1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
//! Implements "Stacked Borrows".  See <https://github.com/rust-lang/unsafe-code-guidelines/blob/master/wip/stacked-borrows.md>
//! for further information.

pub mod diagnostics;
mod item;
mod stack;

use std::cmp;
use std::fmt::Write;
use std::mem;

use log::trace;

use rustc_data_structures::fx::FxHashSet;
use rustc_middle::mir::{Mutability, RetagKind};
use rustc_middle::ty::{self, layout::HasParamEnv, Ty};
use rustc_target::abi::{Abi, Align, Size};

use crate::borrow_tracker::{
    stacked_borrows::diagnostics::{AllocHistory, DiagnosticCx, DiagnosticCxBuilder},
    AccessKind, GlobalStateInner, ProtectorKind, RetagFields,
};
use crate::*;

use diagnostics::{RetagCause, RetagInfo};
pub use item::{Item, Permission};
pub use stack::Stack;

pub type AllocState = Stacks;

/// Extra per-allocation state.
#[derive(Clone, Debug)]
pub struct Stacks {
    // Even reading memory can have effects on the stack, so we need a `RefCell` here.
    stacks: RangeMap<Stack>,
    /// Stores past operations on this allocation
    history: AllocHistory,
    /// The set of tags that have been exposed inside this allocation.
    exposed_tags: FxHashSet<BorTag>,
    /// Whether this memory has been modified since the last time the tag GC ran
    modified_since_last_gc: bool,
}

/// Indicates which permissions to grant to the retagged pointer.
#[derive(Clone, Debug)]
enum NewPermission {
    Uniform {
        perm: Permission,
        access: Option<AccessKind>,
        protector: Option<ProtectorKind>,
    },
    FreezeSensitive {
        freeze_perm: Permission,
        freeze_access: Option<AccessKind>,
        freeze_protector: Option<ProtectorKind>,
        nonfreeze_perm: Permission,
        nonfreeze_access: Option<AccessKind>,
        // nonfreeze_protector must always be None
    },
}

impl NewPermission {
    /// A key function: determine the permissions to grant at a retag for the given kind of
    /// reference/pointer.
    fn from_ref_ty<'tcx>(
        ty: Ty<'tcx>,
        kind: RetagKind,
        cx: &crate::MiriInterpCx<'_, 'tcx>,
    ) -> Self {
        let protector = (kind == RetagKind::FnEntry).then_some(ProtectorKind::StrongProtector);
        match ty.kind() {
            ty::Ref(_, pointee, Mutability::Mut) => {
                if kind == RetagKind::TwoPhase {
                    // We mostly just give up on 2phase-borrows, and treat these exactly like raw pointers.
                    assert!(protector.is_none()); // RetagKind can't be both FnEntry and TwoPhase.
                    NewPermission::Uniform {
                        perm: Permission::SharedReadWrite,
                        access: None,
                        protector: None,
                    }
                } else if pointee.is_unpin(*cx.tcx, cx.param_env()) {
                    // A regular full mutable reference. On `FnEntry` this is `noalias` and `dereferenceable`.
                    NewPermission::Uniform {
                        perm: Permission::Unique,
                        access: Some(AccessKind::Write),
                        protector,
                    }
                } else {
                    // `!Unpin` dereferences do not get `noalias` nor `dereferenceable`.
                    NewPermission::Uniform {
                        perm: Permission::SharedReadWrite,
                        access: None,
                        protector: None,
                    }
                }
            }
            ty::RawPtr(ty::TypeAndMut { mutbl: Mutability::Mut, .. }) => {
                assert!(protector.is_none()); // RetagKind can't be both FnEntry and Raw.
                // Mutable raw pointer. No access, not protected.
                NewPermission::Uniform {
                    perm: Permission::SharedReadWrite,
                    access: None,
                    protector: None,
                }
            }
            ty::Ref(_, _pointee, Mutability::Not) => {
                // Shared references. If frozen, these get `noalias` and `dereferenceable`; otherwise neither.
                NewPermission::FreezeSensitive {
                    freeze_perm: Permission::SharedReadOnly,
                    freeze_access: Some(AccessKind::Read),
                    freeze_protector: protector,
                    nonfreeze_perm: Permission::SharedReadWrite,
                    // Inside UnsafeCell, this does *not* count as an access, as there
                    // might actually be mutable references further up the stack that
                    // we have to keep alive.
                    nonfreeze_access: None,
                    // We do not protect inside UnsafeCell.
                    // This fixes https://github.com/rust-lang/rust/issues/55005.
                }
            }
            ty::RawPtr(ty::TypeAndMut { mutbl: Mutability::Not, .. }) => {
                assert!(protector.is_none()); // RetagKind can't be both FnEntry and Raw.
                // `*const T`, when freshly created, are read-only in the frozen part.
                NewPermission::FreezeSensitive {
                    freeze_perm: Permission::SharedReadOnly,
                    freeze_access: Some(AccessKind::Read),
                    freeze_protector: None,
                    nonfreeze_perm: Permission::SharedReadWrite,
                    nonfreeze_access: None,
                }
            }
            _ => unreachable!(),
        }
    }

    fn from_box_ty<'tcx>(
        ty: Ty<'tcx>,
        kind: RetagKind,
        cx: &crate::MiriInterpCx<'_, 'tcx>,
    ) -> Self {
        // `ty` is not the `Box` but the field of the Box with this pointer (due to allocator handling).
        let pointee = ty.builtin_deref(true).unwrap().ty;
        if pointee.is_unpin(*cx.tcx, cx.param_env()) {
            // A regular box. On `FnEntry` this is `noalias`, but not `dereferenceable` (hence only
            // a weak protector).
            NewPermission::Uniform {
                perm: Permission::Unique,
                access: Some(AccessKind::Write),
                protector: (kind == RetagKind::FnEntry).then_some(ProtectorKind::WeakProtector),
            }
        } else {
            // `!Unpin` boxes do not get `noalias` nor `dereferenceable`.
            NewPermission::Uniform {
                perm: Permission::SharedReadWrite,
                access: None,
                protector: None,
            }
        }
    }

    fn protector(&self) -> Option<ProtectorKind> {
        match self {
            NewPermission::Uniform { protector, .. } => *protector,
            NewPermission::FreezeSensitive { freeze_protector, .. } => *freeze_protector,
        }
    }
}

// # Stacked Borrows Core Begin

/// We need to make at least the following things true:
///
/// U1: After creating a `Uniq`, it is at the top.
/// U2: If the top is `Uniq`, accesses must be through that `Uniq` or remove it.
/// U3: If an access happens with a `Uniq`, it requires the `Uniq` to be in the stack.
///
/// F1: After creating a `&`, the parts outside `UnsafeCell` have our `SharedReadOnly` on top.
/// F2: If a write access happens, it pops the `SharedReadOnly`.  This has three pieces:
///     F2a: If a write happens granted by an item below our `SharedReadOnly`, the `SharedReadOnly`
///          gets popped.
///     F2b: No `SharedReadWrite` or `Unique` will ever be added on top of our `SharedReadOnly`.
/// F3: If an access happens with an `&` outside `UnsafeCell`,
///     it requires the `SharedReadOnly` to still be in the stack.

/// Core relation on `Permission` to define which accesses are allowed
impl Permission {
    /// This defines for a given permission, whether it permits the given kind of access.
    fn grants(self, access: AccessKind) -> bool {
        // Disabled grants nothing. Otherwise, all items grant read access, and except for SharedReadOnly they grant write access.
        self != Permission::Disabled
            && (access == AccessKind::Read || self != Permission::SharedReadOnly)
    }
}

/// Determines whether an item was invalidated by a conflicting access, or by deallocation.
#[derive(Copy, Clone, Debug)]
enum ItemInvalidationCause {
    Conflict,
    Dealloc,
}

/// Core per-location operations: access, dealloc, reborrow.
impl<'tcx> Stack {
    /// Find the first write-incompatible item above the given one --
    /// i.e, find the height to which the stack will be truncated when writing to `granting`.
    fn find_first_write_incompatible(&self, granting: usize) -> usize {
        let perm = self.get(granting).unwrap().perm();
        match perm {
            Permission::SharedReadOnly => bug!("Cannot use SharedReadOnly for writing"),
            Permission::Disabled => bug!("Cannot use Disabled for anything"),
            Permission::Unique => {
                // On a write, everything above us is incompatible.
                granting + 1
            }
            Permission::SharedReadWrite => {
                // The SharedReadWrite *just* above us are compatible, to skip those.
                let mut idx = granting + 1;
                while let Some(item) = self.get(idx) {
                    if item.perm() == Permission::SharedReadWrite {
                        // Go on.
                        idx += 1;
                    } else {
                        // Found first incompatible!
                        break;
                    }
                }
                idx
            }
        }
    }

    /// The given item was invalidated -- check its protectors for whether that will cause UB.
    fn item_invalidated(
        item: &Item,
        global: &GlobalStateInner,
        dcx: &DiagnosticCx<'_, '_, '_, 'tcx>,
        cause: ItemInvalidationCause,
    ) -> InterpResult<'tcx> {
        if !global.tracked_pointer_tags.is_empty() {
            dcx.check_tracked_tag_popped(item, global);
        }

        if !item.protected() {
            return Ok(());
        }

        // We store tags twice, once in global.protected_tags and once in each call frame.
        // We do this because consulting a single global set in this function is faster
        // than attempting to search all call frames in the program for the `FrameExtra`
        // (if any) which is protecting the popped tag.
        //
        // This duplication trades off making `end_call` slower to make this function faster. This
        // trade-off is profitable in practice for a combination of two reasons.
        // 1. A single protected tag can (and does in some programs) protect thousands of `Item`s.
        //    Therefore, adding overhead in function call/return is profitable even if it only
        //    saves a little work in this function.
        // 2. Most frames protect only one or two tags. So this duplicative global turns a search
        //    which ends up about linear in the number of protected tags in the program into a
        //    constant time check (and a slow linear, because the tags in the frames aren't contiguous).
        if let Some(&protector_kind) = global.protected_tags.get(&item.tag()) {
            // The only way this is okay is if the protector is weak and we are deallocating with
            // the right pointer.
            let allowed = matches!(cause, ItemInvalidationCause::Dealloc)
                && matches!(protector_kind, ProtectorKind::WeakProtector);
            if !allowed {
                return Err(dcx.protector_error(item, protector_kind).into());
            }
        }
        Ok(())
    }

    /// Test if a memory `access` using pointer tagged `tag` is granted.
    /// If yes, return the index of the item that granted it.
    /// `range` refers the entire operation, and `offset` refers to the specific offset into the
    /// allocation that we are currently checking.
    fn access(
        &mut self,
        access: AccessKind,
        tag: ProvenanceExtra,
        global: &GlobalStateInner,
        dcx: &mut DiagnosticCx<'_, '_, '_, 'tcx>,
        exposed_tags: &FxHashSet<BorTag>,
    ) -> InterpResult<'tcx> {
        // Two main steps: Find granting item, remove incompatible items above.

        // Step 1: Find granting item.
        let granting_idx =
            self.find_granting(access, tag, exposed_tags).map_err(|()| dcx.access_error(self))?;

        // Step 2: Remove incompatible items above them.  Make sure we do not remove protected
        // items.  Behavior differs for reads and writes.
        // In case of wildcards/unknown matches, we remove everything that is *definitely* gone.
        if access == AccessKind::Write {
            // Remove everything above the write-compatible items, like a proper stack. This makes sure read-only and unique
            // pointers become invalid on write accesses (ensures F2a, and ensures U2 for write accesses).
            let first_incompatible_idx = if let Some(granting_idx) = granting_idx {
                // The granting_idx *might* be approximate, but any lower idx would remove more
                // things. Even if this is a Unique and the lower idx is an SRW (which removes
                // less), there is an SRW group boundary here so strictly more would get removed.
                self.find_first_write_incompatible(granting_idx)
            } else {
                // We are writing to something in the unknown part.
                // There is a SRW group boundary between the unknown and the known, so everything is incompatible.
                0
            };
            self.pop_items_after(first_incompatible_idx, |item| {
                Stack::item_invalidated(&item, global, dcx, ItemInvalidationCause::Conflict)?;
                dcx.log_invalidation(item.tag());
                Ok(())
            })?;
        } else {
            // On a read, *disable* all `Unique` above the granting item.  This ensures U2 for read accesses.
            // The reason this is not following the stack discipline (by removing the first Unique and
            // everything on top of it) is that in `let raw = &mut *x as *mut _; let _val = *x;`, the second statement
            // would pop the `Unique` from the reborrow of the first statement, and subsequently also pop the
            // `SharedReadWrite` for `raw`.
            // This pattern occurs a lot in the standard library: create a raw pointer, then also create a shared
            // reference and use that.
            // We *disable* instead of removing `Unique` to avoid "connecting" two neighbouring blocks of SRWs.
            let first_incompatible_idx = if let Some(granting_idx) = granting_idx {
                // The granting_idx *might* be approximate, but any lower idx would disable more things.
                granting_idx + 1
            } else {
                // We are reading from something in the unknown part. That means *all* `Unique` we know about are dead now.
                0
            };
            self.disable_uniques_starting_at(first_incompatible_idx, |item| {
                Stack::item_invalidated(&item, global, dcx, ItemInvalidationCause::Conflict)?;
                dcx.log_invalidation(item.tag());
                Ok(())
            })?;
        }

        // If this was an approximate action, we now collapse everything into an unknown.
        if granting_idx.is_none() || matches!(tag, ProvenanceExtra::Wildcard) {
            // Compute the upper bound of the items that remain.
            // (This is why we did all the work above: to reduce the items we have to consider here.)
            let mut max = BorTag::one();
            for i in 0..self.len() {
                let item = self.get(i).unwrap();
                // Skip disabled items, they cannot be matched anyway.
                if !matches!(item.perm(), Permission::Disabled) {
                    // We are looking for a strict upper bound, so add 1 to this tag.
                    max = cmp::max(item.tag().succ().unwrap(), max);
                }
            }
            if let Some(unk) = self.unknown_bottom() {
                max = cmp::max(unk, max);
            }
            // Use `max` as new strict upper bound for everything.
            trace!(
                "access: forgetting stack to upper bound {max} due to wildcard or unknown access",
                max = max.get(),
            );
            self.set_unknown_bottom(max);
        }

        // Done.
        Ok(())
    }

    /// Deallocate a location: Like a write access, but also there must be no
    /// active protectors at all because we will remove all items.
    fn dealloc(
        &mut self,
        tag: ProvenanceExtra,
        global: &GlobalStateInner,
        dcx: &mut DiagnosticCx<'_, '_, '_, 'tcx>,
        exposed_tags: &FxHashSet<BorTag>,
    ) -> InterpResult<'tcx> {
        // Step 1: Make a write access.
        // As part of this we do regular protector checking, i.e. even weakly protected items cause UB when popped.
        self.access(AccessKind::Write, tag, global, dcx, exposed_tags)?;

        // Step 2: Pretend we remove the remaining items, checking if any are strongly protected.
        for idx in (0..self.len()).rev() {
            let item = self.get(idx).unwrap();
            Stack::item_invalidated(&item, global, dcx, ItemInvalidationCause::Dealloc)?;
        }

        Ok(())
    }

    /// Derive a new pointer from one with the given tag.
    ///
    /// `access` indicates which kind of memory access this retag itself should correspond to.
    fn grant(
        &mut self,
        derived_from: ProvenanceExtra,
        new: Item,
        access: Option<AccessKind>,
        global: &GlobalStateInner,
        dcx: &mut DiagnosticCx<'_, '_, '_, 'tcx>,
        exposed_tags: &FxHashSet<BorTag>,
    ) -> InterpResult<'tcx> {
        dcx.start_grant(new.perm());

        // Compute where to put the new item.
        // Either way, we ensure that we insert the new item in a way such that between
        // `derived_from` and the new one, there are only items *compatible with* `derived_from`.
        let new_idx = if let Some(access) = access {
            // Simple case: We are just a regular memory access, and then push our thing on top,
            // like a regular stack.
            // This ensures F2b for `Unique`, by removing offending `SharedReadOnly`.
            self.access(access, derived_from, global, dcx, exposed_tags)?;

            // We insert "as far up as possible": We know only compatible items are remaining
            // on top of `derived_from`, and we want the new item at the top so that we
            // get the strongest possible guarantees.
            // This ensures U1 and F1.
            self.len()
        } else {
            // The tricky case: creating a new SRW permission without actually being an access.
            assert!(new.perm() == Permission::SharedReadWrite);

            // First we figure out which item grants our parent (`derived_from`) this kind of access.
            // We use that to determine where to put the new item.
            let granting_idx = self
                .find_granting(AccessKind::Write, derived_from, exposed_tags)
                .map_err(|()| dcx.grant_error(self))?;

            let (Some(granting_idx), ProvenanceExtra::Concrete(_)) = (granting_idx, derived_from)
            else {
                // The parent is a wildcard pointer or matched the unknown bottom.
                // This is approximate. Nobody knows what happened, so forget everything.
                // The new thing is SRW anyway, so we cannot push it "on top of the unknown part"
                // (for all we know, it might join an SRW group inside the unknown).
                trace!(
                    "reborrow: forgetting stack entirely due to SharedReadWrite reborrow from wildcard or unknown"
                );
                self.set_unknown_bottom(global.next_ptr_tag);
                return Ok(());
            };

            // SharedReadWrite can coexist with "existing loans", meaning they don't act like a write
            // access.  Instead of popping the stack, we insert the item at the place the stack would
            // be popped to (i.e., we insert it above all the write-compatible items).
            // This ensures F2b by adding the new item below any potentially existing `SharedReadOnly`.
            self.find_first_write_incompatible(granting_idx)
        };

        // Put the new item there.
        trace!("reborrow: adding item {:?}", new);
        self.insert(new_idx, new);
        Ok(())
    }
}
// # Stacked Borrows Core End

/// Integration with the BorTag garbage collector
impl Stacks {
    pub fn remove_unreachable_tags(&mut self, live_tags: &FxHashSet<BorTag>) {
        if self.modified_since_last_gc {
            for (_stack_range, stack) in self.stacks.iter_mut_all() {
                if stack.len() > 64 {
                    stack.retain(live_tags);
                }
            }
            self.history.retain(live_tags);
            self.modified_since_last_gc = false;
        }
    }
}

impl VisitTags for Stacks {
    fn visit_tags(&self, visit: &mut dyn FnMut(BorTag)) {
        for tag in self.exposed_tags.iter().copied() {
            visit(tag);
        }
    }
}

/// Map per-stack operations to higher-level per-location-range operations.
impl<'tcx> Stacks {
    /// Creates a new stack with an initial tag. For diagnostic purposes, we also need to know
    /// the [`AllocId`] of the allocation this is associated with.
    fn new(
        size: Size,
        perm: Permission,
        tag: BorTag,
        id: AllocId,
        machine: &MiriMachine<'_, '_>,
    ) -> Self {
        let item = Item::new(tag, perm, false);
        let stack = Stack::new(item);

        Stacks {
            stacks: RangeMap::new(size, stack),
            history: AllocHistory::new(id, item, machine),
            exposed_tags: FxHashSet::default(),
            modified_since_last_gc: false,
        }
    }

    /// Call `f` on every stack in the range.
    fn for_each(
        &mut self,
        range: AllocRange,
        mut dcx_builder: DiagnosticCxBuilder<'_, '_, 'tcx>,
        mut f: impl FnMut(
            &mut Stack,
            &mut DiagnosticCx<'_, '_, '_, 'tcx>,
            &mut FxHashSet<BorTag>,
        ) -> InterpResult<'tcx>,
    ) -> InterpResult<'tcx> {
        self.modified_since_last_gc = true;
        for (stack_range, stack) in self.stacks.iter_mut(range.start, range.size) {
            let mut dcx = dcx_builder.build(&mut self.history, Size::from_bytes(stack_range.start));
            f(stack, &mut dcx, &mut self.exposed_tags)?;
            dcx_builder = dcx.unbuild();
        }
        Ok(())
    }
}

/// Glue code to connect with Miri Machine Hooks
impl Stacks {
    pub fn new_allocation(
        id: AllocId,
        size: Size,
        state: &mut GlobalStateInner,
        kind: MemoryKind<MiriMemoryKind>,
        machine: &MiriMachine<'_, '_>,
    ) -> Self {
        let (base_tag, perm) = match kind {
            // New unique borrow. This tag is not accessible by the program,
            // so it will only ever be used when using the local directly (i.e.,
            // not through a pointer). That is, whenever we directly write to a local, this will pop
            // everything else off the stack, invalidating all previous pointers,
            // and in particular, *all* raw pointers.
            MemoryKind::Stack => (state.base_ptr_tag(id, machine), Permission::Unique),
            // Everything else is shared by default.
            _ => (state.base_ptr_tag(id, machine), Permission::SharedReadWrite),
        };
        Stacks::new(size, perm, base_tag, id, machine)
    }

    #[inline(always)]
    pub fn before_memory_read<'tcx, 'mir, 'ecx>(
        &mut self,
        alloc_id: AllocId,
        tag: ProvenanceExtra,
        range: AllocRange,
        machine: &'ecx MiriMachine<'mir, 'tcx>,
    ) -> InterpResult<'tcx>
    where
        'tcx: 'ecx,
    {
        trace!(
            "read access with tag {:?}: {:?}, size {}",
            tag,
            Pointer::new(alloc_id, range.start),
            range.size.bytes()
        );
        let dcx = DiagnosticCxBuilder::read(machine, tag, range);
        let state = machine.borrow_tracker.as_ref().unwrap().borrow();
        self.for_each(range, dcx, |stack, dcx, exposed_tags| {
            stack.access(AccessKind::Read, tag, &state, dcx, exposed_tags)
        })
    }

    #[inline(always)]
    pub fn before_memory_write<'tcx>(
        &mut self,
        alloc_id: AllocId,
        tag: ProvenanceExtra,
        range: AllocRange,
        machine: &MiriMachine<'_, 'tcx>,
    ) -> InterpResult<'tcx> {
        trace!(
            "write access with tag {:?}: {:?}, size {}",
            tag,
            Pointer::new(alloc_id, range.start),
            range.size.bytes()
        );
        let dcx = DiagnosticCxBuilder::write(machine, tag, range);
        let state = machine.borrow_tracker.as_ref().unwrap().borrow();
        self.for_each(range, dcx, |stack, dcx, exposed_tags| {
            stack.access(AccessKind::Write, tag, &state, dcx, exposed_tags)
        })
    }

    #[inline(always)]
    pub fn before_memory_deallocation<'tcx>(
        &mut self,
        alloc_id: AllocId,
        tag: ProvenanceExtra,
        range: AllocRange,
        machine: &MiriMachine<'_, 'tcx>,
    ) -> InterpResult<'tcx> {
        trace!("deallocation with tag {:?}: {:?}, size {}", tag, alloc_id, range.size.bytes());
        let dcx = DiagnosticCxBuilder::dealloc(machine, tag);
        let state = machine.borrow_tracker.as_ref().unwrap().borrow();
        self.for_each(range, dcx, |stack, dcx, exposed_tags| {
            stack.dealloc(tag, &state, dcx, exposed_tags)
        })?;
        Ok(())
    }
}

/// Retagging/reborrowing.  There is some policy in here, such as which permissions
/// to grant for which references, and when to add protectors.
impl<'mir: 'ecx, 'tcx: 'mir, 'ecx> EvalContextPrivExt<'mir, 'tcx, 'ecx>
    for crate::MiriInterpCx<'mir, 'tcx>
{
}
trait EvalContextPrivExt<'mir: 'ecx, 'tcx: 'mir, 'ecx>: crate::MiriInterpCxExt<'mir, 'tcx> {
    /// Returns the provenance that should be used henceforth.
    fn sb_reborrow(
        &mut self,
        place: &MPlaceTy<'tcx, Provenance>,
        size: Size,
        new_perm: NewPermission,
        new_tag: BorTag,
        retag_info: RetagInfo, // diagnostics info about this retag
    ) -> InterpResult<'tcx, Option<Provenance>> {
        let this = self.eval_context_mut();
        // Ensure we bail out if the pointer goes out-of-bounds (see miri#1050).
        this.check_ptr_access_align(place.ptr(), size, Align::ONE, CheckInAllocMsg::InboundsTest)?;

        // It is crucial that this gets called on all code paths, to ensure we track tag creation.
        let log_creation = |this: &MiriInterpCx<'mir, 'tcx>,
                            loc: Option<(AllocId, Size, ProvenanceExtra)>| // alloc_id, base_offset, orig_tag
         -> InterpResult<'tcx> {
            let global = this.machine.borrow_tracker.as_ref().unwrap().borrow();
            let ty = place.layout.ty;
            if global.tracked_pointer_tags.contains(&new_tag) {
                let mut kind_str = String::new();
                match new_perm {
                    NewPermission::Uniform { perm, .. } =>
                        write!(kind_str, "{perm:?} permission").unwrap(),
                    NewPermission::FreezeSensitive { freeze_perm, .. } if ty.is_freeze(*this.tcx, this.param_env()) =>
                        write!(kind_str, "{freeze_perm:?} permission").unwrap(),
                    NewPermission::FreezeSensitive { freeze_perm, nonfreeze_perm, .. }  =>
                        write!(kind_str, "{freeze_perm:?}/{nonfreeze_perm:?} permission for frozen/non-frozen parts").unwrap(),
                }
                write!(kind_str, " (pointee type {ty})").unwrap();
                this.emit_diagnostic(NonHaltingDiagnostic::CreatedPointerTag(
                    new_tag.inner(),
                    Some(kind_str),
                    loc.map(|(alloc_id, base_offset, orig_tag)| (alloc_id, alloc_range(base_offset, size), orig_tag)),
                ));
            }
            drop(global); // don't hold that reference any longer than we have to

            let Some((alloc_id, base_offset, orig_tag)) = loc else {
                return Ok(())
            };

            let (_size, _align, alloc_kind) = this.get_alloc_info(alloc_id);
            match alloc_kind {
                AllocKind::LiveData => {
                    // This should have alloc_extra data, but `get_alloc_extra` can still fail
                    // if converting this alloc_id from a global to a local one
                    // uncovers a non-supported `extern static`.
                    let extra = this.get_alloc_extra(alloc_id)?;
                    let mut stacked_borrows = extra
                        .borrow_tracker_sb()
                        .borrow_mut();
                    // Note that we create a *second* `DiagnosticCxBuilder` below for the actual retag.
                    // FIXME: can this be done cleaner?
                    let dcx = DiagnosticCxBuilder::retag(
                        &this.machine,
                        retag_info,
                        new_tag,
                        orig_tag,
                        alloc_range(base_offset, size),
                    );
                    let mut dcx = dcx.build(&mut stacked_borrows.history, base_offset);
                    dcx.log_creation();
                    if new_perm.protector().is_some() {
                        dcx.log_protector();
                    }
                },
                AllocKind::Function | AllocKind::VTable | AllocKind::Dead => {
                    // No stacked borrows on these allocations.
                }
            }
            Ok(())
        };

        if size == Size::ZERO {
            trace!(
                "reborrow of size 0: reference {:?} derived from {:?} (pointee {})",
                new_tag,
                place.ptr(),
                place.layout.ty,
            );
            // Don't update any stacks for a zero-sized access; borrow stacks are per-byte and this
            // touches no bytes so there is no stack to put this tag in.
            // However, if the pointer for this operation points at a real allocation we still
            // record where it was created so that we can issue a helpful diagnostic if there is an
            // attempt to use it for a non-zero-sized access.
            // Dangling slices are a common case here; it's valid to get their length but with raw
            // pointer tagging for example all calls to get_unchecked on them are invalid.
            if let Ok((alloc_id, base_offset, orig_tag)) = this.ptr_try_get_alloc_id(place.ptr()) {
                log_creation(this, Some((alloc_id, base_offset, orig_tag)))?;
                // Still give it the new provenance, it got retagged after all.
                return Ok(Some(Provenance::Concrete { alloc_id, tag: new_tag }));
            } else {
                // This pointer doesn't come with an AllocId. :shrug:
                log_creation(this, None)?;
                // Provenance unchanged.
                return Ok(place.ptr().provenance);
            }
        }

        let (alloc_id, base_offset, orig_tag) = this.ptr_get_alloc_id(place.ptr())?;
        log_creation(this, Some((alloc_id, base_offset, orig_tag)))?;

        trace!(
            "reborrow: reference {:?} derived from {:?} (pointee {}): {:?}, size {}",
            new_tag,
            orig_tag,
            place.layout.ty,
            Pointer::new(alloc_id, base_offset),
            size.bytes()
        );

        if let Some(protect) = new_perm.protector() {
            // See comment in `Stack::item_invalidated` for why we store the tag twice.
            this.frame_mut().extra.borrow_tracker.as_mut().unwrap().protected_tags.push(new_tag);
            this.machine
                .borrow_tracker
                .as_mut()
                .unwrap()
                .get_mut()
                .protected_tags
                .insert(new_tag, protect);
        }

        // Update the stacks, according to the new permission information we are given.
        match new_perm {
            NewPermission::Uniform { perm, access, protector } => {
                assert!(perm != Permission::SharedReadOnly);
                // Here we can avoid `borrow()` calls because we have mutable references.
                // Note that this asserts that the allocation is mutable -- but since we are creating a
                // mutable pointer, that seems reasonable.
                let (alloc_extra, machine) = this.get_alloc_extra_mut(alloc_id)?;
                let stacked_borrows = alloc_extra.borrow_tracker_sb_mut().get_mut();
                let item = Item::new(new_tag, perm, protector.is_some());
                let range = alloc_range(base_offset, size);
                let global = machine.borrow_tracker.as_ref().unwrap().borrow();
                let dcx = DiagnosticCxBuilder::retag(
                    machine,
                    retag_info,
                    new_tag,
                    orig_tag,
                    alloc_range(base_offset, size),
                );
                stacked_borrows.for_each(range, dcx, |stack, dcx, exposed_tags| {
                    stack.grant(orig_tag, item, access, &global, dcx, exposed_tags)
                })?;
                drop(global);
                if let Some(access) = access {
                    assert_eq!(access, AccessKind::Write);
                    // Make sure the data race model also knows about this.
                    if let Some(data_race) = alloc_extra.data_race.as_mut() {
                        data_race.write(alloc_id, range, machine)?;
                    }
                }
            }
            NewPermission::FreezeSensitive {
                freeze_perm,
                freeze_access,
                freeze_protector,
                nonfreeze_perm,
                nonfreeze_access,
            } => {
                // The permission is not uniform across the entire range!
                // We need a frozen-sensitive reborrow.
                // We have to use shared references to alloc/memory_extra here since
                // `visit_freeze_sensitive` needs to access the global state.
                let alloc_extra = this.get_alloc_extra(alloc_id)?;
                let mut stacked_borrows = alloc_extra.borrow_tracker_sb().borrow_mut();
                this.visit_freeze_sensitive(place, size, |mut range, frozen| {
                    // Adjust range.
                    range.start += base_offset;
                    // We are only ever `SharedReadOnly` inside the frozen bits.
                    let (perm, access, protector) = if frozen {
                        (freeze_perm, freeze_access, freeze_protector)
                    } else {
                        (nonfreeze_perm, nonfreeze_access, None)
                    };
                    let item = Item::new(new_tag, perm, protector.is_some());
                    let global = this.machine.borrow_tracker.as_ref().unwrap().borrow();
                    let dcx = DiagnosticCxBuilder::retag(
                        &this.machine,
                        retag_info,
                        new_tag,
                        orig_tag,
                        alloc_range(base_offset, size),
                    );
                    stacked_borrows.for_each(range, dcx, |stack, dcx, exposed_tags| {
                        stack.grant(orig_tag, item, access, &global, dcx, exposed_tags)
                    })?;
                    drop(global);
                    if let Some(access) = access {
                        assert_eq!(access, AccessKind::Read);
                        // Make sure the data race model also knows about this.
                        if let Some(data_race) = alloc_extra.data_race.as_ref() {
                            data_race.read(alloc_id, range, &this.machine)?;
                        }
                    }
                    Ok(())
                })?;
            }
        }

        Ok(Some(Provenance::Concrete { alloc_id, tag: new_tag }))
    }

    /// Retags an individual pointer, returning the retagged version.
    /// `kind` indicates what kind of reference is being created.
    fn sb_retag_reference(
        &mut self,
        val: &ImmTy<'tcx, Provenance>,
        new_perm: NewPermission,
        info: RetagInfo, // diagnostics info about this retag
    ) -> InterpResult<'tcx, ImmTy<'tcx, Provenance>> {
        let this = self.eval_context_mut();
        // We want a place for where the ptr *points to*, so we get one.
        let place = this.ref_to_mplace(val)?;
        let size = this.size_and_align_of_mplace(&place)?.map(|(size, _)| size);
        // FIXME: If we cannot determine the size (because the unsized tail is an `extern type`),
        // bail out -- we cannot reasonably figure out which memory range to reborrow.
        // See https://github.com/rust-lang/unsafe-code-guidelines/issues/276.
        let size = match size {
            Some(size) => size,
            None => return Ok(val.clone()),
        };

        // Compute new borrow.
        let new_tag = this.machine.borrow_tracker.as_mut().unwrap().get_mut().new_ptr();

        // Reborrow.
        let new_prov = this.sb_reborrow(&place, size, new_perm, new_tag, info)?;

        // Adjust pointer.
        let new_place = place.map_provenance(|_| new_prov);

        // Return new pointer.
        Ok(ImmTy::from_immediate(new_place.to_ref(this), val.layout))
    }
}

impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriInterpCx<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriInterpCxExt<'mir, 'tcx> {
    fn sb_retag_ptr_value(
        &mut self,
        kind: RetagKind,
        val: &ImmTy<'tcx, Provenance>,
    ) -> InterpResult<'tcx, ImmTy<'tcx, Provenance>> {
        let this = self.eval_context_mut();
        let new_perm = NewPermission::from_ref_ty(val.layout.ty, kind, this);
        let cause = match kind {
            RetagKind::TwoPhase { .. } => RetagCause::TwoPhase,
            RetagKind::FnEntry => unreachable!(),
            RetagKind::Raw | RetagKind::Default => RetagCause::Normal,
        };
        this.sb_retag_reference(val, new_perm, RetagInfo { cause, in_field: false })
    }

    fn sb_retag_place_contents(
        &mut self,
        kind: RetagKind,
        place: &PlaceTy<'tcx, Provenance>,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        let retag_fields = this.machine.borrow_tracker.as_mut().unwrap().get_mut().retag_fields;
        let retag_cause = match kind {
            RetagKind::Raw | RetagKind::TwoPhase { .. } => unreachable!(), // these can only happen in `retag_ptr_value`
            RetagKind::FnEntry => RetagCause::FnEntry,
            RetagKind::Default => RetagCause::Normal,
        };
        let mut visitor =
            RetagVisitor { ecx: this, kind, retag_cause, retag_fields, in_field: false };
        return visitor.visit_value(place);

        // The actual visitor.
        struct RetagVisitor<'ecx, 'mir, 'tcx> {
            ecx: &'ecx mut MiriInterpCx<'mir, 'tcx>,
            kind: RetagKind,
            retag_cause: RetagCause,
            retag_fields: RetagFields,
            in_field: bool,
        }
        impl<'ecx, 'mir, 'tcx> RetagVisitor<'ecx, 'mir, 'tcx> {
            #[inline(always)] // yes this helps in our benchmarks
            fn retag_ptr_inplace(
                &mut self,
                place: &PlaceTy<'tcx, Provenance>,
                new_perm: NewPermission,
            ) -> InterpResult<'tcx> {
                let val = self.ecx.read_immediate(&self.ecx.place_to_op(place)?)?;
                let val = self.ecx.sb_retag_reference(
                    &val,
                    new_perm,
                    RetagInfo { cause: self.retag_cause, in_field: self.in_field },
                )?;
                self.ecx.write_immediate(*val, place)?;
                Ok(())
            }
        }
        impl<'ecx, 'mir, 'tcx> ValueVisitor<'mir, 'tcx, MiriMachine<'mir, 'tcx>>
            for RetagVisitor<'ecx, 'mir, 'tcx>
        {
            type V = PlaceTy<'tcx, Provenance>;

            #[inline(always)]
            fn ecx(&self) -> &MiriInterpCx<'mir, 'tcx> {
                self.ecx
            }

            fn visit_box(&mut self, place: &PlaceTy<'tcx, Provenance>) -> InterpResult<'tcx> {
                // Boxes get a weak protectors, since they may be deallocated.
                let new_perm = NewPermission::from_box_ty(place.layout.ty, self.kind, self.ecx);
                self.retag_ptr_inplace(place, new_perm)
            }

            fn visit_value(&mut self, place: &PlaceTy<'tcx, Provenance>) -> InterpResult<'tcx> {
                // If this place is smaller than a pointer, we know that it can't contain any
                // pointers we need to retag, so we can stop recursion early.
                // This optimization is crucial for ZSTs, because they can contain way more fields
                // than we can ever visit.
                if place.layout.is_sized() && place.layout.size < self.ecx.pointer_size() {
                    return Ok(());
                }

                // Check the type of this value to see what to do with it (retag, or recurse).
                match place.layout.ty.kind() {
                    ty::Ref(..) => {
                        let new_perm =
                            NewPermission::from_ref_ty(place.layout.ty, self.kind, self.ecx);
                        self.retag_ptr_inplace(place, new_perm)?;
                    }
                    ty::RawPtr(..) => {
                        // We do *not* want to recurse into raw pointers -- wide raw pointers have
                        // fields, and for dyn Trait pointees those can have reference type!
                    }
                    ty::Adt(adt, _) if adt.is_box() => {
                        // Recurse for boxes, they require some tricky handling and will end up in `visit_box` above.
                        // (Yes this means we technically also recursively retag the allocator itself
                        // even if field retagging is not enabled. *shrug*)
                        self.walk_value(place)?;
                    }
                    _ => {
                        // Not a reference/pointer/box. Only recurse if configured appropriately.
                        let recurse = match self.retag_fields {
                            RetagFields::No => false,
                            RetagFields::Yes => true,
                            RetagFields::OnlyScalar => {
                                // Matching `ArgAbi::new` at the time of writing, only fields of
                                // `Scalar` and `ScalarPair` ABI are considered.
                                matches!(place.layout.abi, Abi::Scalar(..) | Abi::ScalarPair(..))
                            }
                        };
                        if recurse {
                            let in_field = mem::replace(&mut self.in_field, true); // remember and restore old value
                            self.walk_value(place)?;
                            self.in_field = in_field;
                        }
                    }
                }

                Ok(())
            }
        }
    }

    /// Protect a place so that it cannot be used any more for the duration of the current function
    /// call.
    ///
    /// This is used to ensure soundness of in-place function argument/return passing.
    fn sb_protect_place(&mut self, place: &MPlaceTy<'tcx, Provenance>) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();

        // We have to turn the place into a pointer to use the usual retagging logic.
        // (The pointer type does not matter, so we use a raw pointer.)
        let ptr = this.mplace_to_ref(place)?;
        // Reborrow it. With protection! That is the entire point.
        let new_perm = NewPermission::Uniform {
            perm: Permission::Unique,
            access: Some(AccessKind::Write),
            protector: Some(ProtectorKind::StrongProtector),
        };
        let _new_ptr = this.sb_retag_reference(
            &ptr,
            new_perm,
            RetagInfo { cause: RetagCause::InPlaceFnPassing, in_field: false },
        )?;
        // We just throw away `new_ptr`, so nobody can access this memory while it is protected.

        Ok(())
    }

    /// Mark the given tag as exposed. It was found on a pointer with the given AllocId.
    fn sb_expose_tag(&mut self, alloc_id: AllocId, tag: BorTag) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();

        // Function pointers and dead objects don't have an alloc_extra so we ignore them.
        // This is okay because accessing them is UB anyway, no need for any Stacked Borrows checks.
        // NOT using `get_alloc_extra_mut` since this might be a read-only allocation!
        let (_size, _align, kind) = this.get_alloc_info(alloc_id);
        match kind {
            AllocKind::LiveData => {
                // This should have alloc_extra data, but `get_alloc_extra` can still fail
                // if converting this alloc_id from a global to a local one
                // uncovers a non-supported `extern static`.
                let alloc_extra = this.get_alloc_extra(alloc_id)?;
                trace!("Stacked Borrows tag {tag:?} exposed in {alloc_id:?}");
                alloc_extra.borrow_tracker_sb().borrow_mut().exposed_tags.insert(tag);
            }
            AllocKind::Function | AllocKind::VTable | AllocKind::Dead => {
                // No stacked borrows on these allocations.
            }
        }
        Ok(())
    }

    fn print_stacks(&mut self, alloc_id: AllocId) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        let alloc_extra = this.get_alloc_extra(alloc_id)?;
        let stacks = alloc_extra.borrow_tracker_sb().borrow();
        for (range, stack) in stacks.stacks.iter_all() {
            print!("{range:?}: [");
            if let Some(bottom) = stack.unknown_bottom() {
                print!(" unknown-bottom(..{bottom:?})");
            }
            for i in 0..stack.len() {
                let item = stack.get(i).unwrap();
                print!(" {:?}{:?}", item.perm(), item.tag());
            }
            println!(" ]");
        }
        Ok(())
    }
}