
let size_hint = iter.size_hint();
match size_hint {
(min, Some(max)) if min == max => {
// We know the exact number of elements the iterator will produce here
let len = min;
if len == 0 {
return &mut [];
}
let mem = self.alloc_raw(Layout::array::<T>(len).unwrap()) as *mut T;
unsafe { self.write_from_iter(iter, len, mem) }
}
(_, _) => {
outline(move || -> &mut [T] {
let mut vec: SmallVec<[_; 8]> = iter.collect();
if vec.is_empty() {
return &mut [];
}
// Move the content to the arena by copying it and then forgetting
// the content of the SmallVec
unsafe {
let len = vec.len();
let start_ptr =
self.alloc_raw(Layout::for_value::<[T]>(vec.as_slice())) as *mut T;
vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
vec.set_len(0);
slice::from_raw_parts_mut(start_ptr, len)
}
})
}
}
}
}
/// Declare an `Arena` containing one dropless arena and many typed arenas (the
/// types of the typed arenas are specified by the arguments).
///
/// There are three cases of interest.
/// - Types that are `Copy`: these need not be specified in the arguments. They
/// will use the `DroplessArena`.
/// - Types that are `!Copy` and `!Drop`: these must be specified in the
/// arguments. An empty `TypedArena` will be created for each one, but the
/// `DroplessArena` will always be used and the `TypedArena` will stay empty.
/// This is odd but harmless, because an empty arena allocates no memory.
/// - Types that are `!Copy` and `Drop`: these must be specified in the
/// arguments. The `TypedArena` will be used for them.
///
#[rustc_macro_transparency = "semitransparent"]
pub macro declare_arena([$($a:tt $name:ident: $ty:ty,)*]) {
#[derive(Default)]
pub struct Arena<'tcx> {
pub dropless: $crate::DroplessArena,
$($name: $crate::TypedArena<$ty>,)*
}
pub trait ArenaAllocatable<'tcx, C = rustc_arena::IsNotCopy>: Sized {
#[allow(clippy::mut_from_ref)]
fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self;
#[allow(clippy::mut_from_ref)]
fn allocate_from_iter<'a>(
arena: &'a Arena<'tcx>,
iter: impl ::std::iter::IntoIterator<Item = Self>,
) -> &'a mut [Self];
}
// Any type that impls `Copy` can be arena-allocated in the `DroplessArena`.
impl<'tcx, T: Copy> ArenaAllocatable<'tcx, rustc_arena::IsCopy> for T {
#[inline]
#[allow(clippy::mut_from_ref)]
fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self {
arena.dropless.alloc(self)
}
#[inline]
#[allow(clippy::mut_from_ref)]
fn allocate_from_iter<'a>(
arena: &'a Arena<'tcx>,
iter: impl ::std::iter::IntoIterator<Item = Self>,
) -> &'a mut [Self] {
arena.dropless.alloc_from_iter(iter)
}
}
$(
impl<'tcx> ArenaAllocatable<'tcx, rustc_arena::IsNotCopy> for $ty {
#[inline]
fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self {
if !::std::mem::needs_drop::<Self>() {
arena.dropless.alloc(self)
} else {
arena.$name.alloc(self)
}
}
#[inline]
#[allow(clippy::mut_from_ref)]
fn allocate_from_iter<'a>(
arena: &'a Arena<'tcx>,
iter: impl ::std::iter::IntoIterator<Item = Self>,
) -> &'a mut [Self] {
if !::std::mem::needs_drop::<Self>() {
arena.dropless.alloc_from_iter(iter)
} else {
arena.$name.alloc_from_iter(iter)
}
}
}
)*
impl<'tcx> Arena<'tcx> {
#[inline]
#[allow(clippy::mut_from_ref)]
pub fn alloc<T: ArenaAllocatable<'tcx, C>, C>(&self, value: T) -> &mut T {
value.allocate_on(self)
}
// Any type that impls `Copy` can have slices be arena-allocated in the `DroplessArena`.
#[inline]
#[allow(clippy::mut_from_ref)]
pub fn alloc_slice<T: ::std::marker::Copy>(&self, value: &[T]) -> &mut [T] {
if value.is_empty() {
return &mut [];
}
self.dropless.alloc_slice(value)
}
#[allow(clippy::mut_from_ref)]
pub fn alloc_from_iter<T: ArenaAllocatable<'tcx, C>, C>(
&self,
iter: impl ::std::iter::IntoIterator<Item = T>,
) -> &mut [T] {
T::allocate_from_iter(self, iter)
}
}
}
// Marker types that let us give different behaviour for arenas allocating
// `Copy` types vs `!Copy` types.
pub struct IsCopy;
pub struct IsNotCopy;
#[cfg(test)]
mod tests;