1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
//! Implements threads.

use std::cell::RefCell;
use std::collections::hash_map::Entry;
use std::num::TryFromIntError;
use std::sync::atomic::{AtomicBool, Ordering::Relaxed};
use std::task::Poll;
use std::time::{Duration, SystemTime};

use either::Either;
use log::trace;

use rustc_data_structures::fx::FxHashMap;
use rustc_hir::def_id::DefId;
use rustc_index::{Idx, IndexVec};
use rustc_middle::mir::Mutability;
use rustc_middle::ty::layout::TyAndLayout;
use rustc_span::Span;
use rustc_target::spec::abi::Abi;

use crate::concurrency::data_race;
use crate::concurrency::sync::SynchronizationState;
use crate::shims::tls;
use crate::*;

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum SchedulingAction {
    /// Execute step on the active thread.
    ExecuteStep,
    /// Execute a timeout callback.
    ExecuteTimeoutCallback,
    /// Wait for a bit, until there is a timeout to be called.
    Sleep(Duration),
}

/// Trait for callbacks that can be executed when some event happens, such as after a timeout.
pub trait MachineCallback<'mir, 'tcx>: VisitTags {
    fn call(&self, ecx: &mut InterpCx<'mir, 'tcx, MiriMachine<'mir, 'tcx>>) -> InterpResult<'tcx>;
}

type TimeoutCallback<'mir, 'tcx> = Box<dyn MachineCallback<'mir, 'tcx> + 'tcx>;

/// A thread identifier.
#[derive(Clone, Copy, Debug, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct ThreadId(u32);

impl ThreadId {
    pub fn to_u32(self) -> u32 {
        self.0
    }
}

impl Idx for ThreadId {
    fn new(idx: usize) -> Self {
        ThreadId(u32::try_from(idx).unwrap())
    }

    fn index(self) -> usize {
        usize::try_from(self.0).unwrap()
    }
}

impl TryFrom<u64> for ThreadId {
    type Error = TryFromIntError;
    fn try_from(id: u64) -> Result<Self, Self::Error> {
        u32::try_from(id).map(Self)
    }
}

impl From<u32> for ThreadId {
    fn from(id: u32) -> Self {
        Self(id)
    }
}

impl From<ThreadId> for u64 {
    fn from(t: ThreadId) -> Self {
        t.0.into()
    }
}

/// The state of a thread.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum ThreadState {
    /// The thread is enabled and can be executed.
    Enabled,
    /// The thread tried to join the specified thread and is blocked until that
    /// thread terminates.
    BlockedOnJoin(ThreadId),
    /// The thread is blocked on some synchronization primitive. It is the
    /// responsibility of the synchronization primitives to track threads that
    /// are blocked by them.
    BlockedOnSync,
    /// The thread has terminated its execution. We do not delete terminated
    /// threads (FIXME: why?).
    Terminated,
}

/// The join status of a thread.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum ThreadJoinStatus {
    /// The thread can be joined.
    Joinable,
    /// A thread is detached if its join handle was destroyed and no other
    /// thread can join it.
    Detached,
    /// The thread was already joined by some thread and cannot be joined again.
    Joined,
}

/// A thread.
pub struct Thread<'mir, 'tcx> {
    state: ThreadState,

    /// Name of the thread.
    thread_name: Option<Vec<u8>>,

    /// The virtual call stack.
    stack: Vec<Frame<'mir, 'tcx, Provenance, FrameExtra<'tcx>>>,

    /// The function to call when the stack ran empty, to figure out what to do next.
    /// Conceptually, this is the interpreter implementation of the things that happen 'after' the
    /// Rust language entry point for this thread returns (usually implemented by the C or OS runtime).
    /// (`None` is an error, it means the callback has not been set up yet or is actively running.)
    pub(crate) on_stack_empty: Option<StackEmptyCallback<'mir, 'tcx>>,

    /// The index of the topmost user-relevant frame in `stack`. This field must contain
    /// the value produced by `get_top_user_relevant_frame`.
    /// The `None` state here represents
    /// This field is a cache to reduce how often we call that method. The cache is manually
    /// maintained inside `MiriMachine::after_stack_push` and `MiriMachine::after_stack_pop`.
    top_user_relevant_frame: Option<usize>,

    /// The join status.
    join_status: ThreadJoinStatus,

    /// Stack of active panic payloads for the current thread. Used for storing
    /// the argument of the call to `miri_start_panic` (the panic payload) when unwinding.
    /// This is pointer-sized, and matches the `Payload` type in `src/libpanic_unwind/miri.rs`.
    ///
    /// In real unwinding, the payload gets passed as an argument to the landing pad,
    /// which then forwards it to 'Resume'. However this argument is implicit in MIR,
    /// so we have to store it out-of-band. When there are multiple active unwinds,
    /// the innermost one is always caught first, so we can store them as a stack.
    pub(crate) panic_payloads: Vec<Scalar<Provenance>>,

    /// Last OS error location in memory. It is a 32-bit integer.
    pub(crate) last_error: Option<MPlaceTy<'tcx, Provenance>>,
}

pub type StackEmptyCallback<'mir, 'tcx> =
    Box<dyn FnMut(&mut MiriInterpCx<'mir, 'tcx>) -> InterpResult<'tcx, Poll<()>>>;

impl<'mir, 'tcx> Thread<'mir, 'tcx> {
    /// Get the name of the current thread, or `<unnamed>` if it was not set.
    fn thread_name(&self) -> &[u8] {
        if let Some(ref thread_name) = self.thread_name { thread_name } else { b"<unnamed>" }
    }

    /// Return the top user-relevant frame, if there is one.
    /// Note that the choice to return `None` here when there is no user-relevant frame is part of
    /// justifying the optimization that only pushes of user-relevant frames require updating the
    /// `top_user_relevant_frame` field.
    fn compute_top_user_relevant_frame(&self) -> Option<usize> {
        self.stack
            .iter()
            .enumerate()
            .rev()
            .find_map(|(idx, frame)| if frame.extra.is_user_relevant { Some(idx) } else { None })
    }

    /// Re-compute the top user-relevant frame from scratch.
    pub fn recompute_top_user_relevant_frame(&mut self) {
        self.top_user_relevant_frame = self.compute_top_user_relevant_frame();
    }

    /// Set the top user-relevant frame to the given value. Must be equal to what
    /// `get_top_user_relevant_frame` would return!
    pub fn set_top_user_relevant_frame(&mut self, frame_idx: usize) {
        debug_assert_eq!(Some(frame_idx), self.compute_top_user_relevant_frame());
        self.top_user_relevant_frame = Some(frame_idx);
    }

    /// Returns the topmost frame that is considered user-relevant, or the
    /// top of the stack if there is no such frame, or `None` if the stack is empty.
    pub fn top_user_relevant_frame(&self) -> Option<usize> {
        debug_assert_eq!(self.top_user_relevant_frame, self.compute_top_user_relevant_frame());
        // This can be called upon creation of an allocation. We create allocations while setting up
        // parts of the Rust runtime when we do not have any stack frames yet, so we need to handle
        // empty stacks.
        self.top_user_relevant_frame.or_else(|| self.stack.len().checked_sub(1))
    }
}

impl<'mir, 'tcx> std::fmt::Debug for Thread<'mir, 'tcx> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "{}({:?}, {:?})",
            String::from_utf8_lossy(self.thread_name()),
            self.state,
            self.join_status
        )
    }
}

impl<'mir, 'tcx> Thread<'mir, 'tcx> {
    fn new(name: Option<&str>, on_stack_empty: Option<StackEmptyCallback<'mir, 'tcx>>) -> Self {
        Self {
            state: ThreadState::Enabled,
            thread_name: name.map(|name| Vec::from(name.as_bytes())),
            stack: Vec::new(),
            top_user_relevant_frame: None,
            join_status: ThreadJoinStatus::Joinable,
            panic_payloads: Vec::new(),
            last_error: None,
            on_stack_empty,
        }
    }
}

impl VisitTags for Thread<'_, '_> {
    fn visit_tags(&self, visit: &mut dyn FnMut(BorTag)) {
        let Thread {
            panic_payloads: panic_payload,
            last_error,
            stack,
            top_user_relevant_frame: _,
            state: _,
            thread_name: _,
            join_status: _,
            on_stack_empty: _, // we assume the closure captures no GC-relevant state
        } = self;

        for payload in panic_payload {
            payload.visit_tags(visit);
        }
        last_error.visit_tags(visit);
        for frame in stack {
            frame.visit_tags(visit)
        }
    }
}

impl VisitTags for Frame<'_, '_, Provenance, FrameExtra<'_>> {
    fn visit_tags(&self, visit: &mut dyn FnMut(BorTag)) {
        let Frame {
            return_place,
            locals,
            extra,
            body: _,
            instance: _,
            return_to_block: _,
            loc: _,
            // There are some private fields we cannot access; they contain no tags.
            ..
        } = self;

        // Return place.
        return_place.visit_tags(visit);
        // Locals.
        for local in locals.iter() {
            match local.as_mplace_or_imm() {
                None => {}
                Some(Either::Left((ptr, meta))) => {
                    ptr.visit_tags(visit);
                    meta.visit_tags(visit);
                }
                Some(Either::Right(imm)) => {
                    imm.visit_tags(visit);
                }
            }
        }

        extra.visit_tags(visit);
    }
}

/// A specific moment in time.
#[derive(Debug)]
pub enum Time {
    Monotonic(Instant),
    RealTime(SystemTime),
}

impl Time {
    /// How long do we have to wait from now until the specified time?
    fn get_wait_time(&self, clock: &Clock) -> Duration {
        match self {
            Time::Monotonic(instant) => instant.duration_since(clock.now()),
            Time::RealTime(time) =>
                time.duration_since(SystemTime::now()).unwrap_or(Duration::new(0, 0)),
        }
    }
}

/// Callbacks are used to implement timeouts. For example, waiting on a
/// conditional variable with a timeout creates a callback that is called after
/// the specified time and unblocks the thread. If another thread signals on the
/// conditional variable, the signal handler deletes the callback.
struct TimeoutCallbackInfo<'mir, 'tcx> {
    /// The callback should be called no earlier than this time.
    call_time: Time,
    /// The called function.
    callback: TimeoutCallback<'mir, 'tcx>,
}

impl<'mir, 'tcx> std::fmt::Debug for TimeoutCallbackInfo<'mir, 'tcx> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "TimeoutCallback({:?})", self.call_time)
    }
}

/// A set of threads.
#[derive(Debug)]
pub struct ThreadManager<'mir, 'tcx> {
    /// Identifier of the currently active thread.
    active_thread: ThreadId,
    /// Threads used in the program.
    ///
    /// Note that this vector also contains terminated threads.
    threads: IndexVec<ThreadId, Thread<'mir, 'tcx>>,
    /// This field is pub(crate) because the synchronization primitives
    /// (`crate::sync`) need a way to access it.
    pub(crate) sync: SynchronizationState<'mir, 'tcx>,
    /// A mapping from a thread-local static to an allocation id of a thread
    /// specific allocation.
    thread_local_alloc_ids: RefCell<FxHashMap<(DefId, ThreadId), Pointer<Provenance>>>,
    /// A flag that indicates that we should change the active thread.
    yield_active_thread: bool,
    /// Callbacks that are called once the specified time passes.
    timeout_callbacks: FxHashMap<ThreadId, TimeoutCallbackInfo<'mir, 'tcx>>,
}

impl VisitTags for ThreadManager<'_, '_> {
    fn visit_tags(&self, visit: &mut dyn FnMut(BorTag)) {
        let ThreadManager {
            threads,
            thread_local_alloc_ids,
            timeout_callbacks,
            active_thread: _,
            yield_active_thread: _,
            sync,
        } = self;

        for thread in threads {
            thread.visit_tags(visit);
        }
        for ptr in thread_local_alloc_ids.borrow().values() {
            ptr.visit_tags(visit);
        }
        for callback in timeout_callbacks.values() {
            callback.callback.visit_tags(visit);
        }
        sync.visit_tags(visit);
    }
}

impl<'mir, 'tcx> Default for ThreadManager<'mir, 'tcx> {
    fn default() -> Self {
        let mut threads = IndexVec::new();
        // Create the main thread and add it to the list of threads.
        threads.push(Thread::new(Some("main"), None));
        Self {
            active_thread: ThreadId::new(0),
            threads,
            sync: SynchronizationState::default(),
            thread_local_alloc_ids: Default::default(),
            yield_active_thread: false,
            timeout_callbacks: FxHashMap::default(),
        }
    }
}

impl<'mir, 'tcx: 'mir> ThreadManager<'mir, 'tcx> {
    pub(crate) fn init(
        ecx: &mut MiriInterpCx<'mir, 'tcx>,
        on_main_stack_empty: StackEmptyCallback<'mir, 'tcx>,
    ) {
        ecx.machine.threads.threads[ThreadId::new(0)].on_stack_empty = Some(on_main_stack_empty);
        if ecx.tcx.sess.target.os.as_ref() != "windows" {
            // The main thread can *not* be joined on except on windows.
            ecx.machine.threads.threads[ThreadId::new(0)].join_status = ThreadJoinStatus::Detached;
        }
    }

    /// Check if we have an allocation for the given thread local static for the
    /// active thread.
    fn get_thread_local_alloc_id(&self, def_id: DefId) -> Option<Pointer<Provenance>> {
        self.thread_local_alloc_ids.borrow().get(&(def_id, self.active_thread)).cloned()
    }

    /// Set the pointer for the allocation of the given thread local
    /// static for the active thread.
    ///
    /// Panics if a thread local is initialized twice for the same thread.
    fn set_thread_local_alloc(&self, def_id: DefId, ptr: Pointer<Provenance>) {
        self.thread_local_alloc_ids
            .borrow_mut()
            .try_insert((def_id, self.active_thread), ptr)
            .unwrap();
    }

    /// Borrow the stack of the active thread.
    pub fn active_thread_stack(&self) -> &[Frame<'mir, 'tcx, Provenance, FrameExtra<'tcx>>] {
        &self.threads[self.active_thread].stack
    }

    /// Mutably borrow the stack of the active thread.
    fn active_thread_stack_mut(
        &mut self,
    ) -> &mut Vec<Frame<'mir, 'tcx, Provenance, FrameExtra<'tcx>>> {
        &mut self.threads[self.active_thread].stack
    }

    pub fn all_stacks(
        &self,
    ) -> impl Iterator<Item = &[Frame<'mir, 'tcx, Provenance, FrameExtra<'tcx>>]> {
        self.threads.iter().map(|t| &t.stack[..])
    }

    /// Create a new thread and returns its id.
    fn create_thread(&mut self, on_stack_empty: StackEmptyCallback<'mir, 'tcx>) -> ThreadId {
        let new_thread_id = ThreadId::new(self.threads.len());
        self.threads.push(Thread::new(None, Some(on_stack_empty)));
        new_thread_id
    }

    /// Set an active thread and return the id of the thread that was active before.
    fn set_active_thread_id(&mut self, id: ThreadId) -> ThreadId {
        let active_thread_id = self.active_thread;
        self.active_thread = id;
        assert!(self.active_thread.index() < self.threads.len());
        active_thread_id
    }

    /// Get the id of the currently active thread.
    pub fn get_active_thread_id(&self) -> ThreadId {
        self.active_thread
    }

    /// Get the total number of threads that were ever spawn by this program.
    pub fn get_total_thread_count(&self) -> usize {
        self.threads.len()
    }

    /// Get the total of threads that are currently live, i.e., not yet terminated.
    /// (They might be blocked.)
    pub fn get_live_thread_count(&self) -> usize {
        self.threads.iter().filter(|t| !matches!(t.state, ThreadState::Terminated)).count()
    }

    /// Has the given thread terminated?
    fn has_terminated(&self, thread_id: ThreadId) -> bool {
        self.threads[thread_id].state == ThreadState::Terminated
    }

    /// Have all threads terminated?
    fn have_all_terminated(&self) -> bool {
        self.threads.iter().all(|thread| thread.state == ThreadState::Terminated)
    }

    /// Enable the thread for execution. The thread must be terminated.
    fn enable_thread(&mut self, thread_id: ThreadId) {
        assert!(self.has_terminated(thread_id));
        self.threads[thread_id].state = ThreadState::Enabled;
    }

    /// Get a mutable borrow of the currently active thread.
    pub fn active_thread_mut(&mut self) -> &mut Thread<'mir, 'tcx> {
        &mut self.threads[self.active_thread]
    }

    /// Get a shared borrow of the currently active thread.
    pub fn active_thread_ref(&self) -> &Thread<'mir, 'tcx> {
        &self.threads[self.active_thread]
    }

    /// Mark the thread as detached, which means that no other thread will try
    /// to join it and the thread is responsible for cleaning up.
    ///
    /// `allow_terminated_joined` allows detaching joined threads that have already terminated.
    /// This matches Windows's behavior for `CloseHandle`.
    ///
    /// See <https://docs.microsoft.com/en-us/windows/win32/procthread/thread-handles-and-identifiers>:
    /// > The handle is valid until closed, even after the thread it represents has been terminated.
    fn detach_thread(&mut self, id: ThreadId, allow_terminated_joined: bool) -> InterpResult<'tcx> {
        trace!("detaching {:?}", id);

        let is_ub = if allow_terminated_joined && self.threads[id].state == ThreadState::Terminated
        {
            // "Detached" in particular means "not yet joined". Redundant detaching is still UB.
            self.threads[id].join_status == ThreadJoinStatus::Detached
        } else {
            self.threads[id].join_status != ThreadJoinStatus::Joinable
        };
        if is_ub {
            throw_ub_format!("trying to detach thread that was already detached or joined");
        }

        self.threads[id].join_status = ThreadJoinStatus::Detached;
        Ok(())
    }

    /// Mark that the active thread tries to join the thread with `joined_thread_id`.
    fn join_thread(
        &mut self,
        joined_thread_id: ThreadId,
        data_race: Option<&mut data_race::GlobalState>,
    ) -> InterpResult<'tcx> {
        if self.threads[joined_thread_id].join_status == ThreadJoinStatus::Detached {
            // On Windows this corresponds to joining on a closed handle.
            throw_ub_format!("trying to join a detached thread");
        }

        // Mark the joined thread as being joined so that we detect if other
        // threads try to join it.
        self.threads[joined_thread_id].join_status = ThreadJoinStatus::Joined;
        if self.threads[joined_thread_id].state != ThreadState::Terminated {
            // The joined thread is still running, we need to wait for it.
            self.active_thread_mut().state = ThreadState::BlockedOnJoin(joined_thread_id);
            trace!(
                "{:?} blocked on {:?} when trying to join",
                self.active_thread,
                joined_thread_id
            );
        } else {
            // The thread has already terminated - mark join happens-before
            if let Some(data_race) = data_race {
                data_race.thread_joined(self, self.active_thread, joined_thread_id);
            }
        }
        Ok(())
    }

    /// Mark that the active thread tries to exclusively join the thread with `joined_thread_id`.
    /// If the thread is already joined by another thread, it will throw UB
    fn join_thread_exclusive(
        &mut self,
        joined_thread_id: ThreadId,
        data_race: Option<&mut data_race::GlobalState>,
    ) -> InterpResult<'tcx> {
        if self.threads[joined_thread_id].join_status == ThreadJoinStatus::Joined {
            throw_ub_format!("trying to join an already joined thread");
        }

        if joined_thread_id == self.active_thread {
            throw_ub_format!("trying to join itself");
        }

        assert!(
            self.threads
                .iter()
                .all(|thread| thread.state != ThreadState::BlockedOnJoin(joined_thread_id)),
            "this thread already has threads waiting for its termination"
        );

        self.join_thread(joined_thread_id, data_race)
    }

    /// Set the name of the given thread.
    pub fn set_thread_name(&mut self, thread: ThreadId, new_thread_name: Vec<u8>) {
        self.threads[thread].thread_name = Some(new_thread_name);
    }

    /// Get the name of the given thread.
    pub fn get_thread_name(&self, thread: ThreadId) -> &[u8] {
        self.threads[thread].thread_name()
    }

    /// Put the thread into the blocked state.
    fn block_thread(&mut self, thread: ThreadId) {
        let state = &mut self.threads[thread].state;
        assert_eq!(*state, ThreadState::Enabled);
        *state = ThreadState::BlockedOnSync;
    }

    /// Put the blocked thread into the enabled state.
    fn unblock_thread(&mut self, thread: ThreadId) {
        let state = &mut self.threads[thread].state;
        assert_eq!(*state, ThreadState::BlockedOnSync);
        *state = ThreadState::Enabled;
    }

    /// Change the active thread to some enabled thread.
    fn yield_active_thread(&mut self) {
        // We do not yield immediately, as swapping out the current stack while executing a MIR statement
        // could lead to all sorts of confusion.
        // We should only switch stacks between steps.
        self.yield_active_thread = true;
    }

    /// Register the given `callback` to be called once the `call_time` passes.
    ///
    /// The callback will be called with `thread` being the active thread, and
    /// the callback may not change the active thread.
    fn register_timeout_callback(
        &mut self,
        thread: ThreadId,
        call_time: Time,
        callback: TimeoutCallback<'mir, 'tcx>,
    ) {
        self.timeout_callbacks
            .try_insert(thread, TimeoutCallbackInfo { call_time, callback })
            .unwrap();
    }

    /// Unregister the callback for the `thread`.
    fn unregister_timeout_callback_if_exists(&mut self, thread: ThreadId) {
        self.timeout_callbacks.remove(&thread);
    }

    /// Get a callback that is ready to be called.
    fn get_ready_callback(
        &mut self,
        clock: &Clock,
    ) -> Option<(ThreadId, TimeoutCallback<'mir, 'tcx>)> {
        // We iterate over all threads in the order of their indices because
        // this allows us to have a deterministic scheduler.
        for thread in self.threads.indices() {
            match self.timeout_callbacks.entry(thread) {
                Entry::Occupied(entry) => {
                    if entry.get().call_time.get_wait_time(clock) == Duration::new(0, 0) {
                        return Some((thread, entry.remove().callback));
                    }
                }
                Entry::Vacant(_) => {}
            }
        }
        None
    }

    /// Wakes up threads joining on the active one and deallocates thread-local statics.
    /// The `AllocId` that can now be freed are returned.
    fn thread_terminated(
        &mut self,
        mut data_race: Option<&mut data_race::GlobalState>,
        current_span: Span,
    ) -> Vec<Pointer<Provenance>> {
        let mut free_tls_statics = Vec::new();
        {
            let mut thread_local_statics = self.thread_local_alloc_ids.borrow_mut();
            thread_local_statics.retain(|&(_def_id, thread), &mut alloc_id| {
                if thread != self.active_thread {
                    // Keep this static around.
                    return true;
                }
                // Delete this static from the map and from memory.
                // We cannot free directly here as we cannot use `?` in this context.
                free_tls_statics.push(alloc_id);
                false
            });
        }
        // Set the thread into a terminated state in the data-race detector.
        if let Some(ref mut data_race) = data_race {
            data_race.thread_terminated(self, current_span);
        }
        // Check if we need to unblock any threads.
        let mut joined_threads = vec![]; // store which threads joined, we'll need it
        for (i, thread) in self.threads.iter_enumerated_mut() {
            if thread.state == ThreadState::BlockedOnJoin(self.active_thread) {
                // The thread has terminated, mark happens-before edge to joining thread
                if data_race.is_some() {
                    joined_threads.push(i);
                }
                trace!("unblocking {:?} because {:?} terminated", i, self.active_thread);
                thread.state = ThreadState::Enabled;
            }
        }
        for &i in &joined_threads {
            data_race.as_mut().unwrap().thread_joined(self, i, self.active_thread);
        }
        free_tls_statics
    }

    /// Decide which action to take next and on which thread.
    ///
    /// The currently implemented scheduling policy is the one that is commonly
    /// used in stateless model checkers such as Loom: run the active thread as
    /// long as we can and switch only when we have to (the active thread was
    /// blocked, terminated, or has explicitly asked to be preempted).
    fn schedule(&mut self, clock: &Clock) -> InterpResult<'tcx, SchedulingAction> {
        // This thread and the program can keep going.
        if self.threads[self.active_thread].state == ThreadState::Enabled
            && !self.yield_active_thread
        {
            // The currently active thread is still enabled, just continue with it.
            return Ok(SchedulingAction::ExecuteStep);
        }
        // The active thread yielded or got terminated. Let's see if there are any timeouts to take
        // care of. We do this *before* running any other thread, to ensure that timeouts "in the
        // past" fire before any other thread can take an action. This ensures that for
        // `pthread_cond_timedwait`, "an error is returned if [...] the absolute time specified by
        // abstime has already been passed at the time of the call".
        // <https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_timedwait.html>
        let potential_sleep_time =
            self.timeout_callbacks.values().map(|info| info.call_time.get_wait_time(clock)).min();
        if potential_sleep_time == Some(Duration::new(0, 0)) {
            return Ok(SchedulingAction::ExecuteTimeoutCallback);
        }
        // No callbacks immediately scheduled, pick a regular thread to execute.
        // The active thread blocked or yielded. So we go search for another enabled thread.
        // Crucially, we start searching at the current active thread ID, rather than at 0, since we
        // want to avoid always scheduling threads 0 and 1 without ever making progress in thread 2.
        //
        // `skip(N)` means we start iterating at thread N, so we skip 1 more to start just *after*
        // the active thread. Then after that we look at `take(N)`, i.e., the threads *before* the
        // active thread.
        let threads = self
            .threads
            .iter_enumerated()
            .skip(self.active_thread.index() + 1)
            .chain(self.threads.iter_enumerated().take(self.active_thread.index()));
        for (id, thread) in threads {
            debug_assert_ne!(self.active_thread, id);
            if thread.state == ThreadState::Enabled {
                self.active_thread = id;
                break;
            }
        }
        self.yield_active_thread = false;
        if self.threads[self.active_thread].state == ThreadState::Enabled {
            return Ok(SchedulingAction::ExecuteStep);
        }
        // We have not found a thread to execute.
        if self.threads.iter().all(|thread| thread.state == ThreadState::Terminated) {
            unreachable!("all threads terminated without the main thread terminating?!");
        } else if let Some(sleep_time) = potential_sleep_time {
            // All threads are currently blocked, but we have unexecuted
            // timeout_callbacks, which may unblock some of the threads. Hence,
            // sleep until the first callback.
            Ok(SchedulingAction::Sleep(sleep_time))
        } else {
            throw_machine_stop!(TerminationInfo::Deadlock);
        }
    }
}

impl<'mir, 'tcx: 'mir> EvalContextPrivExt<'mir, 'tcx> for MiriInterpCx<'mir, 'tcx> {}
trait EvalContextPrivExt<'mir, 'tcx: 'mir>: MiriInterpCxExt<'mir, 'tcx> {
    /// Execute a timeout callback on the callback's thread.
    #[inline]
    fn run_timeout_callback(&mut self) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        let (thread, callback) = if let Some((thread, callback)) =
            this.machine.threads.get_ready_callback(&this.machine.clock)
        {
            (thread, callback)
        } else {
            // get_ready_callback can return None if the computer's clock
            // was shifted after calling the scheduler and before the call
            // to get_ready_callback (see issue
            // https://github.com/rust-lang/miri/issues/1763). In this case,
            // just do nothing, which effectively just returns to the
            // scheduler.
            return Ok(());
        };
        // This back-and-forth with `set_active_thread` is here because of two
        // design decisions:
        // 1. Make the caller and not the callback responsible for changing
        //    thread.
        // 2. Make the scheduler the only place that can change the active
        //    thread.
        let old_thread = this.set_active_thread(thread);
        callback.call(this)?;
        this.set_active_thread(old_thread);
        Ok(())
    }

    #[inline]
    fn run_on_stack_empty(&mut self) -> InterpResult<'tcx, Poll<()>> {
        let this = self.eval_context_mut();
        let mut callback = this
            .active_thread_mut()
            .on_stack_empty
            .take()
            .expect("`on_stack_empty` not set up, or already running");
        let res = callback(this)?;
        this.active_thread_mut().on_stack_empty = Some(callback);
        Ok(res)
    }
}

// Public interface to thread management.
impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriInterpCx<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriInterpCxExt<'mir, 'tcx> {
    /// Get a thread-specific allocation id for the given thread-local static.
    /// If needed, allocate a new one.
    fn get_or_create_thread_local_alloc(
        &mut self,
        def_id: DefId,
    ) -> InterpResult<'tcx, Pointer<Provenance>> {
        let this = self.eval_context_mut();
        let tcx = this.tcx;
        if let Some(old_alloc) = this.machine.threads.get_thread_local_alloc_id(def_id) {
            // We already have a thread-specific allocation id for this
            // thread-local static.
            Ok(old_alloc)
        } else {
            // We need to allocate a thread-specific allocation id for this
            // thread-local static.
            // First, we compute the initial value for this static.
            if tcx.is_foreign_item(def_id) {
                throw_unsup_format!("foreign thread-local statics are not supported");
            }
            let allocation = this.ctfe_query(|tcx| tcx.eval_static_initializer(def_id))?;
            let mut allocation = allocation.inner().clone();
            // This allocation will be deallocated when the thread dies, so it is not in read-only memory.
            allocation.mutability = Mutability::Mut;
            // Create a fresh allocation with this content.
            let new_alloc = this.allocate_raw_ptr(allocation, MiriMemoryKind::Tls.into())?;
            this.machine.threads.set_thread_local_alloc(def_id, new_alloc);
            Ok(new_alloc)
        }
    }

    /// Start a regular (non-main) thread.
    #[inline]
    fn start_regular_thread(
        &mut self,
        thread: Option<MPlaceTy<'tcx, Provenance>>,
        start_routine: Pointer<Option<Provenance>>,
        start_abi: Abi,
        func_arg: ImmTy<'tcx, Provenance>,
        ret_layout: TyAndLayout<'tcx>,
    ) -> InterpResult<'tcx, ThreadId> {
        let this = self.eval_context_mut();

        // Create the new thread
        let new_thread_id = this.machine.threads.create_thread({
            let mut state = tls::TlsDtorsState::default();
            Box::new(move |m| state.on_stack_empty(m))
        });
        let current_span = this.machine.current_span();
        if let Some(data_race) = &mut this.machine.data_race {
            data_race.thread_created(&this.machine.threads, new_thread_id, current_span);
        }

        // Write the current thread-id, switch to the next thread later
        // to treat this write operation as occurring on the current thread.
        if let Some(thread_info_place) = thread {
            this.write_scalar(
                Scalar::from_uint(new_thread_id.to_u32(), thread_info_place.layout.size),
                &thread_info_place,
            )?;
        }

        // Finally switch to new thread so that we can push the first stackframe.
        // After this all accesses will be treated as occurring in the new thread.
        let old_thread_id = this.set_active_thread(new_thread_id);

        // Perform the function pointer load in the new thread frame.
        let instance = this.get_ptr_fn(start_routine)?.as_instance()?;

        // Note: the returned value is currently ignored (see the FIXME in
        // pthread_join in shims/unix/thread.rs) because the Rust standard library does not use
        // it.
        let ret_place = this.allocate(ret_layout, MiriMemoryKind::Machine.into())?;

        this.call_function(
            instance,
            start_abi,
            &[*func_arg],
            Some(&ret_place.into()),
            StackPopCleanup::Root { cleanup: true },
        )?;

        // Restore the old active thread frame.
        this.set_active_thread(old_thread_id);

        Ok(new_thread_id)
    }

    #[inline]
    fn detach_thread(
        &mut self,
        thread_id: ThreadId,
        allow_terminated_joined: bool,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        this.machine.threads.detach_thread(thread_id, allow_terminated_joined)
    }

    #[inline]
    fn join_thread(&mut self, joined_thread_id: ThreadId) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        this.machine.threads.join_thread(joined_thread_id, this.machine.data_race.as_mut())?;
        Ok(())
    }

    #[inline]
    fn join_thread_exclusive(&mut self, joined_thread_id: ThreadId) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        this.machine
            .threads
            .join_thread_exclusive(joined_thread_id, this.machine.data_race.as_mut())?;
        Ok(())
    }

    #[inline]
    fn set_active_thread(&mut self, thread_id: ThreadId) -> ThreadId {
        let this = self.eval_context_mut();
        this.machine.threads.set_active_thread_id(thread_id)
    }

    #[inline]
    fn get_active_thread(&self) -> ThreadId {
        let this = self.eval_context_ref();
        this.machine.threads.get_active_thread_id()
    }

    #[inline]
    fn active_thread_mut(&mut self) -> &mut Thread<'mir, 'tcx> {
        let this = self.eval_context_mut();
        this.machine.threads.active_thread_mut()
    }

    #[inline]
    fn active_thread_ref(&self) -> &Thread<'mir, 'tcx> {
        let this = self.eval_context_ref();
        this.machine.threads.active_thread_ref()
    }

    #[inline]
    fn get_total_thread_count(&self) -> usize {
        let this = self.eval_context_ref();
        this.machine.threads.get_total_thread_count()
    }

    #[inline]
    fn have_all_terminated(&self) -> bool {
        let this = self.eval_context_ref();
        this.machine.threads.have_all_terminated()
    }

    #[inline]
    fn enable_thread(&mut self, thread_id: ThreadId) {
        let this = self.eval_context_mut();
        this.machine.threads.enable_thread(thread_id);
    }

    #[inline]
    fn active_thread_stack(&self) -> &[Frame<'mir, 'tcx, Provenance, FrameExtra<'tcx>>] {
        let this = self.eval_context_ref();
        this.machine.threads.active_thread_stack()
    }

    #[inline]
    fn active_thread_stack_mut(
        &mut self,
    ) -> &mut Vec<Frame<'mir, 'tcx, Provenance, FrameExtra<'tcx>>> {
        let this = self.eval_context_mut();
        this.machine.threads.active_thread_stack_mut()
    }

    /// Set the name of the current thread. The buffer must not include the null terminator.
    #[inline]
    fn set_thread_name(&mut self, thread: ThreadId, new_thread_name: Vec<u8>) {
        let this = self.eval_context_mut();
        this.machine.threads.set_thread_name(thread, new_thread_name);
    }

    #[inline]
    fn set_thread_name_wide(&mut self, thread: ThreadId, new_thread_name: &[u16]) {
        let this = self.eval_context_mut();

        // The Windows `GetThreadDescription` shim to get the thread name isn't implemented, so being lossy is okay.
        // This is only read by diagnostics, which already use `from_utf8_lossy`.
        this.machine
            .threads
            .set_thread_name(thread, String::from_utf16_lossy(new_thread_name).into_bytes());
    }

    #[inline]
    fn get_thread_name<'c>(&'c self, thread: ThreadId) -> &'c [u8]
    where
        'mir: 'c,
    {
        self.eval_context_ref().machine.threads.get_thread_name(thread)
    }

    #[inline]
    fn block_thread(&mut self, thread: ThreadId) {
        self.eval_context_mut().machine.threads.block_thread(thread);
    }

    #[inline]
    fn unblock_thread(&mut self, thread: ThreadId) {
        self.eval_context_mut().machine.threads.unblock_thread(thread);
    }

    #[inline]
    fn yield_active_thread(&mut self) {
        self.eval_context_mut().machine.threads.yield_active_thread();
    }

    #[inline]
    fn maybe_preempt_active_thread(&mut self) {
        use rand::Rng as _;

        let this = self.eval_context_mut();
        if this.machine.rng.get_mut().gen_bool(this.machine.preemption_rate) {
            this.yield_active_thread();
        }
    }

    #[inline]
    fn register_timeout_callback(
        &mut self,
        thread: ThreadId,
        call_time: Time,
        callback: TimeoutCallback<'mir, 'tcx>,
    ) {
        let this = self.eval_context_mut();
        if !this.machine.communicate() && matches!(call_time, Time::RealTime(..)) {
            panic!("cannot have `RealTime` callback with isolation enabled!")
        }
        this.machine.threads.register_timeout_callback(thread, call_time, callback);
    }

    #[inline]
    fn unregister_timeout_callback_if_exists(&mut self, thread: ThreadId) {
        let this = self.eval_context_mut();
        this.machine.threads.unregister_timeout_callback_if_exists(thread);
    }

    /// Run the core interpreter loop. Returns only when an interrupt occurs (an error or program
    /// termination).
    fn run_threads(&mut self) -> InterpResult<'tcx, !> {
        static SIGNALED: AtomicBool = AtomicBool::new(false);
        ctrlc::set_handler(move || {
            // Indicate that we have ben signaled to stop. If we were already signaled, exit
            // immediately. In our interpreter loop we try to consult this value often, but if for
            // whatever reason we don't get to that check or the cleanup we do upon finding that
            // this bool has become true takes a long time, the exit here will promptly exit the
            // process on the second Ctrl-C.
            if SIGNALED.swap(true, Relaxed) {
                std::process::exit(1);
            }
        })
        .unwrap();
        let this = self.eval_context_mut();
        loop {
            if SIGNALED.load(Relaxed) {
                this.machine.handle_abnormal_termination();
                std::process::exit(1);
            }
            match this.machine.threads.schedule(&this.machine.clock)? {
                SchedulingAction::ExecuteStep => {
                    if !this.step()? {
                        // See if this thread can do something else.
                        match this.run_on_stack_empty()? {
                            Poll::Pending => {} // keep going
                            Poll::Ready(()) => this.terminate_active_thread()?,
                        }
                    }
                }
                SchedulingAction::ExecuteTimeoutCallback => {
                    this.run_timeout_callback()?;
                }
                SchedulingAction::Sleep(duration) => {
                    this.machine.clock.sleep(duration);
                }
            }
        }
    }

    /// Handles thread termination of the active thread: wakes up threads joining on this one,
    /// and deallocated thread-local statics.
    ///
    /// This is called by the eval loop when a thread's on_stack_empty returns `Ready`.
    #[inline]
    fn terminate_active_thread(&mut self) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        let thread = this.active_thread_mut();
        assert!(thread.stack.is_empty(), "only threads with an empty stack can be terminated");
        thread.state = ThreadState::Terminated;

        let current_span = this.machine.current_span();
        for ptr in
            this.machine.threads.thread_terminated(this.machine.data_race.as_mut(), current_span)
        {
            this.deallocate_ptr(ptr.into(), None, MiriMemoryKind::Tls.into())?;
        }
        Ok(())
    }
}