1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
use crate::{NameBinding, NameBindingKind, Resolver};
use rustc_ast::ast;
use rustc_ast::visit;
use rustc_ast::visit::Visitor;
use rustc_ast::Crate;
use rustc_ast::EnumDef;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::def_id::CRATE_DEF_ID;
use rustc_middle::middle::privacy::Level;
use rustc_middle::middle::privacy::{EffectiveVisibilities, EffectiveVisibility};
use rustc_middle::ty::Visibility;
use std::mem;

#[derive(Clone, Copy)]
enum ParentId<'a> {
    Def(LocalDefId),
    Import(NameBinding<'a>),
}

impl ParentId<'_> {
    fn level(self) -> Level {
        match self {
            ParentId::Def(_) => Level::Direct,
            ParentId::Import(_) => Level::Reexported,
        }
    }
}

pub(crate) struct EffectiveVisibilitiesVisitor<'r, 'a, 'tcx> {
    r: &'r mut Resolver<'a, 'tcx>,
    def_effective_visibilities: EffectiveVisibilities,
    /// While walking import chains we need to track effective visibilities per-binding, and def id
    /// keys in `Resolver::effective_visibilities` are not enough for that, because multiple
    /// bindings can correspond to a single def id in imports. So we keep a separate table.
    import_effective_visibilities: EffectiveVisibilities<NameBinding<'a>>,
    // It's possible to recalculate this at any point, but it's relatively expensive.
    current_private_vis: Visibility,
    changed: bool,
}

impl Resolver<'_, '_> {
    fn nearest_normal_mod(&mut self, def_id: LocalDefId) -> LocalDefId {
        self.get_nearest_non_block_module(def_id.to_def_id()).nearest_parent_mod().expect_local()
    }

    fn private_vis_import(&mut self, binding: NameBinding<'_>) -> Visibility {
        let NameBindingKind::Import { import, .. } = binding.kind else { unreachable!() };
        Visibility::Restricted(
            import
                .id()
                .map(|id| self.nearest_normal_mod(self.local_def_id(id)))
                .unwrap_or(CRATE_DEF_ID),
        )
    }

    fn private_vis_def(&mut self, def_id: LocalDefId) -> Visibility {
        // For mod items `nearest_normal_mod` returns its argument, but we actually need its parent.
        let normal_mod_id = self.nearest_normal_mod(def_id);
        if normal_mod_id == def_id {
            Visibility::Restricted(self.tcx.local_parent(def_id))
        } else {
            Visibility::Restricted(normal_mod_id)
        }
    }
}

impl<'r, 'a, 'tcx> EffectiveVisibilitiesVisitor<'r, 'a, 'tcx> {
    /// Fills the `Resolver::effective_visibilities` table with public & exported items
    /// For now, this doesn't resolve macros (FIXME) and cannot resolve Impl, as we
    /// need access to a TyCtxt for that. Returns the set of ambiguous re-exports.
    pub(crate) fn compute_effective_visibilities<'c>(
        r: &'r mut Resolver<'a, 'tcx>,
        krate: &'c Crate,
    ) -> FxHashSet<NameBinding<'a>> {
        let mut visitor = EffectiveVisibilitiesVisitor {
            r,
            def_effective_visibilities: Default::default(),
            import_effective_visibilities: Default::default(),
            current_private_vis: Visibility::Restricted(CRATE_DEF_ID),
            changed: true,
        };

        visitor.def_effective_visibilities.update_root();
        visitor.set_bindings_effective_visibilities(CRATE_DEF_ID);

        while visitor.changed {
            visitor.changed = false;
            visit::walk_crate(&mut visitor, krate);
        }
        visitor.r.effective_visibilities = visitor.def_effective_visibilities;

        let mut exported_ambiguities = FxHashSet::default();

        // Update visibilities for import def ids. These are not used during the
        // `EffectiveVisibilitiesVisitor` pass, because we have more detailed binding-based
        // information, but are used by later passes. Effective visibility of an import def id
        // is the maximum value among visibilities of bindings corresponding to that def id.
        for (binding, eff_vis) in visitor.import_effective_visibilities.iter() {
            let NameBindingKind::Import { import, .. } = binding.kind else { unreachable!() };
            if !binding.is_ambiguity() {
                if let Some(node_id) = import.id() {
                    r.effective_visibilities.update_eff_vis(r.local_def_id(node_id), eff_vis, r.tcx)
                }
            } else if binding.ambiguity.is_some() && eff_vis.is_public_at_level(Level::Reexported) {
                exported_ambiguities.insert(*binding);
            }
        }

        info!("resolve::effective_visibilities: {:#?}", r.effective_visibilities);

        exported_ambiguities
    }

    /// Update effective visibilities of bindings in the given module,
    /// including their whole reexport chains.
    fn set_bindings_effective_visibilities(&mut self, module_id: LocalDefId) {
        assert!(self.r.module_map.contains_key(&&module_id.to_def_id()));
        let module = self.r.get_module(module_id.to_def_id()).unwrap();
        let resolutions = self.r.resolutions(module);

        for (_, name_resolution) in resolutions.borrow().iter() {
            if let Some(mut binding) = name_resolution.borrow().binding() {
                // Set the given effective visibility level to `Level::Direct` and
                // sets the rest of the `use` chain to `Level::Reexported` until
                // we hit the actual exported item.
                //
                // If the binding is ambiguous, put the root ambiguity binding and all reexports
                // leading to it into the table. They are used by the `ambiguous_glob_reexports`
                // lint. For all bindings added to the table this way `is_ambiguity` returns true.
                let is_ambiguity =
                    |binding: NameBinding<'a>, warn: bool| binding.ambiguity.is_some() && !warn;
                let mut parent_id = ParentId::Def(module_id);
                let mut warn_ambiguity = binding.warn_ambiguity;
                while let NameBindingKind::Import { binding: nested_binding, .. } = binding.kind {
                    self.update_import(binding, parent_id);

                    if is_ambiguity(binding, warn_ambiguity) {
                        // Stop at the root ambiguity, further bindings in the chain should not
                        // be reexported because the root ambiguity blocks any access to them.
                        // (Those further bindings are most likely not ambiguities themselves.)
                        break;
                    }

                    parent_id = ParentId::Import(binding);
                    binding = nested_binding;
                    warn_ambiguity |= nested_binding.warn_ambiguity;
                }
                if !is_ambiguity(binding, warn_ambiguity)
                    && let Some(def_id) = binding.res().opt_def_id().and_then(|id| id.as_local()) {
                    self.update_def(def_id, binding.vis.expect_local(), parent_id);
                }
            }
        }
    }

    fn effective_vis_or_private(&mut self, parent_id: ParentId<'a>) -> EffectiveVisibility {
        // Private nodes are only added to the table for caching, they could be added or removed at
        // any moment without consequences, so we don't set `changed` to true when adding them.
        *match parent_id {
            ParentId::Def(def_id) => self
                .def_effective_visibilities
                .effective_vis_or_private(def_id, || self.r.private_vis_def(def_id)),
            ParentId::Import(binding) => self
                .import_effective_visibilities
                .effective_vis_or_private(binding, || self.r.private_vis_import(binding)),
        }
    }

    /// All effective visibilities for a node are larger or equal than private visibility
    /// for that node (see `check_invariants` in middle/privacy.rs).
    /// So if either parent or nominal visibility is the same as private visibility, then
    /// `min(parent_vis, nominal_vis) <= private_vis`, and the update logic is guaranteed
    /// to not update anything and we can skip it.
    ///
    /// We are checking this condition only if the correct value of private visibility is
    /// cheaply available, otherwise it doesn't make sense performance-wise.
    ///
    /// `None` is returned if the update can be skipped,
    /// and cheap private visibility is returned otherwise.
    fn may_update(
        &self,
        nominal_vis: Visibility,
        parent_id: ParentId<'_>,
    ) -> Option<Option<Visibility>> {
        match parent_id {
            ParentId::Def(def_id) => (nominal_vis != self.current_private_vis
                && self.r.visibilities[&def_id] != self.current_private_vis)
                .then_some(Some(self.current_private_vis)),
            ParentId::Import(_) => Some(None),
        }
    }

    fn update_import(&mut self, binding: NameBinding<'a>, parent_id: ParentId<'a>) {
        let nominal_vis = binding.vis.expect_local();
        let Some(cheap_private_vis) = self.may_update(nominal_vis, parent_id) else { return };
        let inherited_eff_vis = self.effective_vis_or_private(parent_id);
        let tcx = self.r.tcx;
        self.changed |= self.import_effective_visibilities.update(
            binding,
            Some(nominal_vis),
            || cheap_private_vis.unwrap_or_else(|| self.r.private_vis_import(binding)),
            inherited_eff_vis,
            parent_id.level(),
            tcx,
        );
    }

    fn update_def(&mut self, def_id: LocalDefId, nominal_vis: Visibility, parent_id: ParentId<'a>) {
        let Some(cheap_private_vis) = self.may_update(nominal_vis, parent_id) else { return };
        let inherited_eff_vis = self.effective_vis_or_private(parent_id);
        let tcx = self.r.tcx;
        self.changed |= self.def_effective_visibilities.update(
            def_id,
            Some(nominal_vis),
            || cheap_private_vis.unwrap_or_else(|| self.r.private_vis_def(def_id)),
            inherited_eff_vis,
            parent_id.level(),
            tcx,
        );
    }

    fn update_field(&mut self, def_id: LocalDefId, parent_id: LocalDefId) {
        self.update_def(def_id, self.r.visibilities[&def_id], ParentId::Def(parent_id));
    }
}

impl<'r, 'ast, 'tcx> Visitor<'ast> for EffectiveVisibilitiesVisitor<'ast, 'r, 'tcx> {
    fn visit_item(&mut self, item: &'ast ast::Item) {
        let def_id = self.r.local_def_id(item.id);
        // Update effective visibilities of nested items.
        // If it's a mod, also make the visitor walk all of its items
        match item.kind {
            // Resolved in rustc_privacy when types are available
            ast::ItemKind::Impl(..) => return,

            // Should be unreachable at this stage
            ast::ItemKind::MacCall(..) => panic!(
                "ast::ItemKind::MacCall encountered, this should not anymore appear at this stage"
            ),

            ast::ItemKind::Mod(..) => {
                let prev_private_vis =
                    mem::replace(&mut self.current_private_vis, Visibility::Restricted(def_id));
                self.set_bindings_effective_visibilities(def_id);
                visit::walk_item(self, item);
                self.current_private_vis = prev_private_vis;
            }

            ast::ItemKind::Enum(EnumDef { ref variants }, _) => {
                self.set_bindings_effective_visibilities(def_id);
                for variant in variants {
                    let variant_def_id = self.r.local_def_id(variant.id);
                    for field in variant.data.fields() {
                        self.update_field(self.r.local_def_id(field.id), variant_def_id);
                    }
                }
            }

            ast::ItemKind::Struct(ref def, _) | ast::ItemKind::Union(ref def, _) => {
                for field in def.fields() {
                    self.update_field(self.r.local_def_id(field.id), def_id);
                }
            }

            ast::ItemKind::Trait(..) => {
                self.set_bindings_effective_visibilities(def_id);
            }

            ast::ItemKind::ExternCrate(..)
            | ast::ItemKind::Use(..)
            | ast::ItemKind::Static(..)
            | ast::ItemKind::Const(..)
            | ast::ItemKind::GlobalAsm(..)
            | ast::ItemKind::TyAlias(..)
            | ast::ItemKind::TraitAlias(..)
            | ast::ItemKind::MacroDef(..)
            | ast::ItemKind::ForeignMod(..)
            | ast::ItemKind::Fn(..) => return,
        }
    }
}