1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
use std::time::{Duration, SystemTime};

use crate::concurrency::thread::MachineCallback;
use crate::*;

/// Returns the time elapsed between the provided time and the unix epoch as a `Duration`.
pub fn system_time_to_duration<'tcx>(time: &SystemTime) -> InterpResult<'tcx, Duration> {
    time.duration_since(SystemTime::UNIX_EPOCH)
        .map_err(|_| err_unsup_format!("times before the Unix epoch are not supported").into())
}

impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriInterpCx<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriInterpCxExt<'mir, 'tcx> {
    fn clock_gettime(
        &mut self,
        clk_id_op: &OpTy<'tcx, Provenance>,
        tp_op: &OpTy<'tcx, Provenance>,
    ) -> InterpResult<'tcx, Scalar<Provenance>> {
        // This clock support is deliberately minimal because a lot of clock types have fiddly
        // properties (is it possible for Miri to be suspended independently of the host?). If you
        // have a use for another clock type, please open an issue.

        let this = self.eval_context_mut();

        this.assert_target_os_is_unix("clock_gettime");

        let clk_id = this.read_scalar(clk_id_op)?.to_i32()?;
        let tp = this.deref_pointer_as(tp_op, this.libc_ty_layout("timespec"))?;

        let absolute_clocks;
        let mut relative_clocks;

        match this.tcx.sess.target.os.as_ref() {
            "linux" => {
                // Linux has two main kinds of clocks. REALTIME clocks return the actual time since the
                // Unix epoch, including effects which may cause time to move backwards such as NTP.
                // Linux further distinguishes regular and "coarse" clocks, but the "coarse" version
                // is just specified to be "faster and less precise", so we implement both the same way.
                absolute_clocks = vec![
                    this.eval_libc_i32("CLOCK_REALTIME"),
                    this.eval_libc_i32("CLOCK_REALTIME_COARSE"),
                ];
                // The second kind is MONOTONIC clocks for which 0 is an arbitrary time point, but they are
                // never allowed to go backwards. We don't need to do any additional monotonicity
                // enforcement because std::time::Instant already guarantees that it is monotonic.
                relative_clocks = vec![
                    this.eval_libc_i32("CLOCK_MONOTONIC"),
                    this.eval_libc_i32("CLOCK_MONOTONIC_COARSE"),
                ];
            }
            "macos" => {
                absolute_clocks = vec![this.eval_libc_i32("CLOCK_REALTIME")];
                relative_clocks = vec![this.eval_libc_i32("CLOCK_MONOTONIC")];
                // Some clocks only seem to exist in the aarch64 version of the target.
                if this.tcx.sess.target.arch == "aarch64" {
                    // `CLOCK_UPTIME_RAW` supposed to not increment while the system is asleep... but
                    // that's not really something a program running inside Miri can tell, anyway.
                    // We need to support it because std uses it.
                    relative_clocks.push(this.eval_libc_i32("CLOCK_UPTIME_RAW"));
                }
            }
            target => throw_unsup_format!("`clock_gettime` is not supported on target OS {target}"),
        }

        let duration = if absolute_clocks.contains(&clk_id) {
            this.check_no_isolation("`clock_gettime` with `REALTIME` clocks")?;
            system_time_to_duration(&SystemTime::now())?
        } else if relative_clocks.contains(&clk_id) {
            this.machine.clock.now().duration_since(this.machine.clock.anchor())
        } else {
            // Unsupported clock.
            let einval = this.eval_libc("EINVAL");
            this.set_last_error(einval)?;
            return Ok(Scalar::from_i32(-1));
        };

        let tv_sec = duration.as_secs();
        let tv_nsec = duration.subsec_nanos();

        this.write_int_fields(&[tv_sec.into(), tv_nsec.into()], &tp)?;

        Ok(Scalar::from_i32(0))
    }

    fn gettimeofday(
        &mut self,
        tv_op: &OpTy<'tcx, Provenance>,
        tz_op: &OpTy<'tcx, Provenance>,
    ) -> InterpResult<'tcx, i32> {
        let this = self.eval_context_mut();

        this.assert_target_os_is_unix("gettimeofday");
        this.check_no_isolation("`gettimeofday`")?;

        let tv = this.deref_pointer_as(tv_op, this.libc_ty_layout("timeval"))?;

        // Using tz is obsolete and should always be null
        let tz = this.read_pointer(tz_op)?;
        if !this.ptr_is_null(tz)? {
            let einval = this.eval_libc("EINVAL");
            this.set_last_error(einval)?;
            return Ok(-1);
        }

        let duration = system_time_to_duration(&SystemTime::now())?;
        let tv_sec = duration.as_secs();
        let tv_usec = duration.subsec_micros();

        this.write_int_fields(&[tv_sec.into(), tv_usec.into()], &tv)?;

        Ok(0)
    }

    #[allow(non_snake_case, clippy::arithmetic_side_effects)]
    fn GetSystemTimeAsFileTime(
        &mut self,
        LPFILETIME_op: &OpTy<'tcx, Provenance>,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();

        this.assert_target_os("windows", "GetSystemTimeAsFileTime");
        this.check_no_isolation("`GetSystemTimeAsFileTime`")?;

        let filetime = this.deref_pointer_as(LPFILETIME_op, this.windows_ty_layout("FILETIME"))?;

        let NANOS_PER_SEC = this.eval_windows_u64("time", "NANOS_PER_SEC");
        let INTERVALS_PER_SEC = this.eval_windows_u64("time", "INTERVALS_PER_SEC");
        let INTERVALS_TO_UNIX_EPOCH = this.eval_windows_u64("time", "INTERVALS_TO_UNIX_EPOCH");
        let NANOS_PER_INTERVAL = NANOS_PER_SEC / INTERVALS_PER_SEC;
        let SECONDS_TO_UNIX_EPOCH = INTERVALS_TO_UNIX_EPOCH / INTERVALS_PER_SEC;

        let duration = system_time_to_duration(&SystemTime::now())?
            + Duration::from_secs(SECONDS_TO_UNIX_EPOCH);
        let duration_ticks = u64::try_from(duration.as_nanos() / u128::from(NANOS_PER_INTERVAL))
            .map_err(|_| err_unsup_format!("programs running more than 2^64 Windows ticks after the Windows epoch are not supported"))?;

        let dwLowDateTime = u32::try_from(duration_ticks & 0x00000000FFFFFFFF).unwrap();
        let dwHighDateTime = u32::try_from((duration_ticks & 0xFFFFFFFF00000000) >> 32).unwrap();
        this.write_int_fields(&[dwLowDateTime.into(), dwHighDateTime.into()], &filetime)?;

        Ok(())
    }

    #[allow(non_snake_case)]
    fn QueryPerformanceCounter(
        &mut self,
        lpPerformanceCount_op: &OpTy<'tcx, Provenance>,
    ) -> InterpResult<'tcx, Scalar<Provenance>> {
        let this = self.eval_context_mut();

        this.assert_target_os("windows", "QueryPerformanceCounter");

        // QueryPerformanceCounter uses a hardware counter as its basis.
        // Miri will emulate a counter with a resolution of 1 nanosecond.
        let duration = this.machine.clock.now().duration_since(this.machine.clock.anchor());
        let qpc = i64::try_from(duration.as_nanos()).map_err(|_| {
            err_unsup_format!("programs running longer than 2^63 nanoseconds are not supported")
        })?;
        this.write_scalar(Scalar::from_i64(qpc), &this.deref_pointer(lpPerformanceCount_op)?)?;
        Ok(Scalar::from_i32(-1)) // return non-zero on success
    }

    #[allow(non_snake_case)]
    fn QueryPerformanceFrequency(
        &mut self,
        lpFrequency_op: &OpTy<'tcx, Provenance>,
    ) -> InterpResult<'tcx, Scalar<Provenance>> {
        let this = self.eval_context_mut();

        this.assert_target_os("windows", "QueryPerformanceFrequency");

        // Retrieves the frequency of the hardware performance counter.
        // The frequency of the performance counter is fixed at system boot and
        // is consistent across all processors.
        // Miri emulates a "hardware" performance counter with a resolution of 1ns,
        // and thus 10^9 counts per second.
        this.write_scalar(
            Scalar::from_i64(1_000_000_000),
            &this.deref_pointer_as(lpFrequency_op, this.machine.layouts.u64)?,
        )?;
        Ok(Scalar::from_i32(-1)) // Return non-zero on success
    }

    fn mach_absolute_time(&self) -> InterpResult<'tcx, Scalar<Provenance>> {
        let this = self.eval_context_ref();

        this.assert_target_os("macos", "mach_absolute_time");

        // This returns a u64, with time units determined dynamically by `mach_timebase_info`.
        // We return plain nanoseconds.
        let duration = this.machine.clock.now().duration_since(this.machine.clock.anchor());
        let res = u64::try_from(duration.as_nanos()).map_err(|_| {
            err_unsup_format!("programs running longer than 2^64 nanoseconds are not supported")
        })?;
        Ok(Scalar::from_u64(res))
    }

    fn mach_timebase_info(
        &mut self,
        info_op: &OpTy<'tcx, Provenance>,
    ) -> InterpResult<'tcx, Scalar<Provenance>> {
        let this = self.eval_context_mut();

        this.assert_target_os("macos", "mach_timebase_info");

        let info = this.deref_pointer_as(info_op, this.libc_ty_layout("mach_timebase_info"))?;

        // Since our emulated ticks in `mach_absolute_time` *are* nanoseconds,
        // no scaling needs to happen.
        let (numer, denom) = (1, 1);
        this.write_int_fields(&[numer.into(), denom.into()], &info)?;

        Ok(Scalar::from_i32(0)) // KERN_SUCCESS
    }

    fn nanosleep(
        &mut self,
        req_op: &OpTy<'tcx, Provenance>,
        _rem: &OpTy<'tcx, Provenance>, // Signal handlers are not supported, so rem will never be written to.
    ) -> InterpResult<'tcx, i32> {
        let this = self.eval_context_mut();

        this.assert_target_os_is_unix("nanosleep");

        let req = this.deref_pointer_as(req_op, this.libc_ty_layout("timespec"))?;

        let duration = match this.read_timespec(&req)? {
            Some(duration) => duration,
            None => {
                let einval = this.eval_libc("EINVAL");
                this.set_last_error(einval)?;
                return Ok(-1);
            }
        };
        // If adding the duration overflows, let's just sleep for an hour. Waking up early is always acceptable.
        let now = this.machine.clock.now();
        let timeout_time = now
            .checked_add(duration)
            .unwrap_or_else(|| now.checked_add(Duration::from_secs(3600)).unwrap());

        let active_thread = this.get_active_thread();
        this.block_thread(active_thread);

        this.register_timeout_callback(
            active_thread,
            Time::Monotonic(timeout_time),
            Box::new(UnblockCallback { thread_to_unblock: active_thread }),
        );

        Ok(0)
    }

    #[allow(non_snake_case)]
    fn Sleep(&mut self, timeout: &OpTy<'tcx, Provenance>) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();

        this.assert_target_os("windows", "Sleep");

        let timeout_ms = this.read_scalar(timeout)?.to_u32()?;

        let duration = Duration::from_millis(timeout_ms.into());
        let timeout_time = this.machine.clock.now().checked_add(duration).unwrap();

        let active_thread = this.get_active_thread();
        this.block_thread(active_thread);

        this.register_timeout_callback(
            active_thread,
            Time::Monotonic(timeout_time),
            Box::new(UnblockCallback { thread_to_unblock: active_thread }),
        );

        Ok(())
    }
}

struct UnblockCallback {
    thread_to_unblock: ThreadId,
}

impl VisitTags for UnblockCallback {
    fn visit_tags(&self, _visit: &mut dyn FnMut(BorTag)) {}
}

impl<'mir, 'tcx: 'mir> MachineCallback<'mir, 'tcx> for UnblockCallback {
    fn call(&self, ecx: &mut MiriInterpCx<'mir, 'tcx>) -> InterpResult<'tcx> {
        ecx.unblock_thread(self.thread_to_unblock);
        Ok(())
    }
}