1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
#[cfg(feature = "stack-cache")]
use std::ops::Range;
use rustc_data_structures::fx::FxHashSet;
use crate::borrow_tracker::{
stacked_borrows::{Item, Permission},
AccessKind, BorTag,
};
use crate::ProvenanceExtra;
/// Exactly what cache size we should use is a difficult tradeoff. There will always be some
/// workload which has a `BorTag` working set which exceeds the size of the cache, and ends up
/// falling back to linear searches of the borrow stack very often.
/// The cost of making this value too large is that the loop in `Stack::insert` which ensures the
/// entries in the cache stay correct after an insert becomes expensive.
#[cfg(feature = "stack-cache")]
const CACHE_LEN: usize = 32;
/// Extra per-location state.
#[derive(Clone, Debug)]
pub struct Stack {
/// Used *mostly* as a stack; never empty.
/// Invariants:
/// * Above a `SharedReadOnly` there can only be more `SharedReadOnly`.
/// * Except for `Untagged`, no tag occurs in the stack more than once.
borrows: Vec<Item>,
/// If this is `Some(id)`, then the actual current stack is unknown. This can happen when
/// wildcard pointers are used to access this location. What we do know is that `borrows` are at
/// the top of the stack, and below it are arbitrarily many items whose `tag` is strictly less
/// than `id`.
/// When the bottom is unknown, `borrows` always has a `SharedReadOnly` or `Unique` at the bottom;
/// we never have the unknown-to-known boundary in an SRW group.
unknown_bottom: Option<BorTag>,
/// A small LRU cache of searches of the borrow stack.
#[cfg(feature = "stack-cache")]
cache: StackCache,
/// On a read, we need to disable all `Unique` above the granting item. We can avoid most of
/// this scan by keeping track of the region of the borrow stack that may contain `Unique`s.
#[cfg(feature = "stack-cache")]
unique_range: Range<usize>,
}
impl Stack {
pub fn retain(&mut self, tags: &FxHashSet<BorTag>) {
let mut first_removed = None;
// We never consider removing the bottom-most tag. For stacks without an unknown
// bottom this preserves the base tag.
// Note that the algorithm below is based on considering the tag at read_idx - 1,
// so precisely considering the tag at index 0 for removal when we have an unknown
// bottom would complicate the implementation. The simplification of not considering
// it does not have a significant impact on the degree to which the GC mitigates
// memory growth.
let mut read_idx = 1;
let mut write_idx = read_idx;
while read_idx < self.borrows.len() {
let left = self.borrows[read_idx - 1];
let this = self.borrows[read_idx];
let should_keep = match this.perm() {
// SharedReadWrite is the simplest case, if it's unreachable we can just remove it.
Permission::SharedReadWrite => tags.contains(&this.tag()),
// Only retain a Disabled tag if it is terminating a SharedReadWrite block.
Permission::Disabled => left.perm() == Permission::SharedReadWrite,
// Unique and SharedReadOnly can terminate a SharedReadWrite block, so only remove
// them if they are both unreachable and not directly after a SharedReadWrite.
Permission::Unique | Permission::SharedReadOnly =>
left.perm() == Permission::SharedReadWrite || tags.contains(&this.tag()),
};
if should_keep {
if read_idx != write_idx {
self.borrows[write_idx] = self.borrows[read_idx];
}
write_idx += 1;
} else if first_removed.is_none() {
first_removed = Some(read_idx);
}
read_idx += 1;
}
self.borrows.truncate(write_idx);
#[cfg(not(feature = "stack-cache"))]
let _unused = first_removed; // This is only needed for the stack-cache
#[cfg(feature = "stack-cache")]
if let Some(first_removed) = first_removed {
// Either end of unique_range may have shifted, all we really know is that we can't
// have introduced a new Unique.
if !self.unique_range.is_empty() {
self.unique_range = 0..self.len();
}
// Replace any Items which have been collected with the base item, a known-good value.
for i in 0..CACHE_LEN {
if self.cache.idx[i] >= first_removed {
self.cache.items[i] = self.borrows[0];
self.cache.idx[i] = 0;
}
}
}
}
}
/// A very small cache of searches of a borrow stack, mapping `Item`s to their position in said stack.
///
/// It may seem like maintaining this cache is a waste for small stacks, but
/// (a) iterating over small fixed-size arrays is super fast, and (b) empirically this helps *a lot*,
/// probably because runtime is dominated by large stacks.
#[cfg(feature = "stack-cache")]
#[derive(Clone, Debug)]
struct StackCache {
items: [Item; CACHE_LEN], // Hot in find_granting
idx: [usize; CACHE_LEN], // Hot in grant
}
#[cfg(feature = "stack-cache")]
impl StackCache {
/// When a tag is used, we call this function to add or refresh it in the cache.
///
/// We use the position in the cache to represent how recently a tag was used; the first position
/// is the most recently used tag. So an add shifts every element towards the end, and inserts
/// the new element at the start. We lose the last element.
/// This strategy is effective at keeping the most-accessed items in the cache, but it costs a
/// linear shift across the entire cache when we add a new tag.
fn add(&mut self, idx: usize, item: Item) {
self.items.copy_within(0..CACHE_LEN - 1, 1);
self.items[0] = item;
self.idx.copy_within(0..CACHE_LEN - 1, 1);
self.idx[0] = idx;
}
}
impl PartialEq for Stack {
fn eq(&self, other: &Self) -> bool {
// All the semantics of Stack are in self.borrows, everything else is caching
self.borrows == other.borrows
}
}
impl Eq for Stack {}
impl<'tcx> Stack {
/// Panics if any of the caching mechanisms have broken,
/// - The StackCache indices don't refer to the parallel items,
/// - There are no Unique items outside of first_unique..last_unique
#[cfg(all(feature = "stack-cache", debug_assertions))]
fn verify_cache_consistency(&self) {
// Only a full cache needs to be valid. Also see the comments in find_granting_cache
// and set_unknown_bottom.
if self.borrows.len() >= CACHE_LEN {
for (tag, stack_idx) in self.cache.items.iter().zip(self.cache.idx.iter()) {
assert_eq!(self.borrows[*stack_idx], *tag);
}
}
// Check that all Unique items fall within unique_range.
for (idx, item) in self.borrows.iter().enumerate() {
if item.perm() == Permission::Unique {
assert!(
self.unique_range.contains(&idx),
"{:?} {:?}",
self.unique_range,
self.borrows
);
}
}
// Check that the unique_range is a valid index into the borrow stack.
// This asserts that the unique_range's start <= end.
let _uniques = &self.borrows[self.unique_range.clone()];
// We cannot assert that the unique range is precise.
// Both ends may shift around when `Stack::retain` is called. Additionally,
// when we pop items within the unique range, setting the end of the range precisely
// requires doing a linear search of the borrow stack, which is exactly the kind of
// operation that all this caching exists to avoid.
}
/// Find the item granting the given kind of access to the given tag, and return where
/// it is on the stack. For wildcard tags, the given index is approximate, but if *no*
/// index is given it means the match was *not* in the known part of the stack.
/// `Ok(None)` indicates it matched the "unknown" part of the stack.
/// `Err` indicates it was not found.
pub(super) fn find_granting(
&mut self,
access: AccessKind,
tag: ProvenanceExtra,
exposed_tags: &FxHashSet<BorTag>,
) -> Result<Option<usize>, ()> {
#[cfg(all(feature = "stack-cache", debug_assertions))]
self.verify_cache_consistency();
let ProvenanceExtra::Concrete(tag) = tag else {
// Handle the wildcard case.
// Go search the stack for an exposed tag.
if let Some(idx) = self
.borrows
.iter()
.enumerate() // we also need to know *where* in the stack
.rev() // search top-to-bottom
.find_map(|(idx, item)| {
// If the item fits and *might* be this wildcard, use it.
if item.perm().grants(access) && exposed_tags.contains(&item.tag()) {
Some(idx)
} else {
None
}
})
{
return Ok(Some(idx));
}
// If we couldn't find it in the stack, check the unknown bottom.
return if self.unknown_bottom.is_some() { Ok(None) } else { Err(()) };
};
if let Some(idx) = self.find_granting_tagged(access, tag) {
return Ok(Some(idx));
}
// Couldn't find it in the stack; but if there is an unknown bottom it might be there.
let found = self.unknown_bottom.is_some_and(|unknown_limit| {
tag < unknown_limit // unknown_limit is an upper bound for what can be in the unknown bottom.
});
if found { Ok(None) } else { Err(()) }
}
fn find_granting_tagged(&mut self, access: AccessKind, tag: BorTag) -> Option<usize> {
#[cfg(feature = "stack-cache")]
if let Some(idx) = self.find_granting_cache(access, tag) {
return Some(idx);
}
// If we didn't find the tag in the cache, fall back to a linear search of the
// whole stack, and add the tag to the cache.
for (stack_idx, item) in self.borrows.iter().enumerate().rev() {
if tag == item.tag() && item.perm().grants(access) {
#[cfg(feature = "stack-cache")]
self.cache.add(stack_idx, *item);
return Some(stack_idx);
}
}
None
}
#[cfg(feature = "stack-cache")]
fn find_granting_cache(&mut self, access: AccessKind, tag: BorTag) -> Option<usize> {
// This looks like a common-sense optimization; we're going to do a linear search of the
// cache or the borrow stack to scan the shorter of the two. This optimization is miniscule
// and this check actually ensures we do not access an invalid cache.
// When a stack is created and when items are removed from the top of the borrow stack, we
// need some valid value to populate the cache. In both cases, we try to use the bottom
// item. But when the stack is cleared in `set_unknown_bottom` there is nothing we could
// place in the cache that is correct. But due to the way we populate the cache in
// `StackCache::add`, we know that when the borrow stack has grown larger than the cache,
// every slot in the cache is valid.
if self.borrows.len() <= CACHE_LEN {
return None;
}
// Search the cache for the tag we're looking up
let cache_idx = self.cache.items.iter().position(|t| t.tag() == tag)?;
let stack_idx = self.cache.idx[cache_idx];
// If we found the tag, look up its position in the stack to see if it grants
// the required permission
if self.cache.items[cache_idx].perm().grants(access) {
// If it does, and it's not already in the most-recently-used position, re-insert it at
// the most-recently-used position. This technically reduces the efficiency of the
// cache by duplicating elements, but current benchmarks do not seem to benefit from
// avoiding this duplication.
// But if the tag is in position 1, avoiding the duplicating add is trivial.
// If it does, and it's not already in the most-recently-used position, move it there.
// Except if the tag is in position 1, this is equivalent to just a swap, so do that.
if cache_idx == 1 {
self.cache.items.swap(0, 1);
self.cache.idx.swap(0, 1);
} else if cache_idx > 1 {
self.cache.add(stack_idx, self.cache.items[cache_idx]);
}
Some(stack_idx)
} else {
// Tag is in the cache, but it doesn't grant the required permission
None
}
}
pub fn insert(&mut self, new_idx: usize, new: Item) {
self.borrows.insert(new_idx, new);
#[cfg(feature = "stack-cache")]
self.insert_cache(new_idx, new);
}
#[cfg(feature = "stack-cache")]
fn insert_cache(&mut self, new_idx: usize, new: Item) {
// Adjust the possibly-unique range if an insert occurs before or within it
if self.unique_range.start >= new_idx {
self.unique_range.start += 1;
}
if self.unique_range.end >= new_idx {
self.unique_range.end += 1;
}
if new.perm() == Permission::Unique {
// If this is the only Unique, set the range to contain just the new item.
if self.unique_range.is_empty() {
self.unique_range = new_idx..new_idx + 1;
} else {
// We already have other Unique items, expand the range to include the new item
self.unique_range.start = self.unique_range.start.min(new_idx);
self.unique_range.end = self.unique_range.end.max(new_idx + 1);
}
}
// The above insert changes the meaning of every index in the cache >= new_idx, so now
// we need to find every one of those indexes and increment it.
// But if the insert is at the end (equivalent to a push), we can skip this step because
// it didn't change the position of any other items.
if new_idx != self.borrows.len() - 1 {
for idx in &mut self.cache.idx {
if *idx >= new_idx {
*idx += 1;
}
}
}
// This primes the cache for the next access, which is almost always the just-added tag.
self.cache.add(new_idx, new);
#[cfg(debug_assertions)]
self.verify_cache_consistency();
}
/// Construct a new `Stack` using the passed `Item` as the base tag.
pub fn new(item: Item) -> Self {
Stack {
borrows: vec![item],
unknown_bottom: None,
#[cfg(feature = "stack-cache")]
cache: StackCache { idx: [0; CACHE_LEN], items: [item; CACHE_LEN] },
#[cfg(feature = "stack-cache")]
unique_range: if item.perm() == Permission::Unique { 0..1 } else { 0..0 },
}
}
pub fn get(&self, idx: usize) -> Option<Item> {
self.borrows.get(idx).cloned()
}
#[allow(clippy::len_without_is_empty)] // Stacks are never empty
pub fn len(&self) -> usize {
self.borrows.len()
}
pub fn unknown_bottom(&self) -> Option<BorTag> {
self.unknown_bottom
}
pub fn set_unknown_bottom(&mut self, tag: BorTag) {
// We clear the borrow stack but the lookup cache doesn't support clearing per se. Instead,
// there is a check explained in `find_granting_cache` which protects against accessing the
// cache when it has been cleared and not yet refilled.
self.borrows.clear();
self.unknown_bottom = Some(tag);
#[cfg(feature = "stack-cache")]
{
self.unique_range = 0..0;
}
}
/// Find all `Unique` elements in this borrow stack above `granting_idx`, pass a copy of them
/// to the `visitor`, then set their `Permission` to `Disabled`.
pub fn disable_uniques_starting_at(
&mut self,
disable_start: usize,
mut visitor: impl FnMut(Item) -> crate::InterpResult<'tcx>,
) -> crate::InterpResult<'tcx> {
#[cfg(feature = "stack-cache")]
let unique_range = self.unique_range.clone();
#[cfg(not(feature = "stack-cache"))]
let unique_range = 0..self.len();
if disable_start <= unique_range.end {
let lower = unique_range.start.max(disable_start);
let upper = unique_range.end;
for item in &mut self.borrows[lower..upper] {
if item.perm() == Permission::Unique {
log::trace!("access: disabling item {:?}", item);
visitor(*item)?;
item.set_permission(Permission::Disabled);
// Also update all copies of this item in the cache.
#[cfg(feature = "stack-cache")]
for it in &mut self.cache.items {
if it.tag() == item.tag() {
it.set_permission(Permission::Disabled);
}
}
}
}
}
#[cfg(feature = "stack-cache")]
if disable_start <= self.unique_range.start {
// We disabled all Unique items
self.unique_range.start = 0;
self.unique_range.end = 0;
} else {
// Truncate the range to only include items up to the index that we started disabling
// at.
self.unique_range.end = self.unique_range.end.min(disable_start);
}
#[cfg(all(feature = "stack-cache", debug_assertions))]
self.verify_cache_consistency();
Ok(())
}
/// Produces an iterator which iterates over `range` in reverse, and when dropped removes that
/// range of `Item`s from this `Stack`.
pub fn pop_items_after<V: FnMut(Item) -> crate::InterpResult<'tcx>>(
&mut self,
start: usize,
mut visitor: V,
) -> crate::InterpResult<'tcx> {
while self.borrows.len() > start {
let item = self.borrows.pop().unwrap();
visitor(item)?;
}
#[cfg(feature = "stack-cache")]
if !self.borrows.is_empty() {
// After we remove from the borrow stack, every aspect of our caching may be invalid, but it is
// also possible that the whole cache is still valid. So we call this method to repair what
// aspects of the cache are now invalid, instead of resetting the whole thing to a trivially
// valid default state.
let base_tag = self.borrows[0];
let mut removed = 0;
let mut cursor = 0;
// Remove invalid entries from the cache by rotating them to the end of the cache, then
// keep track of how many invalid elements there are and overwrite them with the base tag.
// The base tag here serves as a harmless default value.
for _ in 0..CACHE_LEN - 1 {
if self.cache.idx[cursor] >= start {
self.cache.idx[cursor..CACHE_LEN - removed].rotate_left(1);
self.cache.items[cursor..CACHE_LEN - removed].rotate_left(1);
removed += 1;
} else {
cursor += 1;
}
}
for i in CACHE_LEN - removed - 1..CACHE_LEN {
self.cache.idx[i] = 0;
self.cache.items[i] = base_tag;
}
if start <= self.unique_range.start {
// We removed all the Unique items
self.unique_range = 0..0;
} else {
// Ensure the range doesn't extend past the new top of the stack
self.unique_range.end = self.unique_range.end.min(start);
}
} else {
self.unique_range = 0..0;
}
#[cfg(all(feature = "stack-cache", debug_assertions))]
self.verify_cache_consistency();
Ok(())
}
}