1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
pub use BinOpToken::*;
pub use LitKind::*;
pub use Nonterminal::*;
pub use TokenKind::*;
use crate::ast;
use crate::ptr::P;
use crate::util::case::Case;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::Lrc;
use rustc_macros::HashStable_Generic;
use rustc_span::symbol::{kw, sym};
#[allow(hidden_glob_reexports)]
use rustc_span::symbol::{Ident, Symbol};
use rustc_span::{self, edition::Edition, Span, DUMMY_SP};
use std::borrow::Cow;
use std::fmt;
#[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum CommentKind {
Line,
Block,
}
#[derive(Clone, PartialEq, Encodable, Decodable, Hash, Debug, Copy)]
#[derive(HashStable_Generic)]
pub enum BinOpToken {
Plus,
Minus,
Star,
Slash,
Percent,
Caret,
And,
Or,
Shl,
Shr,
}
/// Describes how a sequence of token trees is delimited.
/// Cannot use `proc_macro::Delimiter` directly because this
/// structure should implement some additional traits.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[derive(Encodable, Decodable, Hash, HashStable_Generic)]
pub enum Delimiter {
/// `( ... )`
Parenthesis,
/// `{ ... }`
Brace,
/// `[ ... ]`
Bracket,
/// `Ø ... Ø`
/// An invisible delimiter, that may, for example, appear around tokens coming from a
/// "macro variable" `$var`. It is important to preserve operator priorities in cases like
/// `$var * 3` where `$var` is `1 + 2`.
/// Invisible delimiters might not survive roundtrip of a token stream through a string.
Invisible,
}
// Note that the suffix is *not* considered when deciding the `LitKind` in this
// type. This means that float literals like `1f32` are classified by this type
// as `Int`. Only upon conversion to `ast::LitKind` will such a literal be
// given the `Float` kind.
#[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum LitKind {
Bool, // AST only, must never appear in a `Token`
Byte,
Char,
Integer, // e.g. `1`, `1u8`, `1f32`
Float, // e.g. `1.`, `1.0`, `1e3f32`
Str,
StrRaw(u8), // raw string delimited by `n` hash symbols
ByteStr,
ByteStrRaw(u8), // raw byte string delimited by `n` hash symbols
CStr,
CStrRaw(u8),
Err,
}
/// A literal token.
#[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct Lit {
pub kind: LitKind,
pub symbol: Symbol,
pub suffix: Option<Symbol>,
}
impl Lit {
pub fn new(kind: LitKind, symbol: Symbol, suffix: Option<Symbol>) -> Lit {
Lit { kind, symbol, suffix }
}
/// Returns `true` if this is semantically a float literal. This includes
/// ones like `1f32` that have an `Integer` kind but a float suffix.
pub fn is_semantic_float(&self) -> bool {
match self.kind {
LitKind::Float => true,
LitKind::Integer => match self.suffix {
Some(sym) => sym == sym::f32 || sym == sym::f64,
None => false,
},
_ => false,
}
}
/// Keep this in sync with `Token::can_begin_literal_or_bool` excluding unary negation.
pub fn from_token(token: &Token) -> Option<Lit> {
match token.uninterpolate().kind {
Ident(name, false) if name.is_bool_lit() => {
Some(Lit::new(Bool, name, None))
}
Literal(token_lit) => Some(token_lit),
Interpolated(ref nt)
if let NtExpr(expr) | NtLiteral(expr) = &**nt
&& let ast::ExprKind::Lit(token_lit) = expr.kind =>
{
Some(token_lit)
}
_ => None,
}
}
}
impl fmt::Display for Lit {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Lit { kind, symbol, suffix } = *self;
match kind {
Byte => write!(f, "b'{symbol}'")?,
Char => write!(f, "'{symbol}'")?,
Str => write!(f, "\"{symbol}\"")?,
StrRaw(n) => write!(
f,
"r{delim}\"{string}\"{delim}",
delim = "#".repeat(n as usize),
string = symbol
)?,
ByteStr => write!(f, "b\"{symbol}\"")?,
ByteStrRaw(n) => write!(
f,
"br{delim}\"{string}\"{delim}",
delim = "#".repeat(n as usize),
string = symbol
)?,
CStr => write!(f, "c\"{symbol}\"")?,
CStrRaw(n) => {
write!(f, "cr{delim}\"{symbol}\"{delim}", delim = "#".repeat(n as usize))?
}
Integer | Float | Bool | Err => write!(f, "{symbol}")?,
}
if let Some(suffix) = suffix {
write!(f, "{suffix}")?;
}
Ok(())
}
}
impl LitKind {
/// An English article for the literal token kind.
pub fn article(self) -> &'static str {
match self {
Integer | Err => "an",
_ => "a",
}
}
pub fn descr(self) -> &'static str {
match self {
Bool => panic!("literal token contains `Lit::Bool`"),
Byte => "byte",
Char => "char",
Integer => "integer",
Float => "float",
Str | StrRaw(..) => "string",
ByteStr | ByteStrRaw(..) => "byte string",
CStr | CStrRaw(..) => "C string",
Err => "error",
}
}
pub(crate) fn may_have_suffix(self) -> bool {
matches!(self, Integer | Float | Err)
}
}
pub fn ident_can_begin_expr(name: Symbol, span: Span, is_raw: bool) -> bool {
let ident_token = Token::new(Ident(name, is_raw), span);
!ident_token.is_reserved_ident()
|| ident_token.is_path_segment_keyword()
|| [
kw::Async,
kw::Do,
kw::Box,
kw::Break,
kw::Const,
kw::Continue,
kw::False,
kw::For,
kw::If,
kw::Let,
kw::Loop,
kw::Match,
kw::Move,
kw::Return,
kw::True,
kw::Try,
kw::Unsafe,
kw::While,
kw::Yield,
kw::Static,
]
.contains(&name)
}
fn ident_can_begin_type(name: Symbol, span: Span, is_raw: bool) -> bool {
let ident_token = Token::new(Ident(name, is_raw), span);
!ident_token.is_reserved_ident()
|| ident_token.is_path_segment_keyword()
|| [kw::Underscore, kw::For, kw::Impl, kw::Fn, kw::Unsafe, kw::Extern, kw::Typeof, kw::Dyn]
.contains(&name)
}
// SAFETY: due to the `Clone` impl below, all fields of all variants other than
// `Interpolated` must impl `Copy`.
#[derive(PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum TokenKind {
/* Expression-operator symbols. */
Eq,
Lt,
Le,
EqEq,
Ne,
Ge,
Gt,
AndAnd,
OrOr,
Not,
Tilde,
BinOp(BinOpToken),
BinOpEq(BinOpToken),
/* Structural symbols */
At,
Dot,
DotDot,
DotDotDot,
DotDotEq,
Comma,
Semi,
Colon,
ModSep,
RArrow,
LArrow,
FatArrow,
Pound,
Dollar,
Question,
/// Used by proc macros for representing lifetimes, not generated by lexer right now.
SingleQuote,
/// An opening delimiter (e.g., `{`).
OpenDelim(Delimiter),
/// A closing delimiter (e.g., `}`).
CloseDelim(Delimiter),
/* Literals */
Literal(Lit),
/// Identifier token.
/// Do not forget about `NtIdent` when you want to match on identifiers.
/// It's recommended to use `Token::(ident,uninterpolate,uninterpolated_span)` to
/// treat regular and interpolated identifiers in the same way.
Ident(Symbol, /* is_raw */ bool),
/// Lifetime identifier token.
/// Do not forget about `NtLifetime` when you want to match on lifetime identifiers.
/// It's recommended to use `Token::(lifetime,uninterpolate,uninterpolated_span)` to
/// treat regular and interpolated lifetime identifiers in the same way.
Lifetime(Symbol),
/// An embedded AST node, as produced by a macro. This only exists for
/// historical reasons. We'd like to get rid of it, for multiple reasons.
/// - It's conceptually very strange. Saying a token can contain an AST
/// node is like saying, in natural language, that a word can contain a
/// sentence.
/// - It requires special handling in a bunch of places in the parser.
/// - It prevents `Token` from implementing `Copy`.
/// It adds complexity and likely slows things down. Please don't add new
/// occurrences of this token kind!
Interpolated(Lrc<Nonterminal>),
/// A doc comment token.
/// `Symbol` is the doc comment's data excluding its "quotes" (`///`, `/**`, etc)
/// similarly to symbols in string literal tokens.
DocComment(CommentKind, ast::AttrStyle, Symbol),
Eof,
}
impl Clone for TokenKind {
fn clone(&self) -> Self {
// `TokenKind` would impl `Copy` if it weren't for `Interpolated`. So
// for all other variants, this implementation of `clone` is just like
// a copy. This is faster than the `derive(Clone)` version which has a
// separate path for every variant.
match self {
Interpolated(nt) => Interpolated(nt.clone()),
_ => unsafe { std::ptr::read(self) },
}
}
}
#[derive(Clone, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct Token {
pub kind: TokenKind,
pub span: Span,
}
impl TokenKind {
pub fn lit(kind: LitKind, symbol: Symbol, suffix: Option<Symbol>) -> TokenKind {
Literal(Lit::new(kind, symbol, suffix))
}
/// An approximation to proc-macro-style single-character operators used by rustc parser.
/// If the operator token can be broken into two tokens, the first of which is single-character,
/// then this function performs that operation, otherwise it returns `None`.
pub fn break_two_token_op(&self) -> Option<(TokenKind, TokenKind)> {
Some(match *self {
Le => (Lt, Eq),
EqEq => (Eq, Eq),
Ne => (Not, Eq),
Ge => (Gt, Eq),
AndAnd => (BinOp(And), BinOp(And)),
OrOr => (BinOp(Or), BinOp(Or)),
BinOp(Shl) => (Lt, Lt),
BinOp(Shr) => (Gt, Gt),
BinOpEq(Plus) => (BinOp(Plus), Eq),
BinOpEq(Minus) => (BinOp(Minus), Eq),
BinOpEq(Star) => (BinOp(Star), Eq),
BinOpEq(Slash) => (BinOp(Slash), Eq),
BinOpEq(Percent) => (BinOp(Percent), Eq),
BinOpEq(Caret) => (BinOp(Caret), Eq),
BinOpEq(And) => (BinOp(And), Eq),
BinOpEq(Or) => (BinOp(Or), Eq),
BinOpEq(Shl) => (Lt, Le),
BinOpEq(Shr) => (Gt, Ge),
DotDot => (Dot, Dot),
DotDotDot => (Dot, DotDot),
ModSep => (Colon, Colon),
RArrow => (BinOp(Minus), Gt),
LArrow => (Lt, BinOp(Minus)),
FatArrow => (Eq, Gt),
_ => return None,
})
}
/// Returns tokens that are likely to be typed accidentally instead of the current token.
/// Enables better error recovery when the wrong token is found.
pub fn similar_tokens(&self) -> Option<Vec<TokenKind>> {
match *self {
Comma => Some(vec![Dot, Lt, Semi]),
Semi => Some(vec![Colon, Comma]),
FatArrow => Some(vec![Eq, RArrow]),
_ => None,
}
}
pub fn should_end_const_arg(&self) -> bool {
matches!(self, Gt | Ge | BinOp(Shr) | BinOpEq(Shr))
}
}
impl Token {
pub fn new(kind: TokenKind, span: Span) -> Self {
Token { kind, span }
}
/// Some token that will be thrown away later.
pub fn dummy() -> Self {
Token::new(TokenKind::Question, DUMMY_SP)
}
/// Recovers a `Token` from an `Ident`. This creates a raw identifier if necessary.
pub fn from_ast_ident(ident: Ident) -> Self {
Token::new(Ident(ident.name, ident.is_raw_guess()), ident.span)
}
/// For interpolated tokens, returns a span of the fragment to which the interpolated
/// token refers. For all other tokens this is just a regular span.
/// It is particularly important to use this for identifiers and lifetimes
/// for which spans affect name resolution and edition checks.
/// Note that keywords are also identifiers, so they should use this
/// if they keep spans or perform edition checks.
pub fn uninterpolated_span(&self) -> Span {
match &self.kind {
Interpolated(nt) => nt.span(),
_ => self.span,
}
}
pub fn is_range_separator(&self) -> bool {
[DotDot, DotDotDot, DotDotEq].contains(&self.kind)
}
pub fn is_op(&self) -> bool {
match self.kind {
Eq | Lt | Le | EqEq | Ne | Ge | Gt | AndAnd | OrOr | Not | Tilde | BinOp(_)
| BinOpEq(_) | At | Dot | DotDot | DotDotDot | DotDotEq | Comma | Semi | Colon
| ModSep | RArrow | LArrow | FatArrow | Pound | Dollar | Question | SingleQuote => true,
OpenDelim(..) | CloseDelim(..) | Literal(..) | DocComment(..) | Ident(..)
| Lifetime(..) | Interpolated(..) | Eof => false,
}
}
pub fn is_like_plus(&self) -> bool {
matches!(self.kind, BinOp(Plus) | BinOpEq(Plus))
}
/// Returns `true` if the token can appear at the start of an expression.
pub fn can_begin_expr(&self) -> bool {
match self.uninterpolate().kind {
Ident(name, is_raw) =>
ident_can_begin_expr(name, self.span, is_raw), // value name or keyword
OpenDelim(..) | // tuple, array or block
Literal(..) | // literal
Not | // operator not
BinOp(Minus) | // unary minus
BinOp(Star) | // dereference
BinOp(Or) | OrOr | // closure
BinOp(And) | // reference
AndAnd | // double reference
// DotDotDot is no longer supported, but we need some way to display the error
DotDot | DotDotDot | DotDotEq | // range notation
Lt | BinOp(Shl) | // associated path
ModSep | // global path
Lifetime(..) | // labeled loop
Pound => true, // expression attributes
Interpolated(ref nt) => matches!(**nt, NtLiteral(..) |
NtExpr(..) |
NtBlock(..) |
NtPath(..)),
_ => false,
}
}
/// Returns `true` if the token can appear at the start of a pattern.
///
/// Shamelessly borrowed from `can_begin_expr`, only used for diagnostics right now.
pub fn can_begin_pattern(&self) -> bool {
match self.uninterpolate().kind {
Ident(name, is_raw) =>
ident_can_begin_expr(name, self.span, is_raw), // value name or keyword
| OpenDelim(Delimiter::Bracket | Delimiter::Parenthesis) // tuple or array
| Literal(..) // literal
| BinOp(Minus) // unary minus
| BinOp(And) // reference
| AndAnd // double reference
// DotDotDot is no longer supported
| DotDot | DotDotDot | DotDotEq // ranges
| Lt | BinOp(Shl) // associated path
| ModSep => true, // global path
Interpolated(ref nt) => matches!(**nt, NtLiteral(..) |
NtPat(..) |
NtBlock(..) |
NtPath(..)),
_ => false,
}
}
/// Returns `true` if the token can appear at the start of a type.
pub fn can_begin_type(&self) -> bool {
match self.uninterpolate().kind {
Ident(name, is_raw) =>
ident_can_begin_type(name, self.span, is_raw), // type name or keyword
OpenDelim(Delimiter::Parenthesis) | // tuple
OpenDelim(Delimiter::Bracket) | // array
Not | // never
BinOp(Star) | // raw pointer
BinOp(And) | // reference
AndAnd | // double reference
Question | // maybe bound in trait object
Lifetime(..) | // lifetime bound in trait object
Lt | BinOp(Shl) | // associated path
ModSep => true, // global path
Interpolated(ref nt) => matches!(**nt, NtTy(..) | NtPath(..)),
// For anonymous structs or unions, which only appear in specific positions
// (type of struct fields or union fields), we don't consider them as regular types
_ => false,
}
}
/// Returns `true` if the token can appear at the start of a const param.
pub fn can_begin_const_arg(&self) -> bool {
match self.kind {
OpenDelim(Delimiter::Brace) => true,
Interpolated(ref nt) => matches!(**nt, NtExpr(..) | NtBlock(..) | NtLiteral(..)),
_ => self.can_begin_literal_maybe_minus(),
}
}
/// Returns `true` if the token can appear at the start of a generic bound.
pub fn can_begin_bound(&self) -> bool {
self.is_path_start()
|| self.is_lifetime()
|| self.is_keyword(kw::For)
|| self == &Question
|| self == &OpenDelim(Delimiter::Parenthesis)
}
/// Returns `true` if the token can appear at the start of an item.
pub fn can_begin_item(&self) -> bool {
match self.kind {
Ident(name, _) => [
kw::Fn,
kw::Use,
kw::Struct,
kw::Enum,
kw::Pub,
kw::Trait,
kw::Extern,
kw::Impl,
kw::Unsafe,
kw::Const,
kw::Static,
kw::Union,
kw::Macro,
kw::Mod,
kw::Type,
]
.contains(&name),
_ => false,
}
}
/// Returns `true` if the token is any literal.
pub fn is_lit(&self) -> bool {
matches!(self.kind, Literal(..))
}
/// Returns `true` if the token is any literal, a minus (which can prefix a literal,
/// for example a '-42', or one of the boolean idents).
///
/// In other words, would this token be a valid start of `parse_literal_maybe_minus`?
///
/// Keep this in sync with and `Lit::from_token`, excluding unary negation.
pub fn can_begin_literal_maybe_minus(&self) -> bool {
match self.uninterpolate().kind {
Literal(..) | BinOp(Minus) => true,
Ident(name, false) if name.is_bool_lit() => true,
Interpolated(ref nt) => match &**nt {
NtLiteral(_) => true,
NtExpr(e) => match &e.kind {
ast::ExprKind::Lit(_) => true,
ast::ExprKind::Unary(ast::UnOp::Neg, e) => {
matches!(&e.kind, ast::ExprKind::Lit(_))
}
_ => false,
},
_ => false,
},
_ => false,
}
}
/// A convenience function for matching on identifiers during parsing.
/// Turns interpolated identifier (`$i: ident`) or lifetime (`$l: lifetime`) token
/// into the regular identifier or lifetime token it refers to,
/// otherwise returns the original token.
pub fn uninterpolate(&self) -> Cow<'_, Token> {
match &self.kind {
Interpolated(nt) => match **nt {
NtIdent(ident, is_raw) => {
Cow::Owned(Token::new(Ident(ident.name, is_raw), ident.span))
}
NtLifetime(ident) => Cow::Owned(Token::new(Lifetime(ident.name), ident.span)),
_ => Cow::Borrowed(self),
},
_ => Cow::Borrowed(self),
}
}
/// Returns an identifier if this token is an identifier.
#[inline]
pub fn ident(&self) -> Option<(Ident, /* is_raw */ bool)> {
// We avoid using `Token::uninterpolate` here because it's slow.
match &self.kind {
&Ident(name, is_raw) => Some((Ident::new(name, self.span), is_raw)),
Interpolated(nt) => match **nt {
NtIdent(ident, is_raw) => Some((ident, is_raw)),
_ => None,
},
_ => None,
}
}
/// Returns a lifetime identifier if this token is a lifetime.
#[inline]
pub fn lifetime(&self) -> Option<Ident> {
// We avoid using `Token::uninterpolate` here because it's slow.
match &self.kind {
&Lifetime(name) => Some(Ident::new(name, self.span)),
Interpolated(nt) => match **nt {
NtLifetime(ident) => Some(ident),
_ => None,
},
_ => None,
}
}
/// Returns `true` if the token is an identifier.
pub fn is_ident(&self) -> bool {
self.ident().is_some()
}
/// Returns `true` if the token is a lifetime.
pub fn is_lifetime(&self) -> bool {
self.lifetime().is_some()
}
/// Returns `true` if the token is an identifier whose name is the given
/// string slice.
pub fn is_ident_named(&self, name: Symbol) -> bool {
self.ident().is_some_and(|(ident, _)| ident.name == name)
}
/// Returns `true` if the token is an interpolated path.
fn is_path(&self) -> bool {
if let Interpolated(nt) = &self.kind && let NtPath(..) = **nt {
return true;
}
false
}
/// Would `maybe_whole_expr` in `parser.rs` return `Ok(..)`?
/// That is, is this a pre-parsed expression dropped into the token stream
/// (which happens while parsing the result of macro expansion)?
pub fn is_whole_expr(&self) -> bool {
if let Interpolated(nt) = &self.kind
&& let NtExpr(_) | NtLiteral(_) | NtPath(_) | NtBlock(_) = **nt
{
return true;
}
false
}
/// Is the token an interpolated block (`$b:block`)?
pub fn is_whole_block(&self) -> bool {
if let Interpolated(nt) = &self.kind && let NtBlock(..) = **nt {
return true;
}
false
}
/// Returns `true` if the token is either the `mut` or `const` keyword.
pub fn is_mutability(&self) -> bool {
self.is_keyword(kw::Mut) || self.is_keyword(kw::Const)
}
pub fn is_qpath_start(&self) -> bool {
self == &Lt || self == &BinOp(Shl)
}
pub fn is_path_start(&self) -> bool {
self == &ModSep
|| self.is_qpath_start()
|| self.is_path()
|| self.is_path_segment_keyword()
|| self.is_ident() && !self.is_reserved_ident()
}
/// Returns `true` if the token is a given keyword, `kw`.
pub fn is_keyword(&self, kw: Symbol) -> bool {
self.is_non_raw_ident_where(|id| id.name == kw)
}
/// Returns `true` if the token is a given keyword, `kw` or if `case` is `Insensitive` and this token is an identifier equal to `kw` ignoring the case.
pub fn is_keyword_case(&self, kw: Symbol, case: Case) -> bool {
self.is_keyword(kw)
|| (case == Case::Insensitive
&& self.is_non_raw_ident_where(|id| {
id.name.as_str().to_lowercase() == kw.as_str().to_lowercase()
}))
}
pub fn is_path_segment_keyword(&self) -> bool {
self.is_non_raw_ident_where(Ident::is_path_segment_keyword)
}
/// Returns true for reserved identifiers used internally for elided lifetimes,
/// unnamed method parameters, crate root module, error recovery etc.
pub fn is_special_ident(&self) -> bool {
self.is_non_raw_ident_where(Ident::is_special)
}
/// Returns `true` if the token is a keyword used in the language.
pub fn is_used_keyword(&self) -> bool {
self.is_non_raw_ident_where(Ident::is_used_keyword)
}
/// Returns `true` if the token is a keyword reserved for possible future use.
pub fn is_unused_keyword(&self) -> bool {
self.is_non_raw_ident_where(Ident::is_unused_keyword)
}
/// Returns `true` if the token is either a special identifier or a keyword.
pub fn is_reserved_ident(&self) -> bool {
self.is_non_raw_ident_where(Ident::is_reserved)
}
/// Returns `true` if the token is the identifier `true` or `false`.
pub fn is_bool_lit(&self) -> bool {
self.is_non_raw_ident_where(|id| id.name.is_bool_lit())
}
pub fn is_numeric_lit(&self) -> bool {
matches!(
self.kind,
Literal(Lit { kind: LitKind::Integer, .. }) | Literal(Lit { kind: LitKind::Float, .. })
)
}
/// Returns `true` if the token is a non-raw identifier for which `pred` holds.
pub fn is_non_raw_ident_where(&self, pred: impl FnOnce(Ident) -> bool) -> bool {
match self.ident() {
Some((id, false)) => pred(id),
_ => false,
}
}
pub fn glue(&self, joint: &Token) -> Option<Token> {
let kind = match self.kind {
Eq => match joint.kind {
Eq => EqEq,
Gt => FatArrow,
_ => return None,
},
Lt => match joint.kind {
Eq => Le,
Lt => BinOp(Shl),
Le => BinOpEq(Shl),
BinOp(Minus) => LArrow,
_ => return None,
},
Gt => match joint.kind {
Eq => Ge,
Gt => BinOp(Shr),
Ge => BinOpEq(Shr),
_ => return None,
},
Not => match joint.kind {
Eq => Ne,
_ => return None,
},
BinOp(op) => match joint.kind {
Eq => BinOpEq(op),
BinOp(And) if op == And => AndAnd,
BinOp(Or) if op == Or => OrOr,
Gt if op == Minus => RArrow,
_ => return None,
},
Dot => match joint.kind {
Dot => DotDot,
DotDot => DotDotDot,
_ => return None,
},
DotDot => match joint.kind {
Dot => DotDotDot,
Eq => DotDotEq,
_ => return None,
},
Colon => match joint.kind {
Colon => ModSep,
_ => return None,
},
SingleQuote => match joint.kind {
Ident(name, false) => Lifetime(Symbol::intern(&format!("'{name}"))),
_ => return None,
},
Le | EqEq | Ne | Ge | AndAnd | OrOr | Tilde | BinOpEq(..) | At | DotDotDot
| DotDotEq | Comma | Semi | ModSep | RArrow | LArrow | FatArrow | Pound | Dollar
| Question | OpenDelim(..) | CloseDelim(..) | Literal(..) | Ident(..)
| Lifetime(..) | Interpolated(..) | DocComment(..) | Eof => return None,
};
Some(Token::new(kind, self.span.to(joint.span)))
}
}
impl PartialEq<TokenKind> for Token {
#[inline]
fn eq(&self, rhs: &TokenKind) -> bool {
self.kind == *rhs
}
}
#[derive(Clone, Encodable, Decodable)]
/// For interpolation during macro expansion.
pub enum Nonterminal {
NtItem(P<ast::Item>),
NtBlock(P<ast::Block>),
NtStmt(P<ast::Stmt>),
NtPat(P<ast::Pat>),
NtExpr(P<ast::Expr>),
NtTy(P<ast::Ty>),
NtIdent(Ident, /* is_raw */ bool),
NtLifetime(Ident),
NtLiteral(P<ast::Expr>),
/// Stuff inside brackets for attributes
NtMeta(P<ast::AttrItem>),
NtPath(P<ast::Path>),
NtVis(P<ast::Visibility>),
}
#[derive(Debug, Copy, Clone, PartialEq, Encodable, Decodable)]
pub enum NonterminalKind {
Item,
Block,
Stmt,
PatParam {
/// Keep track of whether the user used `:pat_param` or `:pat` and we inferred it from the
/// edition of the span. This is used for diagnostics.
inferred: bool,
},
PatWithOr,
Expr,
Ty,
Ident,
Lifetime,
Literal,
Meta,
Path,
Vis,
TT,
}
impl NonterminalKind {
/// The `edition` closure is used to get the edition for the given symbol. Doing
/// `span.edition()` is expensive, so we do it lazily.
pub fn from_symbol(
symbol: Symbol,
edition: impl FnOnce() -> Edition,
) -> Option<NonterminalKind> {
Some(match symbol {
sym::item => NonterminalKind::Item,
sym::block => NonterminalKind::Block,
sym::stmt => NonterminalKind::Stmt,
sym::pat => match edition() {
Edition::Edition2015 | Edition::Edition2018 => {
NonterminalKind::PatParam { inferred: true }
}
Edition::Edition2021 | Edition::Edition2024 => NonterminalKind::PatWithOr,
},
sym::pat_param => NonterminalKind::PatParam { inferred: false },
sym::expr => NonterminalKind::Expr,
sym::ty => NonterminalKind::Ty,
sym::ident => NonterminalKind::Ident,
sym::lifetime => NonterminalKind::Lifetime,
sym::literal => NonterminalKind::Literal,
sym::meta => NonterminalKind::Meta,
sym::path => NonterminalKind::Path,
sym::vis => NonterminalKind::Vis,
sym::tt => NonterminalKind::TT,
_ => return None,
})
}
fn symbol(self) -> Symbol {
match self {
NonterminalKind::Item => sym::item,
NonterminalKind::Block => sym::block,
NonterminalKind::Stmt => sym::stmt,
NonterminalKind::PatParam { inferred: false } => sym::pat_param,
NonterminalKind::PatParam { inferred: true } | NonterminalKind::PatWithOr => sym::pat,
NonterminalKind::Expr => sym::expr,
NonterminalKind::Ty => sym::ty,
NonterminalKind::Ident => sym::ident,
NonterminalKind::Lifetime => sym::lifetime,
NonterminalKind::Literal => sym::literal,
NonterminalKind::Meta => sym::meta,
NonterminalKind::Path => sym::path,
NonterminalKind::Vis => sym::vis,
NonterminalKind::TT => sym::tt,
}
}
}
impl fmt::Display for NonterminalKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.symbol())
}
}
impl Nonterminal {
pub fn span(&self) -> Span {
match self {
NtItem(item) => item.span,
NtBlock(block) => block.span,
NtStmt(stmt) => stmt.span,
NtPat(pat) => pat.span,
NtExpr(expr) | NtLiteral(expr) => expr.span,
NtTy(ty) => ty.span,
NtIdent(ident, _) | NtLifetime(ident) => ident.span,
NtMeta(attr_item) => attr_item.span(),
NtPath(path) => path.span,
NtVis(vis) => vis.span,
}
}
}
impl PartialEq for Nonterminal {
fn eq(&self, rhs: &Self) -> bool {
match (self, rhs) {
(NtIdent(ident_lhs, is_raw_lhs), NtIdent(ident_rhs, is_raw_rhs)) => {
ident_lhs == ident_rhs && is_raw_lhs == is_raw_rhs
}
(NtLifetime(ident_lhs), NtLifetime(ident_rhs)) => ident_lhs == ident_rhs,
// FIXME: Assume that all "complex" nonterminal are not equal, we can't compare them
// correctly based on data from AST. This will prevent them from matching each other
// in macros. The comparison will become possible only when each nonterminal has an
// attached token stream from which it was parsed.
_ => false,
}
}
}
impl fmt::Debug for Nonterminal {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
NtItem(..) => f.pad("NtItem(..)"),
NtBlock(..) => f.pad("NtBlock(..)"),
NtStmt(..) => f.pad("NtStmt(..)"),
NtPat(..) => f.pad("NtPat(..)"),
NtExpr(..) => f.pad("NtExpr(..)"),
NtTy(..) => f.pad("NtTy(..)"),
NtIdent(..) => f.pad("NtIdent(..)"),
NtLiteral(..) => f.pad("NtLiteral(..)"),
NtMeta(..) => f.pad("NtMeta(..)"),
NtPath(..) => f.pad("NtPath(..)"),
NtVis(..) => f.pad("NtVis(..)"),
NtLifetime(..) => f.pad("NtLifetime(..)"),
}
}
}
impl<CTX> HashStable<CTX> for Nonterminal
where
CTX: crate::HashStableContext,
{
fn hash_stable(&self, _hcx: &mut CTX, _hasher: &mut StableHasher) {
panic!("interpolated tokens should not be present in the HIR")
}
}
// Some types are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
mod size_asserts {
use super::*;
use rustc_data_structures::static_assert_size;
// tidy-alphabetical-start
static_assert_size!(Lit, 12);
static_assert_size!(LitKind, 2);
static_assert_size!(Nonterminal, 16);
static_assert_size!(Token, 24);
static_assert_size!(TokenKind, 16);
// tidy-alphabetical-end
}