1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::intravisit::Visitor;
use rustc_hir::{def::DefKind, def_id::LocalDefId};
use rustc_hir::{intravisit, CRATE_HIR_ID};
use rustc_middle::query::Providers;
use rustc_middle::ty::util::{CheckRegions, NotUniqueParam};
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_middle::ty::{TypeSuperVisitable, TypeVisitable, TypeVisitor};
use rustc_span::Span;
use rustc_trait_selection::traits::check_args_compatible;
use std::ops::ControlFlow;
use crate::errors::{DuplicateArg, NotParam};
struct OpaqueTypeCollector<'tcx> {
tcx: TyCtxt<'tcx>,
opaques: Vec<LocalDefId>,
/// The `DefId` of the item which we are collecting opaque types for.
item: LocalDefId,
/// Avoid infinite recursion due to recursive declarations.
seen: FxHashSet<LocalDefId>,
span: Option<Span>,
}
impl<'tcx> OpaqueTypeCollector<'tcx> {
fn new(tcx: TyCtxt<'tcx>, item: LocalDefId) -> Self {
Self { tcx, opaques: Vec::new(), item, seen: Default::default(), span: None }
}
fn span(&self) -> Span {
self.span.unwrap_or_else(|| {
self.tcx.def_ident_span(self.item).unwrap_or_else(|| self.tcx.def_span(self.item))
})
}
fn visit_spanned(&mut self, span: Span, value: impl TypeVisitable<TyCtxt<'tcx>>) {
let old = self.span;
self.span = Some(span);
value.visit_with(self);
self.span = old;
}
fn parent_trait_ref(&self) -> Option<ty::TraitRef<'tcx>> {
let parent = self.parent()?;
if matches!(self.tcx.def_kind(parent), DefKind::Impl { .. }) {
Some(self.tcx.impl_trait_ref(parent)?.instantiate_identity())
} else {
None
}
}
fn parent(&self) -> Option<LocalDefId> {
match self.tcx.def_kind(self.item) {
DefKind::AnonConst | DefKind::InlineConst | DefKind::Fn | DefKind::TyAlias => None,
DefKind::AssocFn | DefKind::AssocTy | DefKind::AssocConst => {
Some(self.tcx.local_parent(self.item))
}
other => span_bug!(
self.tcx.def_span(self.item),
"unhandled item with opaque types: {other:?}"
),
}
}
/// Returns `true` if `opaque_hir_id` is a sibling or a child of a sibling of `self.item`.
///
/// Example:
/// ```ignore UNSOLVED (is this a bug?)
/// # #![feature(type_alias_impl_trait)]
/// pub mod foo {
/// pub mod bar {
/// pub trait Bar { /* ... */ }
/// pub type Baz = impl Bar;
///
/// # impl Bar for () {}
/// fn f1() -> Baz { /* ... */ }
/// }
/// fn f2() -> bar::Baz { /* ... */ }
/// }
/// ```
///
/// and `opaque_def_id` is the `DefId` of the definition of the opaque type `Baz`.
/// For the above example, this function returns `true` for `f1` and `false` for `f2`.
#[instrument(level = "trace", skip(self), ret)]
fn check_tait_defining_scope(&self, opaque_def_id: LocalDefId) -> bool {
let mut hir_id = self.tcx.hir().local_def_id_to_hir_id(self.item);
let opaque_hir_id = self.tcx.hir().local_def_id_to_hir_id(opaque_def_id);
// Named opaque types can be defined by any siblings or children of siblings.
let scope = self.tcx.hir().get_defining_scope(opaque_hir_id);
// We walk up the node tree until we hit the root or the scope of the opaque type.
while hir_id != scope && hir_id != CRATE_HIR_ID {
hir_id = self.tcx.hir().get_parent_item(hir_id).into();
}
// Syntactically, we are allowed to define the concrete type if:
hir_id == scope
}
fn collect_body_and_predicate_taits(&mut self) {
// Look at all where bounds.
self.tcx.predicates_of(self.item).instantiate_identity(self.tcx).visit_with(self);
// An item is allowed to constrain opaques declared within its own body (but not nested within
// nested functions).
self.collect_taits_declared_in_body();
}
#[instrument(level = "trace", skip(self))]
fn collect_taits_declared_in_body(&mut self) {
let body = self.tcx.hir().body(self.tcx.hir().body_owned_by(self.item)).value;
struct TaitInBodyFinder<'a, 'tcx> {
collector: &'a mut OpaqueTypeCollector<'tcx>,
}
impl<'v> intravisit::Visitor<'v> for TaitInBodyFinder<'_, '_> {
#[instrument(level = "trace", skip(self))]
fn visit_nested_item(&mut self, id: rustc_hir::ItemId) {
let id = id.owner_id.def_id;
if let DefKind::TyAlias = self.collector.tcx.def_kind(id) {
let items = self.collector.tcx.opaque_types_defined_by(id);
self.collector.opaques.extend(items);
}
}
#[instrument(level = "trace", skip(self))]
// Recurse into these, as they are type checked with their parent
fn visit_nested_body(&mut self, id: rustc_hir::BodyId) {
let body = self.collector.tcx.hir().body(id);
self.visit_body(body);
}
}
TaitInBodyFinder { collector: self }.visit_expr(body);
}
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for OpaqueTypeCollector<'tcx> {
#[instrument(skip(self), ret, level = "trace")]
fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<!> {
t.super_visit_with(self)?;
match t.kind() {
ty::Alias(ty::Opaque, alias_ty) if alias_ty.def_id.is_local() => {
if !self.seen.insert(alias_ty.def_id.expect_local()) {
return ControlFlow::Continue(());
}
// TAITs outside their defining scopes are ignored.
let origin = self.tcx.opaque_type_origin(alias_ty.def_id.expect_local());
trace!(?origin);
match origin {
rustc_hir::OpaqueTyOrigin::FnReturn(_)
| rustc_hir::OpaqueTyOrigin::AsyncFn(_) => {}
rustc_hir::OpaqueTyOrigin::TyAlias { in_assoc_ty } => {
if !in_assoc_ty {
if !self.check_tait_defining_scope(alias_ty.def_id.expect_local()) {
return ControlFlow::Continue(());
}
}
}
}
self.opaques.push(alias_ty.def_id.expect_local());
match self.tcx.uses_unique_generic_params(alias_ty.args, CheckRegions::Bound) {
Ok(()) => {
// FIXME: implement higher kinded lifetime bounds on nested opaque types. They are not
// supported at all, so this is sound to do, but once we want to support them, you'll
// start seeing the error below.
// Collect opaque types nested within the associated type bounds of this opaque type.
// We use identity args here, because we already know that the opaque type uses
// only generic parameters, and thus substituting would not give us more information.
for (pred, span) in self
.tcx
.explicit_item_bounds(alias_ty.def_id)
.instantiate_identity_iter_copied()
{
trace!(?pred);
self.visit_spanned(span, pred);
}
}
Err(NotUniqueParam::NotParam(arg)) => {
self.tcx.sess.emit_err(NotParam {
arg,
span: self.span(),
opaque_span: self.tcx.def_span(alias_ty.def_id),
});
}
Err(NotUniqueParam::DuplicateParam(arg)) => {
self.tcx.sess.emit_err(DuplicateArg {
arg,
span: self.span(),
opaque_span: self.tcx.def_span(alias_ty.def_id),
});
}
}
}
ty::Alias(ty::Weak, alias_ty) if alias_ty.def_id.is_local() => {
self.tcx
.type_of(alias_ty.def_id)
.instantiate(self.tcx, alias_ty.args)
.visit_with(self)?;
}
ty::Alias(ty::Projection, alias_ty) => {
// This avoids having to do normalization of `Self::AssocTy` by only
// supporting the case of a method defining opaque types from assoc types
// in the same impl block.
if let Some(parent_trait_ref) = self.parent_trait_ref() {
// If the trait ref of the associated item and the impl differs,
// then we can't use the impl's identity substitutions below, so
// just skip.
if alias_ty.trait_ref(self.tcx) == parent_trait_ref {
let parent = self.parent().expect("we should have a parent here");
for &assoc in self.tcx.associated_items(parent).in_definition_order() {
trace!(?assoc);
if assoc.trait_item_def_id != Some(alias_ty.def_id) {
continue;
}
// If the type is further specializable, then the type_of
// is not actually correct below.
if !assoc.defaultness(self.tcx).is_final() {
continue;
}
let impl_args = alias_ty.args.rebase_onto(
self.tcx,
parent_trait_ref.def_id,
ty::GenericArgs::identity_for_item(self.tcx, parent),
);
if check_args_compatible(self.tcx, assoc, impl_args) {
return self
.tcx
.type_of(assoc.def_id)
.instantiate(self.tcx, impl_args)
.visit_with(self);
} else {
self.tcx.sess.delay_span_bug(
self.tcx.def_span(assoc.def_id),
"item had incorrect args",
);
}
}
}
}
}
ty::Adt(def, _) if def.did().is_local() => {
if !self.seen.insert(def.did().expect_local()) {
return ControlFlow::Continue(());
}
for variant in def.variants().iter() {
for field in variant.fields.iter() {
// Don't use the `ty::Adt` args, we either
// * found the opaque in the args
// * will find the opaque in the unsubstituted fields
// The only other situation that can occur is that after substituting,
// some projection resolves to an opaque that we would have otherwise
// not found. While we could substitute and walk those, that would mean we
// would have to walk all substitutions of an Adt, which can quickly
// degenerate into looking at an exponential number of types.
let ty = self.tcx.type_of(field.did).instantiate_identity();
self.visit_spanned(self.tcx.def_span(field.did), ty);
}
}
}
_ => trace!(kind=?t.kind()),
}
ControlFlow::Continue(())
}
}
fn opaque_types_defined_by<'tcx>(tcx: TyCtxt<'tcx>, item: LocalDefId) -> &'tcx [LocalDefId] {
let kind = tcx.def_kind(item);
trace!(?kind);
let mut collector = OpaqueTypeCollector::new(tcx, item);
match kind {
// Walk over the signature of the function-like to find the opaques.
DefKind::AssocFn | DefKind::Fn => {
let ty_sig = tcx.fn_sig(item).instantiate_identity();
let hir_sig = tcx.hir().get_by_def_id(item).fn_sig().unwrap();
// Walk over the inputs and outputs manually in order to get good spans for them.
collector.visit_spanned(hir_sig.decl.output.span(), ty_sig.output());
for (hir, ty) in hir_sig.decl.inputs.iter().zip(ty_sig.inputs().iter()) {
collector.visit_spanned(hir.span, ty.map_bound(|x| *x));
}
collector.collect_body_and_predicate_taits();
}
// Walk over the type of the item to find opaques.
DefKind::Static(_) | DefKind::Const | DefKind::AssocConst | DefKind::AnonConst => {
let span = match tcx.hir().get_by_def_id(item).ty() {
Some(ty) => ty.span,
_ => tcx.def_span(item),
};
collector.visit_spanned(span, tcx.type_of(item).instantiate_identity());
collector.collect_body_and_predicate_taits();
}
// We're also doing this for `AssocTy` for the wf checks in `check_opaque_meets_bounds`
DefKind::TyAlias | DefKind::AssocTy => {
tcx.type_of(item).instantiate_identity().visit_with(&mut collector);
}
DefKind::OpaqueTy => {
for (pred, span) in tcx.explicit_item_bounds(item).instantiate_identity_iter_copied() {
collector.visit_spanned(span, pred);
}
}
DefKind::Mod
| DefKind::Struct
| DefKind::Union
| DefKind::Enum
| DefKind::Variant
| DefKind::Trait
| DefKind::ForeignTy
| DefKind::TraitAlias
| DefKind::TyParam
| DefKind::ConstParam
| DefKind::Ctor(_, _)
| DefKind::Macro(_)
| DefKind::ExternCrate
| DefKind::Use
| DefKind::ForeignMod
| DefKind::Field
| DefKind::LifetimeParam
| DefKind::GlobalAsm
| DefKind::Impl { .. } => {}
// Closures and generators are type checked with their parent, so there is no difference here.
DefKind::Closure | DefKind::Generator | DefKind::InlineConst => {
return tcx.opaque_types_defined_by(tcx.local_parent(item));
}
}
tcx.arena.alloc_from_iter(collector.opaques)
}
pub(super) fn provide(providers: &mut Providers) {
*providers = Providers { opaque_types_defined_by, ..*providers };
}