1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
//! # Minimal Specialization
//!
//! This module contains the checks for sound specialization used when the
//! `min_specialization` feature is enabled. This requires that the impl is
//! *always applicable*.
//!
//! If `impl1` specializes `impl2` then `impl1` is always applicable if we know
//! that all the bounds of `impl2` are satisfied, and all of the bounds of
//! `impl1` are satisfied for some choice of lifetimes then we know that
//! `impl1` applies for any choice of lifetimes.
//!
//! ## Basic approach
//!
//! To enforce this requirement on specializations we take the following
//! approach:
//!
//! 1. Match up the args for `impl2` so that the implemented trait and
//! self-type match those for `impl1`.
//! 2. Check for any direct use of `'static` in the args of `impl2`.
//! 3. Check that all of the generic parameters of `impl1` occur at most once
//! in the *unconstrained* args for `impl2`. A parameter is constrained if
//! its value is completely determined by an associated type projection
//! predicate.
//! 4. Check that all predicates on `impl1` either exist on `impl2` (after
//! matching args), or are well-formed predicates for the trait's type
//! arguments.
//!
//! ## Example
//!
//! Suppose we have the following always applicable impl:
//!
//! ```ignore (illustrative)
//! impl<T> SpecExtend<T> for std::vec::IntoIter<T> { /* specialized impl */ }
//! impl<T, I: Iterator<Item=T>> SpecExtend<T> for I { /* default impl */ }
//! ```
//!
//! We get that the subst for `impl2` are `[T, std::vec::IntoIter<T>]`. `T` is
//! constrained to be `<I as Iterator>::Item`, so we check only
//! `std::vec::IntoIter<T>` for repeated parameters, which it doesn't have. The
//! predicates of `impl1` are only `T: Sized`, which is also a predicate of
//! `impl2`. So this specialization is sound.
//!
//! ## Extensions
//!
//! Unfortunately not all specializations in the standard library are allowed
//! by this. So there are two extensions to these rules that allow specializing
//! on some traits: that is, using them as bounds on the specializing impl,
//! even when they don't occur in the base impl.
//!
//! ### rustc_specialization_trait
//!
//! If a trait is always applicable, then it's sound to specialize on it. We
//! check trait is always applicable in the same way as impls, except that step
//! 4 is now "all predicates on `impl1` are always applicable". We require that
//! `specialization` or `min_specialization` is enabled to implement these
//! traits.
//!
//! ### rustc_unsafe_specialization_marker
//!
//! There are also some specialization on traits with no methods, including the
//! stable `FusedIterator` trait. We allow marking marker traits with an
//! unstable attribute that means we ignore them in point 3 of the checks
//! above. This is unsound, in the sense that the specialized impl may be used
//! when it doesn't apply, but we allow it in the short term since it can't
//! cause use after frees with purely safe code in the same way as specializing
//! on traits with methods can.
use crate::errors::SubstsOnOverriddenImpl;
use crate::{constrained_generic_params as cgp, errors};
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
use rustc_infer::infer::TyCtxtInferExt;
use rustc_infer::traits::specialization_graph::Node;
use rustc_middle::ty::trait_def::TraitSpecializationKind;
use rustc_middle::ty::{self, TyCtxt, TypeVisitableExt};
use rustc_middle::ty::{GenericArg, GenericArgs, GenericArgsRef};
use rustc_span::{ErrorGuaranteed, Span};
use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt;
use rustc_trait_selection::traits::outlives_bounds::InferCtxtExt as _;
use rustc_trait_selection::traits::{self, translate_args_with_cause, wf, ObligationCtxt};
pub(super) fn check_min_specialization(tcx: TyCtxt<'_>, impl_def_id: LocalDefId) {
if let Some(node) = parent_specialization_node(tcx, impl_def_id) {
check_always_applicable(tcx, impl_def_id, node);
}
}
fn parent_specialization_node(tcx: TyCtxt<'_>, impl1_def_id: LocalDefId) -> Option<Node> {
let trait_ref = tcx.impl_trait_ref(impl1_def_id)?;
let trait_def = tcx.trait_def(trait_ref.skip_binder().def_id);
let impl2_node = trait_def.ancestors(tcx, impl1_def_id.to_def_id()).ok()?.nth(1)?;
let always_applicable_trait =
matches!(trait_def.specialization_kind, TraitSpecializationKind::AlwaysApplicable);
if impl2_node.is_from_trait() && !always_applicable_trait {
// Implementing a normal trait isn't a specialization.
return None;
}
if trait_def.is_marker {
// Overlapping marker implementations are not really specializations.
return None;
}
Some(impl2_node)
}
/// Check that `impl1` is a sound specialization
#[instrument(level = "debug", skip(tcx))]
fn check_always_applicable(tcx: TyCtxt<'_>, impl1_def_id: LocalDefId, impl2_node: Node) {
let span = tcx.def_span(impl1_def_id);
check_has_items(tcx, impl1_def_id, impl2_node, span);
if let Ok((impl1_args, impl2_args)) = get_impl_args(tcx, impl1_def_id, impl2_node) {
let impl2_def_id = impl2_node.def_id();
debug!(?impl2_def_id, ?impl2_args);
let parent_args = if impl2_node.is_from_trait() {
impl2_args.to_vec()
} else {
unconstrained_parent_impl_args(tcx, impl2_def_id, impl2_args)
};
check_constness(tcx, impl1_def_id, impl2_node, span);
check_static_lifetimes(tcx, &parent_args, span);
check_duplicate_params(tcx, impl1_args, &parent_args, span);
check_predicates(tcx, impl1_def_id, impl1_args, impl2_node, impl2_args, span);
}
}
fn check_has_items(tcx: TyCtxt<'_>, impl1_def_id: LocalDefId, impl2_node: Node, span: Span) {
if let Node::Impl(impl2_id) = impl2_node && tcx.associated_item_def_ids(impl1_def_id).is_empty() {
let base_impl_span = tcx.def_span(impl2_id);
tcx.sess.emit_err(errors::EmptySpecialization { span, base_impl_span });
}
}
/// Check that the specializing impl `impl1` is at least as const as the base
/// impl `impl2`
fn check_constness(tcx: TyCtxt<'_>, impl1_def_id: LocalDefId, impl2_node: Node, span: Span) {
if impl2_node.is_from_trait() {
// This isn't a specialization
return;
}
let impl1_constness = tcx.constness(impl1_def_id.to_def_id());
let impl2_constness = tcx.constness(impl2_node.def_id());
if let hir::Constness::Const = impl2_constness {
if let hir::Constness::NotConst = impl1_constness {
tcx.sess.emit_err(errors::ConstSpecialize { span });
}
}
}
/// Given a specializing impl `impl1`, and the base impl `impl2`, returns two
/// substitutions `(S1, S2)` that equate their trait references. The returned
/// types are expressed in terms of the generics of `impl1`.
///
/// Example
///
/// ```ignore (illustrative)
/// impl<A, B> Foo<A> for B { /* impl2 */ }
/// impl<C> Foo<Vec<C>> for C { /* impl1 */ }
/// ```
///
/// Would return `S1 = [C]` and `S2 = [Vec<C>, C]`.
fn get_impl_args(
tcx: TyCtxt<'_>,
impl1_def_id: LocalDefId,
impl2_node: Node,
) -> Result<(GenericArgsRef<'_>, GenericArgsRef<'_>), ErrorGuaranteed> {
let infcx = &tcx.infer_ctxt().build();
let ocx = ObligationCtxt::new(infcx);
let param_env = tcx.param_env(impl1_def_id);
let impl1_span = tcx.def_span(impl1_def_id);
let assumed_wf_types = ocx.assumed_wf_types_and_report_errors(param_env, impl1_def_id)?;
let impl1_args = GenericArgs::identity_for_item(tcx, impl1_def_id);
let impl2_args = translate_args_with_cause(
infcx,
param_env,
impl1_def_id.to_def_id(),
impl1_args,
impl2_node,
|_, span| {
traits::ObligationCause::new(
impl1_span,
impl1_def_id,
traits::ObligationCauseCode::BindingObligation(impl2_node.def_id(), span),
)
},
);
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
let guar = ocx.infcx.err_ctxt().report_fulfillment_errors(errors);
return Err(guar);
}
let implied_bounds = infcx.implied_bounds_tys(param_env, impl1_def_id, assumed_wf_types);
let outlives_env = OutlivesEnvironment::with_bounds(param_env, implied_bounds);
let _ = ocx.resolve_regions_and_report_errors(impl1_def_id, &outlives_env);
let Ok(impl2_args) = infcx.fully_resolve(impl2_args) else {
let span = tcx.def_span(impl1_def_id);
let guar = tcx.sess.emit_err(SubstsOnOverriddenImpl { span });
return Err(guar);
};
Ok((impl1_args, impl2_args))
}
/// Returns a list of all of the unconstrained subst of the given impl.
///
/// For example given the impl:
///
/// impl<'a, T, I> ... where &'a I: IntoIterator<Item=&'a T>
///
/// This would return the args corresponding to `['a, I]`, because knowing
/// `'a` and `I` determines the value of `T`.
fn unconstrained_parent_impl_args<'tcx>(
tcx: TyCtxt<'tcx>,
impl_def_id: DefId,
impl_args: GenericArgsRef<'tcx>,
) -> Vec<GenericArg<'tcx>> {
let impl_generic_predicates = tcx.predicates_of(impl_def_id);
let mut unconstrained_parameters = FxHashSet::default();
let mut constrained_params = FxHashSet::default();
let impl_trait_ref = tcx.impl_trait_ref(impl_def_id).map(ty::EarlyBinder::instantiate_identity);
// Unfortunately the functions in `constrained_generic_parameters` don't do
// what we want here. We want only a list of constrained parameters while
// the functions in `cgp` add the constrained parameters to a list of
// unconstrained parameters.
for (clause, _) in impl_generic_predicates.predicates.iter() {
if let ty::ClauseKind::Projection(proj) = clause.kind().skip_binder() {
let projection_ty = proj.projection_ty;
let projected_ty = proj.term;
let unbound_trait_ref = projection_ty.trait_ref(tcx);
if Some(unbound_trait_ref) == impl_trait_ref {
continue;
}
unconstrained_parameters.extend(cgp::parameters_for(&projection_ty, true));
for param in cgp::parameters_for(&projected_ty, false) {
if !unconstrained_parameters.contains(¶m) {
constrained_params.insert(param.0);
}
}
unconstrained_parameters.extend(cgp::parameters_for(&projected_ty, true));
}
}
impl_args
.iter()
.enumerate()
.filter(|&(idx, _)| !constrained_params.contains(&(idx as u32)))
.map(|(_, arg)| arg)
.collect()
}
/// Check that parameters of the derived impl don't occur more than once in the
/// equated args of the base impl.
///
/// For example forbid the following:
///
/// ```ignore (illustrative)
/// impl<A> Tr for A { }
/// impl<B> Tr for (B, B) { }
/// ```
///
/// Note that only consider the unconstrained parameters of the base impl:
///
/// ```ignore (illustrative)
/// impl<S, I: IntoIterator<Item = S>> Tr<S> for I { }
/// impl<T> Tr<T> for Vec<T> { }
/// ```
///
/// The args for the parent impl here are `[T, Vec<T>]`, which repeats `T`,
/// but `S` is constrained in the parent impl, so `parent_args` is only
/// `[Vec<T>]`. This means we allow this impl.
fn check_duplicate_params<'tcx>(
tcx: TyCtxt<'tcx>,
impl1_args: GenericArgsRef<'tcx>,
parent_args: &Vec<GenericArg<'tcx>>,
span: Span,
) {
let mut base_params = cgp::parameters_for(parent_args, true);
base_params.sort_by_key(|param| param.0);
if let (_, [duplicate, ..]) = base_params.partition_dedup() {
let param = impl1_args[duplicate.0 as usize];
tcx.sess
.struct_span_err(span, format!("specializing impl repeats parameter `{param}`"))
.emit();
}
}
/// Check that `'static` lifetimes are not introduced by the specializing impl.
///
/// For example forbid the following:
///
/// ```ignore (illustrative)
/// impl<A> Tr for A { }
/// impl Tr for &'static i32 { }
/// ```
fn check_static_lifetimes<'tcx>(
tcx: TyCtxt<'tcx>,
parent_args: &Vec<GenericArg<'tcx>>,
span: Span,
) {
if tcx.any_free_region_meets(parent_args, |r| r.is_static()) {
tcx.sess.emit_err(errors::StaticSpecialize { span });
}
}
/// Check whether predicates on the specializing impl (`impl1`) are allowed.
///
/// Each predicate `P` must be one of:
///
/// * Global (not reference any parameters).
/// * A `T: Tr` predicate where `Tr` is an always-applicable trait.
/// * Present on the base impl `impl2`.
/// * This check is done using the `trait_predicates_eq` function below.
/// * A well-formed predicate of a type argument of the trait being implemented,
/// including the `Self`-type.
#[instrument(level = "debug", skip(tcx))]
fn check_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
impl1_def_id: LocalDefId,
impl1_args: GenericArgsRef<'tcx>,
impl2_node: Node,
impl2_args: GenericArgsRef<'tcx>,
span: Span,
) {
let impl1_predicates: Vec<_> = traits::elaborate(
tcx,
tcx.predicates_of(impl1_def_id).instantiate(tcx, impl1_args).into_iter(),
)
.collect();
let mut impl2_predicates = if impl2_node.is_from_trait() {
// Always applicable traits have to be always applicable without any
// assumptions.
Vec::new()
} else {
traits::elaborate(
tcx,
tcx.predicates_of(impl2_node.def_id())
.instantiate(tcx, impl2_args)
.into_iter()
.map(|(c, _s)| c.as_predicate()),
)
.collect()
};
debug!(?impl1_predicates, ?impl2_predicates);
// Since impls of always applicable traits don't get to assume anything, we
// can also assume their supertraits apply.
//
// For example, we allow:
//
// #[rustc_specialization_trait]
// trait AlwaysApplicable: Debug { }
//
// impl<T> Tr for T { }
// impl<T: AlwaysApplicable> Tr for T { }
//
// Specializing on `AlwaysApplicable` allows also specializing on `Debug`
// which is sound because we forbid impls like the following
//
// impl<D: Debug> AlwaysApplicable for D { }
let always_applicable_traits = impl1_predicates
.iter()
.copied()
.filter(|&(clause, _span)| {
matches!(
trait_specialization_kind(tcx, clause),
Some(TraitSpecializationKind::AlwaysApplicable)
)
})
.map(|(c, _span)| c.as_predicate());
// Include the well-formed predicates of the type parameters of the impl.
for arg in tcx.impl_trait_ref(impl1_def_id).unwrap().instantiate_identity().args {
let infcx = &tcx.infer_ctxt().build();
let obligations =
wf::obligations(infcx, tcx.param_env(impl1_def_id), impl1_def_id, 0, arg, span)
.unwrap();
assert!(!obligations.has_infer());
impl2_predicates
.extend(traits::elaborate(tcx, obligations).map(|obligation| obligation.predicate))
}
impl2_predicates.extend(traits::elaborate(tcx, always_applicable_traits));
for (clause, span) in impl1_predicates {
if !impl2_predicates
.iter()
.any(|pred2| trait_predicates_eq(tcx, clause.as_predicate(), *pred2, span))
{
check_specialization_on(tcx, clause, span)
}
}
}
/// Checks if some predicate on the specializing impl (`predicate1`) is the same
/// as some predicate on the base impl (`predicate2`).
///
/// This basically just checks syntactic equivalence, but is a little more
/// forgiving since we want to equate `T: Tr` with `T: ~const Tr` so this can work:
///
/// ```ignore (illustrative)
/// #[rustc_specialization_trait]
/// trait Specialize { }
///
/// impl<T: Bound> Tr for T { }
/// impl<T: ~const Bound + Specialize> const Tr for T { }
/// ```
///
/// However, we *don't* want to allow the reverse, i.e., when the bound on the
/// specializing impl is not as const as the bound on the base impl:
///
/// ```ignore (illustrative)
/// impl<T: ~const Bound> const Tr for T { }
/// impl<T: Bound + Specialize> const Tr for T { } // should be T: ~const Bound
/// ```
///
/// So we make that check in this function and try to raise a helpful error message.
fn trait_predicates_eq<'tcx>(
_tcx: TyCtxt<'tcx>,
predicate1: ty::Predicate<'tcx>,
predicate2: ty::Predicate<'tcx>,
_span: Span,
) -> bool {
// FIXME(effects)
predicate1 == predicate2
}
#[instrument(level = "debug", skip(tcx))]
fn check_specialization_on<'tcx>(tcx: TyCtxt<'tcx>, clause: ty::Clause<'tcx>, span: Span) {
match clause.kind().skip_binder() {
// Global predicates are either always true or always false, so we
// are fine to specialize on.
_ if clause.is_global() => (),
// We allow specializing on explicitly marked traits with no associated
// items.
ty::ClauseKind::Trait(ty::TraitPredicate { trait_ref, polarity: _ }) => {
if !matches!(
trait_specialization_kind(tcx, clause),
Some(TraitSpecializationKind::Marker)
) {
tcx.sess
.struct_span_err(
span,
format!(
"cannot specialize on trait `{}`",
tcx.def_path_str(trait_ref.def_id),
),
)
.emit();
}
}
ty::ClauseKind::Projection(ty::ProjectionPredicate { projection_ty, term }) => {
tcx.sess
.struct_span_err(
span,
format!("cannot specialize on associated type `{projection_ty} == {term}`",),
)
.emit();
}
ty::ClauseKind::ConstArgHasType(..) => {
// FIXME(min_specialization), FIXME(const_generics):
// It probably isn't right to allow _every_ `ConstArgHasType` but I am somewhat unsure
// about the actual rules that would be sound. Can't just always error here because otherwise
// std/core doesn't even compile as they have `const N: usize` in some specializing impls.
//
// While we do not support constructs like `<T, const N: T>` there is probably no risk of
// soundness bugs, but when we support generic const parameter types this will need to be
// revisited.
}
_ => {
tcx.sess
.struct_span_err(span, format!("cannot specialize on predicate `{clause}`"))
.emit();
}
}
}
fn trait_specialization_kind<'tcx>(
tcx: TyCtxt<'tcx>,
clause: ty::Clause<'tcx>,
) -> Option<TraitSpecializationKind> {
match clause.kind().skip_binder() {
ty::ClauseKind::Trait(ty::TraitPredicate { trait_ref, polarity: _ }) => {
Some(tcx.trait_def(trait_ref.def_id).specialization_kind)
}
ty::ClauseKind::RegionOutlives(_)
| ty::ClauseKind::TypeOutlives(_)
| ty::ClauseKind::Projection(_)
| ty::ClauseKind::ConstArgHasType(..)
| ty::ClauseKind::WellFormed(_)
| ty::ClauseKind::ConstEvaluatable(..) => None,
}
}