mod auto_trait;
mod blanket_impl;
pub(crate) mod cfg;
pub(crate) mod inline;
mod render_macro_matchers;
mod simplify;
pub(crate) mod types;
pub(crate) mod utils;
use rustc_ast as ast;
use rustc_ast::token::{Token, TokenKind};
use rustc_ast::tokenstream::{TokenStream, TokenTree};
use rustc_attr as attr;
use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet, IndexEntry};
use rustc_hir as hir;
use rustc_hir::def::{CtorKind, DefKind, Res};
use rustc_hir::def_id::{DefId, DefIdMap, DefIdSet, LocalDefId, LOCAL_CRATE};
use rustc_hir::PredicateOrigin;
use rustc_hir_analysis::hir_ty_to_ty;
use rustc_infer::infer::region_constraints::{Constraint, RegionConstraintData};
use rustc_middle::metadata::Reexport;
use rustc_middle::middle::resolve_bound_vars as rbv;
use rustc_middle::ty::fold::TypeFolder;
use rustc_middle::ty::GenericArgsRef;
use rustc_middle::ty::TypeVisitableExt;
use rustc_middle::ty::{self, AdtKind, EarlyBinder, Ty, TyCtxt};
use rustc_middle::{bug, span_bug};
use rustc_span::hygiene::{AstPass, MacroKind};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{self, ExpnKind};
use rustc_trait_selection::traits::wf::object_region_bounds;
use std::borrow::Cow;
use std::collections::hash_map::Entry;
use std::collections::BTreeMap;
use std::hash::Hash;
use std::mem;
use thin_vec::ThinVec;
use crate::core::{self, DocContext, ImplTraitParam};
use crate::formats::item_type::ItemType;
use crate::visit_ast::Module as DocModule;
use utils::*;
pub(crate) use self::types::*;
pub(crate) use self::utils::{get_auto_trait_and_blanket_impls, krate, register_res};
pub(crate) fn clean_doc_module<'tcx>(doc: &DocModule<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
let mut items: Vec<Item> = vec![];
let mut inserted = FxHashSet::default();
items.extend(doc.foreigns.iter().map(|(item, renamed)| {
let item = clean_maybe_renamed_foreign_item(cx, item, *renamed);
if let Some(name) = item.name && (cx.render_options.document_hidden || !item.is_doc_hidden()) {
inserted.insert((item.type_(), name));
}
item
}));
items.extend(doc.mods.iter().filter_map(|x| {
if !inserted.insert((ItemType::Module, x.name)) {
return None;
}
let item = clean_doc_module(x, cx);
if !cx.render_options.document_hidden && item.is_doc_hidden() {
inserted.remove(&(ItemType::Module, x.name));
}
Some(item)
}));
items.extend(doc.items.values().flat_map(|(item, renamed, import_id)| {
if matches!(item.kind, hir::ItemKind::Use(_, hir::UseKind::Glob)) {
return Vec::new();
}
let v = clean_maybe_renamed_item(cx, item, *renamed, *import_id);
for item in &v {
if let Some(name) = item.name && (cx.render_options.document_hidden || !item.is_doc_hidden()) {
inserted.insert((item.type_(), name));
}
}
v
}));
items.extend(doc.inlined_foreigns.iter().flat_map(|((_, renamed), (res, local_import_id))| {
let Some(def_id) = res.opt_def_id() else { return Vec::new() };
let name = renamed.unwrap_or_else(|| cx.tcx.item_name(def_id));
let import = cx.tcx.hir().expect_item(*local_import_id);
match import.kind {
hir::ItemKind::Use(path, kind) => {
let hir::UsePath { segments, span, .. } = *path;
let path = hir::Path { segments, res: *res, span };
clean_use_statement_inner(import, name, &path, kind, cx, &mut Default::default())
}
_ => unreachable!(),
}
}));
items.extend(doc.items.values().flat_map(|(item, renamed, _)| {
if let hir::ItemKind::Use(path, hir::UseKind::Glob) = item.kind {
let name = renamed.unwrap_or_else(|| cx.tcx.hir().name(item.hir_id()));
clean_use_statement(item, name, path, hir::UseKind::Glob, cx, &mut inserted)
} else {
Vec::new()
}
}));
let span = Span::new({
let where_outer = doc.where_outer(cx.tcx);
let sm = cx.sess().source_map();
let outer = sm.lookup_char_pos(where_outer.lo());
let inner = sm.lookup_char_pos(doc.where_inner.lo());
if outer.file.start_pos == inner.file.start_pos {
where_outer
} else {
doc.where_inner
}
});
let kind = ModuleItem(Module { items, span });
generate_item_with_correct_attrs(
cx,
kind,
doc.def_id.to_def_id(),
doc.name,
doc.import_id,
doc.renamed,
)
}
fn generate_item_with_correct_attrs(
cx: &mut DocContext<'_>,
kind: ItemKind,
def_id: DefId,
name: Symbol,
import_id: Option<LocalDefId>,
renamed: Option<Symbol>,
) -> Item {
let target_attrs = inline::load_attrs(cx, def_id);
let attrs = if let Some(import_id) = import_id {
let is_inline = inline::load_attrs(cx, import_id.to_def_id())
.lists(sym::doc)
.get_word_attr(sym::inline)
.is_some();
let mut attrs = get_all_import_attributes(cx, import_id, def_id, is_inline);
add_without_unwanted_attributes(&mut attrs, target_attrs, is_inline, None);
attrs
} else {
target_attrs.iter().map(|attr| (Cow::Borrowed(attr), None)).collect()
};
let cfg = attrs.cfg(cx.tcx, &cx.cache.hidden_cfg);
let attrs = Attributes::from_ast_iter(attrs.iter().map(|(attr, did)| (&**attr, *did)), false);
let name = renamed.or(Some(name));
let mut item = Item::from_def_id_and_attrs_and_parts(def_id, name, kind, Box::new(attrs), cfg);
item.inline_stmt_id = import_id.map(|local| local.to_def_id());
item
}
fn clean_generic_bound<'tcx>(
bound: &hir::GenericBound<'tcx>,
cx: &mut DocContext<'tcx>,
) -> Option<GenericBound> {
Some(match *bound {
hir::GenericBound::Outlives(lt) => GenericBound::Outlives(clean_lifetime(lt, cx)),
hir::GenericBound::LangItemTrait(lang_item, span, _, generic_args) => {
let def_id = cx.tcx.require_lang_item(lang_item, Some(span));
let trait_ref = ty::Binder::dummy(ty::TraitRef::identity(cx.tcx, def_id));
let generic_args = clean_generic_args(generic_args, cx);
let GenericArgs::AngleBracketed { bindings, .. } = generic_args else {
bug!("clean: parenthesized `GenericBound::LangItemTrait`");
};
let trait_ = clean_trait_ref_with_bindings(cx, trait_ref, bindings);
GenericBound::TraitBound(
PolyTrait { trait_, generic_params: vec![] },
hir::TraitBoundModifier::None,
)
}
hir::GenericBound::Trait(ref t, modifier) => {
if modifier == hir::TraitBoundModifier::MaybeConst
&& cx.tcx.lang_items().destruct_trait() == Some(t.trait_ref.trait_def_id().unwrap())
{
return None;
}
GenericBound::TraitBound(clean_poly_trait_ref(t, cx), modifier)
}
})
}
pub(crate) fn clean_trait_ref_with_bindings<'tcx>(
cx: &mut DocContext<'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>,
bindings: ThinVec<TypeBinding>,
) -> Path {
let kind = cx.tcx.def_kind(trait_ref.def_id()).into();
if !matches!(kind, ItemType::Trait | ItemType::TraitAlias) {
span_bug!(cx.tcx.def_span(trait_ref.def_id()), "`TraitRef` had unexpected kind {kind:?}");
}
inline::record_extern_fqn(cx, trait_ref.def_id(), kind);
let path =
external_path(cx, trait_ref.def_id(), true, bindings, trait_ref.map_bound(|tr| tr.args));
debug!(?trait_ref);
path
}
fn clean_poly_trait_ref_with_bindings<'tcx>(
cx: &mut DocContext<'tcx>,
poly_trait_ref: ty::PolyTraitRef<'tcx>,
bindings: ThinVec<TypeBinding>,
) -> GenericBound {
GenericBound::TraitBound(
PolyTrait {
trait_: clean_trait_ref_with_bindings(cx, poly_trait_ref, bindings),
generic_params: clean_bound_vars(poly_trait_ref.bound_vars()),
},
hir::TraitBoundModifier::None,
)
}
fn clean_lifetime<'tcx>(lifetime: &hir::Lifetime, cx: &mut DocContext<'tcx>) -> Lifetime {
let def = cx.tcx.named_bound_var(lifetime.hir_id);
if let Some(
rbv::ResolvedArg::EarlyBound(node_id)
| rbv::ResolvedArg::LateBound(_, _, node_id)
| rbv::ResolvedArg::Free(_, node_id),
) = def
{
if let Some(lt) = cx.args.get(&node_id).and_then(|p| p.as_lt()).cloned() {
return lt;
}
}
Lifetime(lifetime.ident.name)
}
pub(crate) fn clean_const<'tcx>(constant: &hir::ConstArg, cx: &mut DocContext<'tcx>) -> Constant {
let def_id = cx.tcx.hir().body_owner_def_id(constant.value.body).to_def_id();
Constant {
type_: clean_middle_ty(
ty::Binder::dummy(cx.tcx.type_of(def_id).instantiate_identity()),
cx,
Some(def_id),
None,
),
generics: Box::new(Generics::default()),
kind: ConstantKind::Anonymous { body: constant.value.body },
}
}
pub(crate) fn clean_middle_const<'tcx>(
constant: ty::Binder<'tcx, ty::Const<'tcx>>,
cx: &mut DocContext<'tcx>,
) -> Constant {
Constant {
type_: clean_middle_ty(constant.map_bound(|c| c.ty()), cx, None, None),
generics: Box::new(Generics::default()),
kind: ConstantKind::TyConst { expr: constant.skip_binder().to_string().into() },
}
}
pub(crate) fn clean_middle_region<'tcx>(region: ty::Region<'tcx>) -> Option<Lifetime> {
match *region {
ty::ReStatic => Some(Lifetime::statik()),
_ if !region.has_name() => None,
ty::ReLateBound(_, ty::BoundRegion { kind: ty::BrNamed(_, name), .. }) => {
Some(Lifetime(name))
}
ty::ReEarlyBound(ref data) => Some(Lifetime(data.name)),
ty::ReLateBound(..)
| ty::ReFree(..)
| ty::ReVar(..)
| ty::ReError(_)
| ty::RePlaceholder(..)
| ty::ReErased => {
debug!("cannot clean region {region:?}");
None
}
}
}
fn clean_where_predicate<'tcx>(
predicate: &hir::WherePredicate<'tcx>,
cx: &mut DocContext<'tcx>,
) -> Option<WherePredicate> {
if !predicate.in_where_clause() {
return None;
}
Some(match *predicate {
hir::WherePredicate::BoundPredicate(ref wbp) => {
let bound_params = wbp
.bound_generic_params
.iter()
.map(|param| clean_generic_param(cx, None, param))
.collect();
WherePredicate::BoundPredicate {
ty: clean_ty(wbp.bounded_ty, cx),
bounds: wbp.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
bound_params,
}
}
hir::WherePredicate::RegionPredicate(ref wrp) => WherePredicate::RegionPredicate {
lifetime: clean_lifetime(wrp.lifetime, cx),
bounds: wrp.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
},
hir::WherePredicate::EqPredicate(ref wrp) => WherePredicate::EqPredicate {
lhs: clean_ty(wrp.lhs_ty, cx),
rhs: clean_ty(wrp.rhs_ty, cx).into(),
},
})
}
pub(crate) fn clean_predicate<'tcx>(
predicate: ty::Clause<'tcx>,
cx: &mut DocContext<'tcx>,
) -> Option<WherePredicate> {
let bound_predicate = predicate.kind();
match bound_predicate.skip_binder() {
ty::ClauseKind::Trait(pred) => clean_poly_trait_predicate(bound_predicate.rebind(pred), cx),
ty::ClauseKind::RegionOutlives(pred) => clean_region_outlives_predicate(pred),
ty::ClauseKind::TypeOutlives(pred) => {
clean_type_outlives_predicate(bound_predicate.rebind(pred), cx)
}
ty::ClauseKind::Projection(pred) => {
Some(clean_projection_predicate(bound_predicate.rebind(pred), cx))
}
ty::ClauseKind::ConstEvaluatable(..)
| ty::ClauseKind::WellFormed(..)
| ty::ClauseKind::ConstArgHasType(..) => None,
}
}
fn clean_poly_trait_predicate<'tcx>(
pred: ty::PolyTraitPredicate<'tcx>,
cx: &mut DocContext<'tcx>,
) -> Option<WherePredicate> {
if Some(pred.skip_binder().def_id()) == cx.tcx.lang_items().destruct_trait() {
return None;
}
let poly_trait_ref = pred.map_bound(|pred| pred.trait_ref);
Some(WherePredicate::BoundPredicate {
ty: clean_middle_ty(poly_trait_ref.self_ty(), cx, None, None),
bounds: vec![clean_poly_trait_ref_with_bindings(cx, poly_trait_ref, ThinVec::new())],
bound_params: Vec::new(),
})
}
fn clean_region_outlives_predicate<'tcx>(
pred: ty::RegionOutlivesPredicate<'tcx>,
) -> Option<WherePredicate> {
let ty::OutlivesPredicate(a, b) = pred;
Some(WherePredicate::RegionPredicate {
lifetime: clean_middle_region(a).expect("failed to clean lifetime"),
bounds: vec![GenericBound::Outlives(
clean_middle_region(b).expect("failed to clean bounds"),
)],
})
}
fn clean_type_outlives_predicate<'tcx>(
pred: ty::Binder<'tcx, ty::TypeOutlivesPredicate<'tcx>>,
cx: &mut DocContext<'tcx>,
) -> Option<WherePredicate> {
let ty::OutlivesPredicate(ty, lt) = pred.skip_binder();
Some(WherePredicate::BoundPredicate {
ty: clean_middle_ty(pred.rebind(ty), cx, None, None),
bounds: vec![GenericBound::Outlives(
clean_middle_region(lt).expect("failed to clean lifetimes"),
)],
bound_params: Vec::new(),
})
}
fn clean_middle_term<'tcx>(
term: ty::Binder<'tcx, ty::Term<'tcx>>,
cx: &mut DocContext<'tcx>,
) -> Term {
match term.skip_binder().unpack() {
ty::TermKind::Ty(ty) => Term::Type(clean_middle_ty(term.rebind(ty), cx, None, None)),
ty::TermKind::Const(c) => Term::Constant(clean_middle_const(term.rebind(c), cx)),
}
}
fn clean_hir_term<'tcx>(term: &hir::Term<'tcx>, cx: &mut DocContext<'tcx>) -> Term {
match term {
hir::Term::Ty(ty) => Term::Type(clean_ty(ty, cx)),
hir::Term::Const(c) => Term::Constant(clean_middle_const(
ty::Binder::dummy(ty::Const::from_anon_const(cx.tcx, c.def_id)),
cx,
)),
}
}
fn clean_projection_predicate<'tcx>(
pred: ty::Binder<'tcx, ty::ProjectionPredicate<'tcx>>,
cx: &mut DocContext<'tcx>,
) -> WherePredicate {
WherePredicate::EqPredicate {
lhs: clean_projection(pred.map_bound(|p| p.projection_ty), cx, None),
rhs: clean_middle_term(pred.map_bound(|p| p.term), cx),
}
}
fn clean_projection<'tcx>(
ty: ty::Binder<'tcx, ty::AliasTy<'tcx>>,
cx: &mut DocContext<'tcx>,
def_id: Option<DefId>,
) -> Type {
if cx.tcx.is_impl_trait_in_trait(ty.skip_binder().def_id) {
let bounds = cx
.tcx
.explicit_item_bounds(ty.skip_binder().def_id)
.iter_instantiated_copied(cx.tcx, ty.skip_binder().args)
.map(|(pred, _)| pred)
.collect::<Vec<_>>();
return clean_middle_opaque_bounds(cx, bounds);
}
let trait_ =
clean_trait_ref_with_bindings(cx, ty.map_bound(|ty| ty.trait_ref(cx.tcx)), ThinVec::new());
let self_type = clean_middle_ty(ty.map_bound(|ty| ty.self_ty()), cx, None, None);
let self_def_id = if let Some(def_id) = def_id {
cx.tcx.opt_parent(def_id).or(Some(def_id))
} else {
self_type.def_id(&cx.cache)
};
let should_show_cast = compute_should_show_cast(self_def_id, &trait_, &self_type);
Type::QPath(Box::new(QPathData {
assoc: projection_to_path_segment(ty, cx),
should_show_cast,
self_type,
trait_: Some(trait_),
}))
}
fn compute_should_show_cast(self_def_id: Option<DefId>, trait_: &Path, self_type: &Type) -> bool {
!trait_.segments.is_empty()
&& self_def_id
.zip(Some(trait_.def_id()))
.map_or(!self_type.is_self_type(), |(id, trait_)| id != trait_)
}
fn projection_to_path_segment<'tcx>(
ty: ty::Binder<'tcx, ty::AliasTy<'tcx>>,
cx: &mut DocContext<'tcx>,
) -> PathSegment {
let item = cx.tcx.associated_item(ty.skip_binder().def_id);
let generics = cx.tcx.generics_of(ty.skip_binder().def_id);
PathSegment {
name: item.name,
args: GenericArgs::AngleBracketed {
args: ty_args_to_args(
cx,
ty.map_bound(|ty| &ty.args[generics.parent_count..]),
false,
None,
)
.into(),
bindings: Default::default(),
},
}
}
fn clean_generic_param_def<'tcx>(
def: &ty::GenericParamDef,
cx: &mut DocContext<'tcx>,
) -> GenericParamDef {
let (name, kind) = match def.kind {
ty::GenericParamDefKind::Lifetime => {
(def.name, GenericParamDefKind::Lifetime { outlives: vec![] })
}
ty::GenericParamDefKind::Type { has_default, synthetic, .. } => {
let default = if has_default {
Some(clean_middle_ty(
ty::Binder::dummy(cx.tcx.type_of(def.def_id).instantiate_identity()),
cx,
Some(def.def_id),
None,
))
} else {
None
};
(
def.name,
GenericParamDefKind::Type {
did: def.def_id,
bounds: vec![], default: default.map(Box::new),
synthetic,
},
)
}
ty::GenericParamDefKind::Const { has_default, .. } => (
def.name,
GenericParamDefKind::Const {
ty: Box::new(clean_middle_ty(
ty::Binder::dummy(
cx.tcx
.type_of(def.def_id)
.no_bound_vars()
.expect("const parameter types cannot be generic"),
),
cx,
Some(def.def_id),
None,
)),
default: match has_default {
true => Some(Box::new(
cx.tcx.const_param_default(def.def_id).instantiate_identity().to_string(),
)),
false => None,
},
},
),
};
GenericParamDef { name, kind }
}
fn clean_generic_param<'tcx>(
cx: &mut DocContext<'tcx>,
generics: Option<&hir::Generics<'tcx>>,
param: &hir::GenericParam<'tcx>,
) -> GenericParamDef {
let (name, kind) = match param.kind {
hir::GenericParamKind::Lifetime { .. } => {
let outlives = if let Some(generics) = generics {
generics
.outlives_for_param(param.def_id)
.filter(|bp| !bp.in_where_clause)
.flat_map(|bp| bp.bounds)
.map(|bound| match bound {
hir::GenericBound::Outlives(lt) => clean_lifetime(lt, cx),
_ => panic!(),
})
.collect()
} else {
Vec::new()
};
(param.name.ident().name, GenericParamDefKind::Lifetime { outlives })
}
hir::GenericParamKind::Type { ref default, synthetic } => {
let bounds = if let Some(generics) = generics {
generics
.bounds_for_param(param.def_id)
.filter(|bp| bp.origin != PredicateOrigin::WhereClause)
.flat_map(|bp| bp.bounds)
.filter_map(|x| clean_generic_bound(x, cx))
.collect()
} else {
Vec::new()
};
(
param.name.ident().name,
GenericParamDefKind::Type {
did: param.def_id.to_def_id(),
bounds,
default: default.map(|t| clean_ty(t, cx)).map(Box::new),
synthetic,
},
)
}
hir::GenericParamKind::Const { ty, default } => (
param.name.ident().name,
GenericParamDefKind::Const {
ty: Box::new(clean_ty(ty, cx)),
default: default
.map(|ct| Box::new(ty::Const::from_anon_const(cx.tcx, ct.def_id).to_string())),
},
),
};
GenericParamDef { name, kind }
}
fn is_impl_trait(param: &hir::GenericParam<'_>) -> bool {
match param.kind {
hir::GenericParamKind::Type { synthetic, .. } => synthetic,
_ => false,
}
}
fn is_elided_lifetime(param: &hir::GenericParam<'_>) -> bool {
matches!(param.kind, hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Elided })
}
pub(crate) fn clean_generics<'tcx>(
gens: &hir::Generics<'tcx>,
cx: &mut DocContext<'tcx>,
) -> Generics {
let impl_trait_params = gens
.params
.iter()
.filter(|param| is_impl_trait(param))
.map(|param| {
let param = clean_generic_param(cx, Some(gens), param);
match param.kind {
GenericParamDefKind::Lifetime { .. } => unreachable!(),
GenericParamDefKind::Type { did, ref bounds, .. } => {
cx.impl_trait_bounds.insert(did.into(), bounds.clone());
}
GenericParamDefKind::Const { .. } => unreachable!(),
}
param
})
.collect::<Vec<_>>();
let mut bound_predicates = FxIndexMap::default();
let mut region_predicates = FxIndexMap::default();
let mut eq_predicates = ThinVec::default();
for pred in gens.predicates.iter().filter_map(|x| clean_where_predicate(x, cx)) {
match pred {
WherePredicate::BoundPredicate { ty, bounds, bound_params } => {
match bound_predicates.entry(ty) {
IndexEntry::Vacant(v) => {
v.insert((bounds, bound_params));
}
IndexEntry::Occupied(mut o) => {
for bound in bounds {
if !o.get().0.contains(&bound) {
o.get_mut().0.push(bound);
}
}
for bound_param in bound_params {
if !o.get().1.contains(&bound_param) {
o.get_mut().1.push(bound_param);
}
}
}
}
}
WherePredicate::RegionPredicate { lifetime, bounds } => {
match region_predicates.entry(lifetime) {
IndexEntry::Vacant(v) => {
v.insert(bounds);
}
IndexEntry::Occupied(mut o) => {
for bound in bounds {
if !o.get().contains(&bound) {
o.get_mut().push(bound);
}
}
}
}
}
WherePredicate::EqPredicate { lhs, rhs } => {
eq_predicates.push(WherePredicate::EqPredicate { lhs, rhs });
}
}
}
let mut params = ThinVec::with_capacity(gens.params.len());
for p in gens.params.iter().filter(|p| !is_impl_trait(p) && !is_elided_lifetime(p)) {
let mut p = clean_generic_param(cx, Some(gens), p);
match &mut p.kind {
GenericParamDefKind::Lifetime { ref mut outlives } => {
if let Some(region_pred) = region_predicates.get_mut(&Lifetime(p.name)) {
for outlive in outlives.drain(..) {
let outlive = GenericBound::Outlives(outlive);
if !region_pred.contains(&outlive) {
region_pred.push(outlive);
}
}
}
}
GenericParamDefKind::Type { bounds, synthetic: false, .. } => {
if let Some(bound_pred) = bound_predicates.get_mut(&Type::Generic(p.name)) {
for bound in bounds.drain(..) {
if !bound_pred.0.contains(&bound) {
bound_pred.0.push(bound);
}
}
}
}
GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
}
}
params.push(p);
}
params.extend(impl_trait_params);
Generics {
params,
where_predicates: bound_predicates
.into_iter()
.map(|(ty, (bounds, bound_params))| WherePredicate::BoundPredicate {
ty,
bounds,
bound_params,
})
.chain(
region_predicates
.into_iter()
.map(|(lifetime, bounds)| WherePredicate::RegionPredicate { lifetime, bounds }),
)
.chain(eq_predicates.into_iter())
.collect(),
}
}
fn clean_ty_generics<'tcx>(
cx: &mut DocContext<'tcx>,
gens: &ty::Generics,
preds: ty::GenericPredicates<'tcx>,
) -> Generics {
let mut impl_trait = BTreeMap::<ImplTraitParam, Vec<GenericBound>>::default();
let stripped_params = gens
.params
.iter()
.filter_map(|param| match param.kind {
ty::GenericParamDefKind::Lifetime if param.is_anonymous_lifetime() => None,
ty::GenericParamDefKind::Lifetime => Some(clean_generic_param_def(param, cx)),
ty::GenericParamDefKind::Type { synthetic, .. } => {
if param.name == kw::SelfUpper {
assert_eq!(param.index, 0);
return None;
}
if synthetic {
impl_trait.insert(param.index.into(), vec![]);
return None;
}
Some(clean_generic_param_def(param, cx))
}
ty::GenericParamDefKind::Const { is_host_effect: true, .. } => None,
ty::GenericParamDefKind::Const { .. } => Some(clean_generic_param_def(param, cx)),
})
.collect::<ThinVec<GenericParamDef>>();
let mut impl_trait_proj =
FxHashMap::<u32, Vec<(DefId, PathSegment, ty::Binder<'_, ty::Term<'_>>)>>::default();
let where_predicates = preds
.predicates
.iter()
.flat_map(|(pred, _)| {
let mut projection = None;
let param_idx = (|| {
let bound_p = pred.kind();
match bound_p.skip_binder() {
ty::ClauseKind::Trait(pred) => {
if let ty::Param(param) = pred.self_ty().kind() {
return Some(param.index);
}
}
ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, _reg)) => {
if let ty::Param(param) = ty.kind() {
return Some(param.index);
}
}
ty::ClauseKind::Projection(p) => {
if let ty::Param(param) = p.projection_ty.self_ty().kind() {
projection = Some(bound_p.rebind(p));
return Some(param.index);
}
}
_ => (),
}
None
})();
if let Some(param_idx) = param_idx
&& let Some(bounds) = impl_trait.get_mut(¶m_idx.into())
{
let pred = clean_predicate(*pred, cx)?;
bounds.extend(
pred.get_bounds()
.into_iter()
.flatten()
.cloned()
);
if let Some(proj) = projection
&& let lhs = clean_projection(proj.map_bound(|p| p.projection_ty), cx, None)
&& let Some((_, trait_did, name)) = lhs.projection()
{
impl_trait_proj.entry(param_idx).or_default().push((
trait_did,
name,
proj.map_bound(|p| p.term),
));
}
return None;
}
Some(pred)
})
.collect::<Vec<_>>();
for (param, mut bounds) in impl_trait {
let mut has_sized = false;
bounds.retain(|b| {
if b.is_sized_bound(cx) {
has_sized = true;
false
} else {
true
}
});
if !has_sized {
bounds.push(GenericBound::maybe_sized(cx));
}
bounds.sort_by_key(|b| !b.is_trait_bound());
if bounds.first().map_or(true, |b| !b.is_trait_bound()) {
bounds.insert(0, GenericBound::sized(cx));
}
let crate::core::ImplTraitParam::ParamIndex(idx) = param else { unreachable!() };
if let Some(proj) = impl_trait_proj.remove(&idx) {
for (trait_did, name, rhs) in proj {
let rhs = clean_middle_term(rhs, cx);
simplify::merge_bounds(cx, &mut bounds, trait_did, name, &rhs);
}
}
cx.impl_trait_bounds.insert(param, bounds);
}
let mut where_predicates =
where_predicates.into_iter().flat_map(|p| clean_predicate(*p, cx)).collect::<Vec<_>>();
let mut sized_params = FxHashSet::default();
where_predicates.retain(|pred| {
if let WherePredicate::BoundPredicate { ty: Generic(g), bounds, .. } = pred
&& *g != kw::SelfUpper
&& bounds.iter().any(|b| b.is_sized_bound(cx))
{
sized_params.insert(*g);
false
} else {
true
}
});
for tp in &stripped_params {
if let types::GenericParamDefKind::Type { .. } = tp.kind
&& !sized_params.contains(&tp.name)
{
where_predicates.push(WherePredicate::BoundPredicate {
ty: Type::Generic(tp.name),
bounds: vec![GenericBound::maybe_sized(cx)],
bound_params: Vec::new(),
})
}
}
Generics {
params: stripped_params,
where_predicates: simplify::where_clauses(cx, where_predicates),
}
}
fn clean_ty_alias_inner_type<'tcx>(
ty: Ty<'tcx>,
cx: &mut DocContext<'tcx>,
) -> Option<TypeAliasInnerType> {
let ty::Adt(adt_def, args) = ty.kind() else {
return None;
};
Some(if adt_def.is_enum() {
let variants: rustc_index::IndexVec<_, _> = adt_def
.variants()
.iter()
.map(|variant| clean_variant_def_with_args(variant, args, cx))
.collect();
TypeAliasInnerType::Enum {
variants,
is_non_exhaustive: adt_def.is_variant_list_non_exhaustive(),
}
} else {
let variant = adt_def
.variants()
.iter()
.next()
.unwrap_or_else(|| bug!("a struct or union should always have one variant def"));
let fields: Vec<_> =
clean_variant_def_with_args(variant, args, cx).kind.inner_items().cloned().collect();
if adt_def.is_struct() {
TypeAliasInnerType::Struct { ctor_kind: variant.ctor_kind(), fields }
} else {
TypeAliasInnerType::Union { fields }
}
})
}
fn clean_proc_macro<'tcx>(
item: &hir::Item<'tcx>,
name: &mut Symbol,
kind: MacroKind,
cx: &mut DocContext<'tcx>,
) -> ItemKind {
let attrs = cx.tcx.hir().attrs(item.hir_id());
if kind == MacroKind::Derive &&
let Some(derive_name) = attrs
.lists(sym::proc_macro_derive)
.find_map(|mi| mi.ident())
{
*name = derive_name.name;
}
let mut helpers = Vec::new();
for mi in attrs.lists(sym::proc_macro_derive) {
if !mi.has_name(sym::attributes) {
continue;
}
if let Some(list) = mi.meta_item_list() {
for inner_mi in list {
if let Some(ident) = inner_mi.ident() {
helpers.push(ident.name);
}
}
}
}
ProcMacroItem(ProcMacro { kind, helpers })
}
fn clean_fn_or_proc_macro<'tcx>(
item: &hir::Item<'tcx>,
sig: &hir::FnSig<'tcx>,
generics: &hir::Generics<'tcx>,
body_id: hir::BodyId,
name: &mut Symbol,
cx: &mut DocContext<'tcx>,
) -> ItemKind {
let attrs = cx.tcx.hir().attrs(item.hir_id());
let macro_kind = attrs.iter().find_map(|a| {
if a.has_name(sym::proc_macro) {
Some(MacroKind::Bang)
} else if a.has_name(sym::proc_macro_derive) {
Some(MacroKind::Derive)
} else if a.has_name(sym::proc_macro_attribute) {
Some(MacroKind::Attr)
} else {
None
}
});
match macro_kind {
Some(kind) => clean_proc_macro(item, name, kind, cx),
None => {
let mut func = clean_function(cx, sig, generics, FunctionArgs::Body(body_id));
clean_fn_decl_legacy_const_generics(&mut func, attrs);
FunctionItem(func)
}
}
}
fn clean_fn_decl_legacy_const_generics(func: &mut Function, attrs: &[ast::Attribute]) {
for meta_item_list in attrs
.iter()
.filter(|a| a.has_name(sym::rustc_legacy_const_generics))
.filter_map(|a| a.meta_item_list())
{
for (pos, literal) in meta_item_list.iter().filter_map(|meta| meta.lit()).enumerate() {
match literal.kind {
ast::LitKind::Int(a, _) => {
let gen = func.generics.params.remove(0);
if let GenericParamDef { name, kind: GenericParamDefKind::Const { ty, .. } } =
gen
{
func.decl
.inputs
.values
.insert(a as _, Argument { name, type_: *ty, is_const: true });
} else {
panic!("unexpected non const in position {pos}");
}
}
_ => panic!("invalid arg index"),
}
}
}
}
enum FunctionArgs<'tcx> {
Body(hir::BodyId),
Names(&'tcx [Ident]),
}
fn clean_function<'tcx>(
cx: &mut DocContext<'tcx>,
sig: &hir::FnSig<'tcx>,
generics: &hir::Generics<'tcx>,
args: FunctionArgs<'tcx>,
) -> Box<Function> {
let (generics, decl) = enter_impl_trait(cx, |cx| {
let generics = clean_generics(generics, cx);
let args = match args {
FunctionArgs::Body(body_id) => {
clean_args_from_types_and_body_id(cx, sig.decl.inputs, body_id)
}
FunctionArgs::Names(names) => {
clean_args_from_types_and_names(cx, sig.decl.inputs, names)
}
};
let decl = clean_fn_decl_with_args(cx, sig.decl, Some(&sig.header), args);
(generics, decl)
});
Box::new(Function { decl, generics })
}
fn clean_args_from_types_and_names<'tcx>(
cx: &mut DocContext<'tcx>,
types: &[hir::Ty<'tcx>],
names: &[Ident],
) -> Arguments {
Arguments {
values: types
.iter()
.enumerate()
.map(|(i, ty)| Argument {
type_: clean_ty(ty, cx),
name: names
.get(i)
.map(|ident| ident.name)
.filter(|ident| !ident.is_empty())
.unwrap_or(kw::Underscore),
is_const: false,
})
.collect(),
}
}
fn clean_args_from_types_and_body_id<'tcx>(
cx: &mut DocContext<'tcx>,
types: &[hir::Ty<'tcx>],
body_id: hir::BodyId,
) -> Arguments {
let body = cx.tcx.hir().body(body_id);
Arguments {
values: types
.iter()
.enumerate()
.map(|(i, ty)| Argument {
name: name_from_pat(body.params[i].pat),
type_: clean_ty(ty, cx),
is_const: false,
})
.collect(),
}
}
fn clean_fn_decl_with_args<'tcx>(
cx: &mut DocContext<'tcx>,
decl: &hir::FnDecl<'tcx>,
header: Option<&hir::FnHeader>,
args: Arguments,
) -> FnDecl {
let mut output = match decl.output {
hir::FnRetTy::Return(typ) => clean_ty(typ, cx),
hir::FnRetTy::DefaultReturn(..) => Type::Tuple(Vec::new()),
};
if let Some(header) = header && header.is_async() {
output = output.sugared_async_return_type();
}
FnDecl { inputs: args, output, c_variadic: decl.c_variadic }
}
fn clean_fn_decl_from_did_and_sig<'tcx>(
cx: &mut DocContext<'tcx>,
did: Option<DefId>,
sig: ty::PolyFnSig<'tcx>,
) -> FnDecl {
let mut names = did.map_or(&[] as &[_], |did| cx.tcx.fn_arg_names(did)).iter();
let mut output = clean_middle_ty(sig.output(), cx, None, None);
if let Some(did) = did
&& let Type::ImplTrait(_) = output
&& cx.tcx.asyncness(did).is_async()
{
output = output.sugared_async_return_type();
}
FnDecl {
output,
c_variadic: sig.skip_binder().c_variadic,
inputs: Arguments {
values: sig
.inputs()
.iter()
.map(|t| Argument {
type_: clean_middle_ty(t.map_bound(|t| *t), cx, None, None),
name: names
.next()
.map(|i| i.name)
.filter(|i| !i.is_empty())
.unwrap_or(kw::Underscore),
is_const: false,
})
.collect(),
},
}
}
fn clean_trait_ref<'tcx>(trait_ref: &hir::TraitRef<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
let path = clean_path(trait_ref.path, cx);
register_res(cx, path.res);
path
}
fn clean_poly_trait_ref<'tcx>(
poly_trait_ref: &hir::PolyTraitRef<'tcx>,
cx: &mut DocContext<'tcx>,
) -> PolyTrait {
PolyTrait {
trait_: clean_trait_ref(&poly_trait_ref.trait_ref, cx),
generic_params: poly_trait_ref
.bound_generic_params
.iter()
.filter(|p| !is_elided_lifetime(p))
.map(|x| clean_generic_param(cx, None, x))
.collect(),
}
}
fn clean_trait_item<'tcx>(trait_item: &hir::TraitItem<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
let local_did = trait_item.owner_id.to_def_id();
cx.with_param_env(local_did, |cx| {
let inner = match trait_item.kind {
hir::TraitItemKind::Const(ty, Some(default)) => {
let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
AssocConstItem(
Box::new(generics),
clean_ty(ty, cx),
ConstantKind::Local { def_id: local_did, body: default },
)
}
hir::TraitItemKind::Const(ty, None) => {
let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
TyAssocConstItem(Box::new(generics), clean_ty(ty, cx))
}
hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Provided(body)) => {
let m = clean_function(cx, sig, trait_item.generics, FunctionArgs::Body(body));
MethodItem(m, None)
}
hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Required(names)) => {
let m = clean_function(cx, sig, trait_item.generics, FunctionArgs::Names(names));
TyMethodItem(m)
}
hir::TraitItemKind::Type(bounds, Some(default)) => {
let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
let bounds = bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect();
let item_type = clean_middle_ty(
ty::Binder::dummy(hir_ty_to_ty(cx.tcx, default)),
cx,
None,
None,
);
AssocTypeItem(
Box::new(TypeAlias {
type_: clean_ty(default, cx),
generics,
inner_type: None,
item_type: Some(item_type),
}),
bounds,
)
}
hir::TraitItemKind::Type(bounds, None) => {
let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
let bounds = bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect();
TyAssocTypeItem(generics, bounds)
}
};
Item::from_def_id_and_parts(local_did, Some(trait_item.ident.name), inner, cx)
})
}
pub(crate) fn clean_impl_item<'tcx>(
impl_: &hir::ImplItem<'tcx>,
cx: &mut DocContext<'tcx>,
) -> Item {
let local_did = impl_.owner_id.to_def_id();
cx.with_param_env(local_did, |cx| {
let inner = match impl_.kind {
hir::ImplItemKind::Const(ty, expr) => {
let generics = clean_generics(impl_.generics, cx);
let default = ConstantKind::Local { def_id: local_did, body: expr };
AssocConstItem(Box::new(generics), clean_ty(ty, cx), default)
}
hir::ImplItemKind::Fn(ref sig, body) => {
let m = clean_function(cx, sig, impl_.generics, FunctionArgs::Body(body));
let defaultness = cx.tcx.defaultness(impl_.owner_id);
MethodItem(m, Some(defaultness))
}
hir::ImplItemKind::Type(hir_ty) => {
let type_ = clean_ty(hir_ty, cx);
let generics = clean_generics(impl_.generics, cx);
let item_type = clean_middle_ty(
ty::Binder::dummy(hir_ty_to_ty(cx.tcx, hir_ty)),
cx,
None,
None,
);
AssocTypeItem(
Box::new(TypeAlias {
type_,
generics,
inner_type: None,
item_type: Some(item_type),
}),
Vec::new(),
)
}
};
Item::from_def_id_and_parts(local_did, Some(impl_.ident.name), inner, cx)
})
}
pub(crate) fn clean_middle_assoc_item<'tcx>(
assoc_item: &ty::AssocItem,
cx: &mut DocContext<'tcx>,
) -> Item {
let tcx = cx.tcx;
let kind = match assoc_item.kind {
ty::AssocKind::Const => {
let ty = clean_middle_ty(
ty::Binder::dummy(tcx.type_of(assoc_item.def_id).instantiate_identity()),
cx,
Some(assoc_item.def_id),
None,
);
let mut generics = Box::new(clean_ty_generics(
cx,
tcx.generics_of(assoc_item.def_id),
tcx.explicit_predicates_of(assoc_item.def_id),
));
simplify::move_bounds_to_generic_parameters(&mut generics);
let provided = match assoc_item.container {
ty::ImplContainer => true,
ty::TraitContainer => tcx.defaultness(assoc_item.def_id).has_value(),
};
if provided {
AssocConstItem(generics, ty, ConstantKind::Extern { def_id: assoc_item.def_id })
} else {
TyAssocConstItem(generics, ty)
}
}
ty::AssocKind::Fn => {
let sig = tcx.fn_sig(assoc_item.def_id).instantiate_identity();
let mut generics = clean_ty_generics(
cx,
tcx.generics_of(assoc_item.def_id),
tcx.explicit_predicates_of(assoc_item.def_id),
);
generics.params.extend(clean_bound_vars(sig.bound_vars()));
let mut decl = clean_fn_decl_from_did_and_sig(cx, Some(assoc_item.def_id), sig);
if assoc_item.fn_has_self_parameter {
let self_ty = match assoc_item.container {
ty::ImplContainer => {
tcx.type_of(assoc_item.container_id(tcx)).instantiate_identity()
}
ty::TraitContainer => tcx.types.self_param,
};
let self_arg_ty = sig.input(0).skip_binder();
if self_arg_ty == self_ty {
decl.inputs.values[0].type_ = Generic(kw::SelfUpper);
} else if let ty::Ref(_, ty, _) = *self_arg_ty.kind() {
if ty == self_ty {
match decl.inputs.values[0].type_ {
BorrowedRef { ref mut type_, .. } => **type_ = Generic(kw::SelfUpper),
_ => unreachable!(),
}
}
}
}
let provided = match assoc_item.container {
ty::ImplContainer => true,
ty::TraitContainer => assoc_item.defaultness(tcx).has_value(),
};
if provided {
let defaultness = match assoc_item.container {
ty::ImplContainer => Some(assoc_item.defaultness(tcx)),
ty::TraitContainer => None,
};
MethodItem(Box::new(Function { generics, decl }), defaultness)
} else {
TyMethodItem(Box::new(Function { generics, decl }))
}
}
ty::AssocKind::Type => {
let my_name = assoc_item.name;
fn param_eq_arg(param: &GenericParamDef, arg: &GenericArg) -> bool {
match (¶m.kind, arg) {
(GenericParamDefKind::Type { .. }, GenericArg::Type(Type::Generic(ty)))
if *ty == param.name =>
{
true
}
(GenericParamDefKind::Lifetime { .. }, GenericArg::Lifetime(Lifetime(lt)))
if *lt == param.name =>
{
true
}
(GenericParamDefKind::Const { .. }, GenericArg::Const(c)) => match &c.kind {
ConstantKind::TyConst { expr } => **expr == *param.name.as_str(),
_ => false,
},
_ => false,
}
}
let mut predicates = tcx.explicit_predicates_of(assoc_item.def_id).predicates;
if let ty::TraitContainer = assoc_item.container {
let bounds =
tcx.explicit_item_bounds(assoc_item.def_id).instantiate_identity_iter_copied();
predicates = tcx.arena.alloc_from_iter(bounds.chain(predicates.iter().copied()));
}
let mut generics = clean_ty_generics(
cx,
tcx.generics_of(assoc_item.def_id),
ty::GenericPredicates { parent: None, predicates },
);
simplify::move_bounds_to_generic_parameters(&mut generics);
if let ty::TraitContainer = assoc_item.container {
let mut bounds: Vec<GenericBound> = Vec::new();
generics.where_predicates.retain_mut(|pred| match *pred {
WherePredicate::BoundPredicate {
ty:
QPath(box QPathData {
ref assoc,
ref self_type,
trait_: Some(ref trait_),
..
}),
bounds: ref mut pred_bounds,
..
} => {
if assoc.name != my_name {
return true;
}
if trait_.def_id() != assoc_item.container_id(tcx) {
return true;
}
match *self_type {
Generic(ref s) if *s == kw::SelfUpper => {}
_ => return true,
}
match &assoc.args {
GenericArgs::AngleBracketed { args, bindings } => {
if !bindings.is_empty()
|| generics
.params
.iter()
.zip(args.iter())
.any(|(param, arg)| !param_eq_arg(param, arg))
{
return true;
}
}
GenericArgs::Parenthesized { .. } => {
}
}
bounds.extend(mem::replace(pred_bounds, Vec::new()));
false
}
_ => true,
});
match bounds.iter().position(|b| b.is_sized_bound(cx)) {
Some(i) => {
bounds.remove(i);
}
None => bounds.push(GenericBound::maybe_sized(cx)),
}
if tcx.defaultness(assoc_item.def_id).has_value() {
AssocTypeItem(
Box::new(TypeAlias {
type_: clean_middle_ty(
ty::Binder::dummy(
tcx.type_of(assoc_item.def_id).instantiate_identity(),
),
cx,
Some(assoc_item.def_id),
None,
),
generics,
inner_type: None,
item_type: None,
}),
bounds,
)
} else {
TyAssocTypeItem(generics, bounds)
}
} else {
AssocTypeItem(
Box::new(TypeAlias {
type_: clean_middle_ty(
ty::Binder::dummy(
tcx.type_of(assoc_item.def_id).instantiate_identity(),
),
cx,
Some(assoc_item.def_id),
None,
),
generics,
inner_type: None,
item_type: None,
}),
Vec::new(),
)
}
}
};
Item::from_def_id_and_parts(assoc_item.def_id, Some(assoc_item.name), kind, cx)
}
fn first_non_private_clean_path<'tcx>(
cx: &mut DocContext<'tcx>,
path: &hir::Path<'tcx>,
new_path_segments: &'tcx [hir::PathSegment<'tcx>],
new_path_span: rustc_span::Span,
) -> Path {
let new_hir_path =
hir::Path { segments: new_path_segments, res: path.res, span: new_path_span };
let mut new_clean_path = clean_path(&new_hir_path, cx);
if let Some(path_last) = path.segments.last().as_ref()
&& let Some(new_path_last) = new_clean_path.segments[..].last_mut()
&& let Some(path_last_args) = path_last.args.as_ref()
&& path_last.args.is_some()
{
assert!(new_path_last.args.is_empty());
new_path_last.args = clean_generic_args(path_last_args, cx);
}
new_clean_path
}
fn first_non_private<'tcx>(
cx: &mut DocContext<'tcx>,
hir_id: hir::HirId,
path: &hir::Path<'tcx>,
) -> Option<Path> {
let target_def_id = path.res.opt_def_id()?;
let (parent_def_id, ident) = match &path.segments[..] {
[] => return None,
[leaf] => (cx.tcx.local_parent(hir_id.owner.def_id), leaf.ident),
[parent, leaf] if parent.ident.name == kw::SelfLower => {
(cx.tcx.local_parent(hir_id.owner.def_id), leaf.ident)
}
[parent, leaf] if matches!(parent.ident.name, kw::Crate | kw::PathRoot) => {
(LOCAL_CRATE.as_def_id().as_local()?, leaf.ident)
}
[parent, leaf] if parent.ident.name == kw::Super => {
let parent_mod = cx.tcx.parent_module(hir_id);
if let Some(super_parent) = cx.tcx.opt_local_parent(parent_mod.to_local_def_id()) {
(super_parent, leaf.ident)
} else {
(LOCAL_CRATE.as_def_id().as_local()?, leaf.ident)
}
}
[.., parent, leaf] => (parent.res.opt_def_id()?.as_local()?, leaf.ident),
};
let hir = cx.tcx.hir();
for child in
cx.tcx.module_children_local(parent_def_id).iter().filter(move |c| c.ident == ident)
{
if let Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) = child.res {
continue;
}
if let Some(def_id) = child.res.opt_def_id() && target_def_id == def_id {
let mut last_path_res = None;
'reexps: for reexp in child.reexport_chain.iter() {
if let Some(use_def_id) = reexp.id() &&
let Some(local_use_def_id) = use_def_id.as_local() &&
let Some(hir::Node::Item(item)) = hir.find_by_def_id(local_use_def_id) &&
!item.ident.name.is_empty() &&
let hir::ItemKind::Use(path, _) = item.kind
{
for res in &path.res {
if let Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) = res {
continue;
}
if (cx.render_options.document_hidden ||
!cx.tcx.is_doc_hidden(use_def_id)) &&
cx.tcx.local_visibility(local_use_def_id).is_public() {
break 'reexps;
}
last_path_res = Some((path, res));
continue 'reexps;
}
}
}
if !child.reexport_chain.is_empty() {
if let Some((new_path, _)) = last_path_res {
return Some(first_non_private_clean_path(cx, path, new_path.segments, new_path.span));
}
return None;
}
}
}
None
}
fn clean_qpath<'tcx>(hir_ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
let hir::Ty { hir_id, span, ref kind } = *hir_ty;
let hir::TyKind::Path(qpath) = kind else { unreachable!() };
match qpath {
hir::QPath::Resolved(None, path) => {
if let Res::Def(DefKind::TyParam, did) = path.res {
if let Some(new_ty) = cx.args.get(&did).and_then(|p| p.as_ty()).cloned() {
return new_ty;
}
if let Some(bounds) = cx.impl_trait_bounds.remove(&did.into()) {
return ImplTrait(bounds);
}
}
if let Some(expanded) = maybe_expand_private_type_alias(cx, path) {
expanded
} else {
let path = if let Some(path) = first_non_private(cx, hir_id, &path) {
path
} else {
clean_path(path, cx)
};
resolve_type(cx, path)
}
}
hir::QPath::Resolved(Some(qself), p) => {
let ty = hir_ty_to_ty(cx.tcx, hir_ty);
if !ty.has_escaping_bound_vars()
&& let Some(normalized_value) = normalize(cx, ty::Binder::dummy(ty))
{
return clean_middle_ty(normalized_value, cx, None, None);
}
let trait_segments = &p.segments[..p.segments.len() - 1];
let trait_def = cx.tcx.associated_item(p.res.def_id()).container_id(cx.tcx);
let trait_ = self::Path {
res: Res::Def(DefKind::Trait, trait_def),
segments: trait_segments.iter().map(|x| clean_path_segment(x, cx)).collect(),
};
register_res(cx, trait_.res);
let self_def_id = DefId::local(qself.hir_id.owner.def_id.local_def_index);
let self_type = clean_ty(qself, cx);
let should_show_cast = compute_should_show_cast(Some(self_def_id), &trait_, &self_type);
Type::QPath(Box::new(QPathData {
assoc: clean_path_segment(p.segments.last().expect("segments were empty"), cx),
should_show_cast,
self_type,
trait_: Some(trait_),
}))
}
hir::QPath::TypeRelative(qself, segment) => {
let ty = hir_ty_to_ty(cx.tcx, hir_ty);
let self_type = clean_ty(qself, cx);
let (trait_, should_show_cast) = match ty.kind() {
ty::Alias(ty::Projection, proj) => {
let res = Res::Def(DefKind::Trait, proj.trait_ref(cx.tcx).def_id);
let trait_ = clean_path(&hir::Path { span, res, segments: &[] }, cx);
register_res(cx, trait_.res);
let self_def_id = res.opt_def_id();
let should_show_cast =
compute_should_show_cast(self_def_id, &trait_, &self_type);
(Some(trait_), should_show_cast)
}
ty::Alias(ty::Inherent, _) => (None, false),
ty::Error(_) => return Type::Infer,
_ => bug!("clean: expected associated type, found `{ty:?}`"),
};
Type::QPath(Box::new(QPathData {
assoc: clean_path_segment(segment, cx),
should_show_cast,
self_type,
trait_,
}))
}
hir::QPath::LangItem(..) => bug!("clean: requiring documentation of lang item"),
}
}
fn maybe_expand_private_type_alias<'tcx>(
cx: &mut DocContext<'tcx>,
path: &hir::Path<'tcx>,
) -> Option<Type> {
let Res::Def(DefKind::TyAlias, def_id) = path.res else { return None };
let def_id = def_id.as_local()?;
let alias = if !cx.cache.effective_visibilities.is_exported(cx.tcx, def_id.to_def_id())
&& !cx.current_type_aliases.contains_key(&def_id.to_def_id())
{
&cx.tcx.hir().expect_item(def_id).kind
} else {
return None;
};
let hir::ItemKind::TyAlias(ty, generics) = alias else { return None };
let provided_params = &path.segments.last().expect("segments were empty");
let mut args = DefIdMap::default();
let generic_args = provided_params.args();
let mut indices: hir::GenericParamCount = Default::default();
for param in generics.params.iter() {
match param.kind {
hir::GenericParamKind::Lifetime { .. } => {
let mut j = 0;
let lifetime = generic_args.args.iter().find_map(|arg| match arg {
hir::GenericArg::Lifetime(lt) => {
if indices.lifetimes == j {
return Some(lt);
}
j += 1;
None
}
_ => None,
});
if let Some(lt) = lifetime {
let cleaned = if !lt.is_anonymous() {
clean_lifetime(lt, cx)
} else {
Lifetime::elided()
};
args.insert(param.def_id.to_def_id(), SubstParam::Lifetime(cleaned));
}
indices.lifetimes += 1;
}
hir::GenericParamKind::Type { ref default, .. } => {
let mut j = 0;
let type_ = generic_args.args.iter().find_map(|arg| match arg {
hir::GenericArg::Type(ty) => {
if indices.types == j {
return Some(ty);
}
j += 1;
None
}
_ => None,
});
if let Some(ty) = type_ {
args.insert(param.def_id.to_def_id(), SubstParam::Type(clean_ty(ty, cx)));
} else if let Some(default) = *default {
args.insert(param.def_id.to_def_id(), SubstParam::Type(clean_ty(default, cx)));
}
indices.types += 1;
}
hir::GenericParamKind::Const { .. } => {
let mut j = 0;
let const_ = generic_args.args.iter().find_map(|arg| match arg {
hir::GenericArg::Const(ct) => {
if indices.consts == j {
return Some(ct);
}
j += 1;
None
}
_ => None,
});
if let Some(ct) = const_ {
args.insert(
param.def_id.to_def_id(),
SubstParam::Constant(clean_const(ct, cx)),
);
}
indices.consts += 1;
}
}
}
Some(cx.enter_alias(args, def_id.to_def_id(), |cx| clean_ty(&ty, cx)))
}
pub(crate) fn clean_ty<'tcx>(ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
use rustc_hir::*;
match ty.kind {
TyKind::Never => Primitive(PrimitiveType::Never),
TyKind::Ptr(ref m) => RawPointer(m.mutbl, Box::new(clean_ty(m.ty, cx))),
TyKind::Ref(ref l, ref m) => {
let lifetime = if l.is_anonymous() { None } else { Some(clean_lifetime(*l, cx)) };
BorrowedRef { lifetime, mutability: m.mutbl, type_: Box::new(clean_ty(m.ty, cx)) }
}
TyKind::Slice(ty) => Slice(Box::new(clean_ty(ty, cx))),
TyKind::Array(ty, ref length) => {
let length = match length {
hir::ArrayLen::Infer(_, _) => "_".to_string(),
hir::ArrayLen::Body(anon_const) => {
let ct = ty::Const::from_anon_const(cx.tcx, anon_const.def_id);
let param_env = cx.tcx.param_env(anon_const.def_id);
print_const(cx, ct.normalize(cx.tcx, param_env))
}
};
Array(Box::new(clean_ty(ty, cx)), length.into())
}
TyKind::Tup(tys) => Tuple(tys.iter().map(|ty| clean_ty(ty, cx)).collect()),
TyKind::OpaqueDef(item_id, _, _) => {
let item = cx.tcx.hir().item(item_id);
if let hir::ItemKind::OpaqueTy(ref ty) = item.kind {
ImplTrait(ty.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect())
} else {
unreachable!()
}
}
TyKind::Path(_) => clean_qpath(ty, cx),
TyKind::TraitObject(bounds, ref lifetime, _) => {
let bounds = bounds.iter().map(|bound| clean_poly_trait_ref(bound, cx)).collect();
let lifetime =
if !lifetime.is_elided() { Some(clean_lifetime(*lifetime, cx)) } else { None };
DynTrait(bounds, lifetime)
}
TyKind::BareFn(barefn) => BareFunction(Box::new(clean_bare_fn_ty(barefn, cx))),
TyKind::Infer | TyKind::Err(_) | TyKind::Typeof(..) => Infer,
}
}
fn normalize<'tcx>(
cx: &mut DocContext<'tcx>,
ty: ty::Binder<'tcx, Ty<'tcx>>,
) -> Option<ty::Binder<'tcx, Ty<'tcx>>> {
if !cx.tcx.sess.opts.unstable_opts.normalize_docs {
return None;
}
use crate::rustc_trait_selection::infer::TyCtxtInferExt;
use crate::rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
use rustc_middle::traits::ObligationCause;
let infcx = cx.tcx.infer_ctxt().build();
let normalized = infcx
.at(&ObligationCause::dummy(), cx.param_env)
.query_normalize(ty)
.map(|resolved| infcx.resolve_vars_if_possible(resolved.value));
match normalized {
Ok(normalized_value) => {
debug!("normalized {ty:?} to {normalized_value:?}");
Some(normalized_value)
}
Err(err) => {
debug!("failed to normalize {ty:?}: {err:?}");
None
}
}
}
fn clean_trait_object_lifetime_bound<'tcx>(
region: ty::Region<'tcx>,
container: Option<ContainerTy<'tcx>>,
preds: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
tcx: TyCtxt<'tcx>,
) -> Option<Lifetime> {
if can_elide_trait_object_lifetime_bound(region, container, preds, tcx) {
return None;
}
match *region {
ty::ReStatic => Some(Lifetime::statik()),
ty::ReEarlyBound(region) if region.name != kw::Empty => Some(Lifetime(region.name)),
ty::ReLateBound(_, ty::BoundRegion { kind: ty::BrNamed(_, name), .. })
if name != kw::Empty =>
{
Some(Lifetime(name))
}
ty::ReEarlyBound(_)
| ty::ReLateBound(..)
| ty::ReFree(_)
| ty::ReVar(_)
| ty::RePlaceholder(_)
| ty::ReErased
| ty::ReError(_) => None,
}
}
fn can_elide_trait_object_lifetime_bound<'tcx>(
region: ty::Region<'tcx>,
container: Option<ContainerTy<'tcx>>,
preds: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
tcx: TyCtxt<'tcx>,
) -> bool {
let default = container
.map_or(ObjectLifetimeDefault::Empty, |container| container.object_lifetime_default(tcx));
match default {
ObjectLifetimeDefault::Static => return *region == ty::ReStatic,
ObjectLifetimeDefault::Arg(default) => return region.get_name() == default.get_name(),
ObjectLifetimeDefault::Ambiguous => return false,
ObjectLifetimeDefault::Empty => {}
}
match *object_region_bounds(tcx, preds) {
[] => *region == ty::ReStatic,
[object_region] => object_region.get_name() == region.get_name(),
_ => false,
}
}
#[derive(Debug)]
pub(crate) enum ContainerTy<'tcx> {
Ref(ty::Region<'tcx>),
Regular {
ty: DefId,
args: ty::Binder<'tcx, &'tcx [ty::GenericArg<'tcx>]>,
has_self: bool,
arg: usize,
},
}
impl<'tcx> ContainerTy<'tcx> {
fn object_lifetime_default(self, tcx: TyCtxt<'tcx>) -> ObjectLifetimeDefault<'tcx> {
match self {
Self::Ref(region) => ObjectLifetimeDefault::Arg(region),
Self::Regular { ty: container, args, has_self, arg: index } => {
let (DefKind::Struct
| DefKind::Union
| DefKind::Enum
| DefKind::TyAlias
| DefKind::Trait) = tcx.def_kind(container)
else {
return ObjectLifetimeDefault::Empty;
};
let generics = tcx.generics_of(container);
debug_assert_eq!(generics.parent_count, 0);
let offset =
if !has_self && generics.parent.is_none() && generics.has_self { 1 } else { 0 };
let param = generics.params[index + offset].def_id;
let default = tcx.object_lifetime_default(param);
match default {
rbv::ObjectLifetimeDefault::Param(lifetime) => {
let index = generics.param_def_id_to_index[&lifetime];
let arg = args.skip_binder()[index as usize].expect_region();
ObjectLifetimeDefault::Arg(arg)
}
rbv::ObjectLifetimeDefault::Empty => ObjectLifetimeDefault::Empty,
rbv::ObjectLifetimeDefault::Static => ObjectLifetimeDefault::Static,
rbv::ObjectLifetimeDefault::Ambiguous => ObjectLifetimeDefault::Ambiguous,
}
}
}
}
}
#[derive(Debug, Clone, Copy)]
pub(crate) enum ObjectLifetimeDefault<'tcx> {
Empty,
Static,
Ambiguous,
Arg(ty::Region<'tcx>),
}
#[instrument(level = "trace", skip(cx), ret)]
pub(crate) fn clean_middle_ty<'tcx>(
bound_ty: ty::Binder<'tcx, Ty<'tcx>>,
cx: &mut DocContext<'tcx>,
parent_def_id: Option<DefId>,
container: Option<ContainerTy<'tcx>>,
) -> Type {
let bound_ty = normalize(cx, bound_ty).unwrap_or(bound_ty);
match *bound_ty.skip_binder().kind() {
ty::Never => Primitive(PrimitiveType::Never),
ty::Bool => Primitive(PrimitiveType::Bool),
ty::Char => Primitive(PrimitiveType::Char),
ty::Int(int_ty) => Primitive(int_ty.into()),
ty::Uint(uint_ty) => Primitive(uint_ty.into()),
ty::Float(float_ty) => Primitive(float_ty.into()),
ty::Str => Primitive(PrimitiveType::Str),
ty::Slice(ty) => Slice(Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None))),
ty::Array(ty, mut n) => {
n = n.normalize(cx.tcx, ty::ParamEnv::reveal_all());
let n = print_const(cx, n);
Array(Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)), n.into())
}
ty::RawPtr(mt) => {
RawPointer(mt.mutbl, Box::new(clean_middle_ty(bound_ty.rebind(mt.ty), cx, None, None)))
}
ty::Ref(r, ty, mutbl) => BorrowedRef {
lifetime: clean_middle_region(r),
mutability: mutbl,
type_: Box::new(clean_middle_ty(
bound_ty.rebind(ty),
cx,
None,
Some(ContainerTy::Ref(r)),
)),
},
ty::FnDef(..) | ty::FnPtr(_) => {
let sig = bound_ty.skip_binder().fn_sig(cx.tcx);
let decl = clean_fn_decl_from_did_and_sig(cx, None, sig);
let generic_params = clean_bound_vars(sig.bound_vars());
BareFunction(Box::new(BareFunctionDecl {
unsafety: sig.unsafety(),
generic_params,
decl,
abi: sig.abi(),
}))
}
ty::Adt(def, args) => {
let did = def.did();
let kind = match def.adt_kind() {
AdtKind::Struct => ItemType::Struct,
AdtKind::Union => ItemType::Union,
AdtKind::Enum => ItemType::Enum,
};
inline::record_extern_fqn(cx, did, kind);
let path = external_path(cx, did, false, ThinVec::new(), bound_ty.rebind(args));
Type::Path { path }
}
ty::Foreign(did) => {
inline::record_extern_fqn(cx, did, ItemType::ForeignType);
let path = external_path(
cx,
did,
false,
ThinVec::new(),
ty::Binder::dummy(ty::GenericArgs::empty()),
);
Type::Path { path }
}
ty::Dynamic(obj, ref reg, _) => {
let mut dids = obj.auto_traits();
let did = obj
.principal_def_id()
.or_else(|| dids.next())
.unwrap_or_else(|| panic!("found trait object `{bound_ty:?}` with no traits?"));
let args = match obj.principal() {
Some(principal) => principal.map_bound(|p| p.args),
_ => ty::Binder::dummy(ty::GenericArgs::empty()),
};
inline::record_extern_fqn(cx, did, ItemType::Trait);
let lifetime = clean_trait_object_lifetime_bound(*reg, container, obj, cx.tcx);
let mut bounds = dids
.map(|did| {
let empty = ty::Binder::dummy(ty::GenericArgs::empty());
let path = external_path(cx, did, false, ThinVec::new(), empty);
inline::record_extern_fqn(cx, did, ItemType::Trait);
PolyTrait { trait_: path, generic_params: Vec::new() }
})
.collect::<Vec<_>>();
let bindings = obj
.projection_bounds()
.map(|pb| TypeBinding {
assoc: projection_to_path_segment(
pb.map_bound(|pb| {
pb
.with_self_ty(cx.tcx, cx.tcx.types.self_param)
.projection_ty
}),
cx,
),
kind: TypeBindingKind::Equality {
term: clean_middle_term(pb.map_bound(|pb| pb.term), cx),
},
})
.collect();
let late_bound_regions: FxIndexSet<_> = obj
.iter()
.flat_map(|pred| pred.bound_vars())
.filter_map(|var| match var {
ty::BoundVariableKind::Region(ty::BrNamed(_, name))
if name != kw::UnderscoreLifetime =>
{
Some(GenericParamDef::lifetime(name))
}
_ => None,
})
.collect();
let late_bound_regions = late_bound_regions.into_iter().collect();
let path = external_path(cx, did, false, bindings, args);
bounds.insert(0, PolyTrait { trait_: path, generic_params: late_bound_regions });
DynTrait(bounds, lifetime)
}
ty::Tuple(t) => {
Tuple(t.iter().map(|t| clean_middle_ty(bound_ty.rebind(t), cx, None, None)).collect())
}
ty::Alias(ty::Projection, data) => {
clean_projection(bound_ty.rebind(data), cx, parent_def_id)
}
ty::Alias(ty::Inherent, alias_ty) => {
let alias_ty = bound_ty.rebind(alias_ty);
let self_type = clean_middle_ty(alias_ty.map_bound(|ty| ty.self_ty()), cx, None, None);
Type::QPath(Box::new(QPathData {
assoc: PathSegment {
name: cx.tcx.associated_item(alias_ty.skip_binder().def_id).name,
args: GenericArgs::AngleBracketed {
args: ty_args_to_args(
cx,
alias_ty.map_bound(|ty| ty.args.as_slice()),
true,
None,
)
.into(),
bindings: Default::default(),
},
},
should_show_cast: false,
self_type,
trait_: None,
}))
}
ty::Alias(ty::Weak, data) => {
if cx.tcx.features().lazy_type_alias {
let path = external_path(
cx,
data.def_id,
false,
ThinVec::new(),
bound_ty.rebind(data.args),
);
Type::Path { path }
} else {
let ty = cx.tcx.type_of(data.def_id).instantiate(cx.tcx, data.args);
clean_middle_ty(bound_ty.rebind(ty), cx, None, None)
}
}
ty::Param(ref p) => {
if let Some(bounds) = cx.impl_trait_bounds.remove(&p.index.into()) {
ImplTrait(bounds)
} else {
Generic(p.name)
}
}
ty::Bound(_, ref ty) => match ty.kind {
ty::BoundTyKind::Param(_, name) => Generic(name),
ty::BoundTyKind::Anon => panic!("unexpected anonymous bound type variable"),
},
ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
if cx.current_type_aliases.contains_key(&def_id) {
let path = external_path(cx, def_id, false, ThinVec::new(), bound_ty.rebind(args));
Type::Path { path }
} else {
*cx.current_type_aliases.entry(def_id).or_insert(0) += 1;
let bounds = cx
.tcx
.explicit_item_bounds(def_id)
.iter_instantiated_copied(cx.tcx, args)
.map(|(bound, _)| bound)
.collect::<Vec<_>>();
let ty = clean_middle_opaque_bounds(cx, bounds);
if let Some(count) = cx.current_type_aliases.get_mut(&def_id) {
*count -= 1;
if *count == 0 {
cx.current_type_aliases.remove(&def_id);
}
}
ty
}
}
ty::Closure(..) => panic!("Closure"),
ty::Generator(..) => panic!("Generator"),
ty::Placeholder(..) => panic!("Placeholder"),
ty::GeneratorWitness(..) => panic!("GeneratorWitness"),
ty::Infer(..) => panic!("Infer"),
ty::Error(_) => rustc_errors::FatalError.raise(),
}
}
fn clean_middle_opaque_bounds<'tcx>(
cx: &mut DocContext<'tcx>,
bounds: Vec<ty::Clause<'tcx>>,
) -> Type {
let mut has_sized = false;
let mut bounds = bounds
.iter()
.filter_map(|bound| {
let bound_predicate = bound.kind();
let trait_ref = match bound_predicate.skip_binder() {
ty::ClauseKind::Trait(tr) => bound_predicate.rebind(tr.trait_ref),
ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(_ty, reg)) => {
return clean_middle_region(reg).map(GenericBound::Outlives);
}
_ => return None,
};
if let Some(sized) = cx.tcx.lang_items().sized_trait() && trait_ref.def_id() == sized {
has_sized = true;
return None;
}
let bindings: ThinVec<_> = bounds
.iter()
.filter_map(|bound| {
if let ty::ClauseKind::Projection(proj) = bound.kind().skip_binder() {
if proj.projection_ty.trait_ref(cx.tcx) == trait_ref.skip_binder() {
Some(TypeBinding {
assoc: projection_to_path_segment(
bound.kind().rebind(proj.projection_ty),
cx,
),
kind: TypeBindingKind::Equality {
term: clean_middle_term(bound.kind().rebind(proj.term), cx),
},
})
} else {
None
}
} else {
None
}
})
.collect();
Some(clean_poly_trait_ref_with_bindings(cx, trait_ref, bindings))
})
.collect::<Vec<_>>();
if !has_sized {
bounds.push(GenericBound::maybe_sized(cx));
}
bounds.sort_by_key(|b| !b.is_trait_bound());
if bounds.first().map_or(true, |b| !b.is_trait_bound()) {
bounds.insert(0, GenericBound::sized(cx));
}
ImplTrait(bounds)
}
pub(crate) fn clean_field<'tcx>(field: &hir::FieldDef<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
clean_field_with_def_id(field.def_id.to_def_id(), field.ident.name, clean_ty(field.ty, cx), cx)
}
pub(crate) fn clean_middle_field<'tcx>(field: &ty::FieldDef, cx: &mut DocContext<'tcx>) -> Item {
clean_field_with_def_id(
field.did,
field.name,
clean_middle_ty(
ty::Binder::dummy(cx.tcx.type_of(field.did).instantiate_identity()),
cx,
Some(field.did),
None,
),
cx,
)
}
pub(crate) fn clean_field_with_def_id(
def_id: DefId,
name: Symbol,
ty: Type,
cx: &mut DocContext<'_>,
) -> Item {
Item::from_def_id_and_parts(def_id, Some(name), StructFieldItem(ty), cx)
}
pub(crate) fn clean_variant_def<'tcx>(variant: &ty::VariantDef, cx: &mut DocContext<'tcx>) -> Item {
let discriminant = match variant.discr {
ty::VariantDiscr::Explicit(def_id) => Some(Discriminant { expr: None, value: def_id }),
ty::VariantDiscr::Relative(_) => None,
};
let kind = match variant.ctor_kind() {
Some(CtorKind::Const) => VariantKind::CLike,
Some(CtorKind::Fn) => VariantKind::Tuple(
variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
),
None => VariantKind::Struct(VariantStruct {
fields: variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
}),
};
Item::from_def_id_and_parts(
variant.def_id,
Some(variant.name),
VariantItem(Variant { kind, discriminant }),
cx,
)
}
pub(crate) fn clean_variant_def_with_args<'tcx>(
variant: &ty::VariantDef,
args: &GenericArgsRef<'tcx>,
cx: &mut DocContext<'tcx>,
) -> Item {
let discriminant = match variant.discr {
ty::VariantDiscr::Explicit(def_id) => Some(Discriminant { expr: None, value: def_id }),
ty::VariantDiscr::Relative(_) => None,
};
use rustc_middle::traits::ObligationCause;
use rustc_trait_selection::infer::TyCtxtInferExt;
use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
let infcx = cx.tcx.infer_ctxt().build();
let kind = match variant.ctor_kind() {
Some(CtorKind::Const) => VariantKind::CLike,
Some(CtorKind::Fn) => VariantKind::Tuple(
variant
.fields
.iter()
.map(|field| {
let ty = cx.tcx.type_of(field.did).instantiate(cx.tcx, args);
let ty = infcx
.at(&ObligationCause::dummy(), cx.param_env)
.query_normalize(ty)
.map(|normalized| normalized.value)
.unwrap_or(ty);
clean_field_with_def_id(
field.did,
field.name,
clean_middle_ty(ty::Binder::dummy(ty), cx, Some(field.did), None),
cx,
)
})
.collect(),
),
None => VariantKind::Struct(VariantStruct {
fields: variant
.fields
.iter()
.map(|field| {
let ty = cx.tcx.type_of(field.did).instantiate(cx.tcx, args);
let ty = infcx
.at(&ObligationCause::dummy(), cx.param_env)
.query_normalize(ty)
.map(|normalized| normalized.value)
.unwrap_or(ty);
clean_field_with_def_id(
field.did,
field.name,
clean_middle_ty(ty::Binder::dummy(ty), cx, Some(field.did), None),
cx,
)
})
.collect(),
}),
};
Item::from_def_id_and_parts(
variant.def_id,
Some(variant.name),
VariantItem(Variant { kind, discriminant }),
cx,
)
}
fn clean_variant_data<'tcx>(
variant: &hir::VariantData<'tcx>,
disr_expr: &Option<hir::AnonConst>,
cx: &mut DocContext<'tcx>,
) -> Variant {
let discriminant = disr_expr
.map(|disr| Discriminant { expr: Some(disr.body), value: disr.def_id.to_def_id() });
let kind = match variant {
hir::VariantData::Struct(..) => VariantKind::Struct(VariantStruct {
fields: variant.fields().iter().map(|x| clean_field(x, cx)).collect(),
}),
hir::VariantData::Tuple(..) => {
VariantKind::Tuple(variant.fields().iter().map(|x| clean_field(x, cx)).collect())
}
hir::VariantData::Unit(..) => VariantKind::CLike,
};
Variant { discriminant, kind }
}
fn clean_path<'tcx>(path: &hir::Path<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
Path {
res: path.res,
segments: path.segments.iter().map(|x| clean_path_segment(x, cx)).collect(),
}
}
fn clean_generic_args<'tcx>(
generic_args: &hir::GenericArgs<'tcx>,
cx: &mut DocContext<'tcx>,
) -> GenericArgs {
if generic_args.parenthesized == hir::GenericArgsParentheses::ParenSugar {
let output = clean_ty(generic_args.bindings[0].ty(), cx);
let output = if output != Type::Tuple(Vec::new()) { Some(Box::new(output)) } else { None };
let inputs =
generic_args.inputs().iter().map(|x| clean_ty(x, cx)).collect::<Vec<_>>().into();
GenericArgs::Parenthesized { inputs, output }
} else {
let args = generic_args
.args
.iter()
.map(|arg| match arg {
hir::GenericArg::Lifetime(lt) if !lt.is_anonymous() => {
GenericArg::Lifetime(clean_lifetime(*lt, cx))
}
hir::GenericArg::Lifetime(_) => GenericArg::Lifetime(Lifetime::elided()),
hir::GenericArg::Type(ty) => GenericArg::Type(clean_ty(ty, cx)),
hir::GenericArg::Const(ct) => GenericArg::Const(Box::new(clean_const(ct, cx))),
hir::GenericArg::Infer(_inf) => GenericArg::Infer,
})
.collect::<Vec<_>>()
.into();
let bindings =
generic_args.bindings.iter().map(|x| clean_type_binding(x, cx)).collect::<ThinVec<_>>();
GenericArgs::AngleBracketed { args, bindings }
}
}
fn clean_path_segment<'tcx>(
path: &hir::PathSegment<'tcx>,
cx: &mut DocContext<'tcx>,
) -> PathSegment {
PathSegment { name: path.ident.name, args: clean_generic_args(path.args(), cx) }
}
fn clean_bare_fn_ty<'tcx>(
bare_fn: &hir::BareFnTy<'tcx>,
cx: &mut DocContext<'tcx>,
) -> BareFunctionDecl {
let (generic_params, decl) = enter_impl_trait(cx, |cx| {
let generic_params = bare_fn
.generic_params
.iter()
.filter(|p| !is_elided_lifetime(p))
.map(|x| clean_generic_param(cx, None, x))
.collect();
let args = clean_args_from_types_and_names(cx, bare_fn.decl.inputs, bare_fn.param_names);
let decl = clean_fn_decl_with_args(cx, bare_fn.decl, None, args);
(generic_params, decl)
});
BareFunctionDecl { unsafety: bare_fn.unsafety, abi: bare_fn.abi, decl, generic_params }
}
pub(crate) fn reexport_chain<'tcx>(
tcx: TyCtxt<'tcx>,
import_def_id: LocalDefId,
target_def_id: DefId,
) -> &'tcx [Reexport] {
for child in tcx.module_children_local(tcx.local_parent(import_def_id)) {
if child.res.opt_def_id() == Some(target_def_id)
&& child.reexport_chain.first().and_then(|r| r.id()) == Some(import_def_id.to_def_id())
{
return &child.reexport_chain;
}
}
&[]
}
fn get_all_import_attributes<'hir>(
cx: &mut DocContext<'hir>,
import_def_id: LocalDefId,
target_def_id: DefId,
is_inline: bool,
) -> Vec<(Cow<'hir, ast::Attribute>, Option<DefId>)> {
let mut attrs = Vec::new();
let mut first = true;
for def_id in reexport_chain(cx.tcx, import_def_id, target_def_id)
.iter()
.flat_map(|reexport| reexport.id())
{
let import_attrs = inline::load_attrs(cx, def_id);
if first {
attrs = import_attrs.iter().map(|attr| (Cow::Borrowed(attr), Some(def_id))).collect();
first = false;
} else if cx.render_options.document_hidden || !cx.tcx.is_doc_hidden(def_id) {
add_without_unwanted_attributes(&mut attrs, import_attrs, is_inline, Some(def_id));
}
}
attrs
}
fn filter_tokens_from_list(
args_tokens: &TokenStream,
should_retain: impl Fn(&TokenTree) -> bool,
) -> Vec<TokenTree> {
let mut tokens = Vec::with_capacity(args_tokens.len());
let mut skip_next_comma = false;
for token in args_tokens.trees() {
match token {
TokenTree::Token(Token { kind: TokenKind::Comma, .. }, _) if skip_next_comma => {
skip_next_comma = false;
}
token if should_retain(token) => {
skip_next_comma = false;
tokens.push(token.clone());
}
_ => {
skip_next_comma = true;
}
}
}
tokens
}
fn add_without_unwanted_attributes<'hir>(
attrs: &mut Vec<(Cow<'hir, ast::Attribute>, Option<DefId>)>,
new_attrs: &'hir [ast::Attribute],
is_inline: bool,
import_parent: Option<DefId>,
) {
if !is_inline {
for attr in new_attrs {
attrs.push((Cow::Borrowed(attr), import_parent));
}
return;
}
for attr in new_attrs {
if matches!(attr.kind, ast::AttrKind::DocComment(..)) {
attrs.push((Cow::Borrowed(attr), import_parent));
continue;
}
let mut attr = attr.clone();
match attr.kind {
ast::AttrKind::Normal(ref mut normal) => {
if let [ident] = &*normal.item.path.segments &&
let ident = ident.ident.name &&
ident == sym::doc
{
match normal.item.args {
ast::AttrArgs::Delimited(ref mut args) => {
let tokens =
filter_tokens_from_list(&args.tokens, |token| {
!matches!(
token,
TokenTree::Token(
Token {
kind: TokenKind::Ident(
sym::hidden | sym::inline | sym::no_inline,
_,
),
..
},
_,
),
)
});
args.tokens = TokenStream::new(tokens);
attrs.push((Cow::Owned(attr), import_parent));
}
ast::AttrArgs::Empty | ast::AttrArgs::Eq(..) => {
attrs.push((Cow::Owned(attr), import_parent));
}
}
}
}
_ => unreachable!(),
}
}
}
fn clean_maybe_renamed_item<'tcx>(
cx: &mut DocContext<'tcx>,
item: &hir::Item<'tcx>,
renamed: Option<Symbol>,
import_id: Option<LocalDefId>,
) -> Vec<Item> {
use hir::ItemKind;
let def_id = item.owner_id.to_def_id();
let mut name = renamed.unwrap_or_else(|| cx.tcx.hir().name(item.hir_id()));
cx.with_param_env(def_id, |cx| {
let kind = match item.kind {
ItemKind::Static(ty, mutability, body_id) => {
StaticItem(Static { type_: clean_ty(ty, cx), mutability, expr: Some(body_id) })
}
ItemKind::Const(ty, generics, body_id) => ConstantItem(Constant {
type_: clean_ty(ty, cx),
generics: Box::new(clean_generics(generics, cx)),
kind: ConstantKind::Local { body: body_id, def_id },
}),
ItemKind::OpaqueTy(ref ty) => OpaqueTyItem(OpaqueTy {
bounds: ty.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
generics: clean_generics(ty.generics, cx),
}),
ItemKind::TyAlias(hir_ty, generics) => {
*cx.current_type_aliases.entry(def_id).or_insert(0) += 1;
let rustdoc_ty = clean_ty(hir_ty, cx);
let type_ = clean_middle_ty(
ty::Binder::dummy(hir_ty_to_ty(cx.tcx, hir_ty)),
cx,
None,
None,
);
let generics = clean_generics(generics, cx);
if let Some(count) = cx.current_type_aliases.get_mut(&def_id) {
*count -= 1;
if *count == 0 {
cx.current_type_aliases.remove(&def_id);
}
}
let ty = cx.tcx.type_of(def_id).instantiate_identity();
let inner_type = clean_ty_alias_inner_type(ty, cx);
TypeAliasItem(Box::new(TypeAlias {
generics,
inner_type,
type_: rustdoc_ty,
item_type: Some(type_),
}))
}
ItemKind::Enum(ref def, generics) => EnumItem(Enum {
variants: def.variants.iter().map(|v| clean_variant(v, cx)).collect(),
generics: clean_generics(generics, cx),
}),
ItemKind::TraitAlias(generics, bounds) => TraitAliasItem(TraitAlias {
generics: clean_generics(generics, cx),
bounds: bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
}),
ItemKind::Union(ref variant_data, generics) => UnionItem(Union {
generics: clean_generics(generics, cx),
fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
}),
ItemKind::Struct(ref variant_data, generics) => StructItem(Struct {
ctor_kind: variant_data.ctor_kind(),
generics: clean_generics(generics, cx),
fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
}),
ItemKind::Impl(impl_) => return clean_impl(impl_, item.owner_id.def_id, cx),
ItemKind::Macro(ref macro_def, MacroKind::Bang) => {
let ty_vis = cx.tcx.visibility(def_id);
MacroItem(Macro {
source: display_macro_source(cx, name, macro_def, def_id, ty_vis),
})
}
ItemKind::Macro(_, macro_kind) => clean_proc_macro(item, &mut name, macro_kind, cx),
ItemKind::Fn(ref sig, generics, body_id) => {
clean_fn_or_proc_macro(item, sig, generics, body_id, &mut name, cx)
}
ItemKind::Trait(_, _, generics, bounds, item_ids) => {
let items = item_ids
.iter()
.map(|ti| clean_trait_item(cx.tcx.hir().trait_item(ti.id), cx))
.collect();
TraitItem(Box::new(Trait {
def_id,
items,
generics: clean_generics(generics, cx),
bounds: bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
}))
}
ItemKind::ExternCrate(orig_name) => {
return clean_extern_crate(item, name, orig_name, cx);
}
ItemKind::Use(path, kind) => {
return clean_use_statement(item, name, path, kind, cx, &mut FxHashSet::default());
}
_ => unreachable!("not yet converted"),
};
vec![generate_item_with_correct_attrs(
cx,
kind,
item.owner_id.def_id.to_def_id(),
name,
import_id,
renamed,
)]
})
}
fn clean_variant<'tcx>(variant: &hir::Variant<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
let kind = VariantItem(clean_variant_data(&variant.data, &variant.disr_expr, cx));
Item::from_def_id_and_parts(variant.def_id.to_def_id(), Some(variant.ident.name), kind, cx)
}
fn clean_impl<'tcx>(
impl_: &hir::Impl<'tcx>,
def_id: LocalDefId,
cx: &mut DocContext<'tcx>,
) -> Vec<Item> {
let tcx = cx.tcx;
let mut ret = Vec::new();
let trait_ = impl_.of_trait.as_ref().map(|t| clean_trait_ref(t, cx));
let items = impl_
.items
.iter()
.map(|ii| clean_impl_item(tcx.hir().impl_item(ii.id), cx))
.collect::<Vec<_>>();
if trait_.as_ref().map(|t| t.def_id()) == tcx.lang_items().deref_trait() {
build_deref_target_impls(cx, &items, &mut ret);
}
let for_ = clean_ty(impl_.self_ty, cx);
let type_alias =
for_.def_id(&cx.cache).and_then(|alias_def_id: DefId| match tcx.def_kind(alias_def_id) {
DefKind::TyAlias => Some(clean_middle_ty(
ty::Binder::dummy(tcx.type_of(def_id).instantiate_identity()),
cx,
Some(def_id.to_def_id()),
None,
)),
_ => None,
});
let mut make_item = |trait_: Option<Path>, for_: Type, items: Vec<Item>| {
let kind = ImplItem(Box::new(Impl {
unsafety: impl_.unsafety,
generics: clean_generics(impl_.generics, cx),
trait_,
for_,
items,
polarity: tcx.impl_polarity(def_id),
kind: if utils::has_doc_flag(tcx, def_id.to_def_id(), sym::fake_variadic) {
ImplKind::FakeVariadic
} else {
ImplKind::Normal
},
}));
Item::from_def_id_and_parts(def_id.to_def_id(), None, kind, cx)
};
if let Some(type_alias) = type_alias {
ret.push(make_item(trait_.clone(), type_alias, items.clone()));
}
ret.push(make_item(trait_, for_, items));
ret
}
fn clean_extern_crate<'tcx>(
krate: &hir::Item<'tcx>,
name: Symbol,
orig_name: Option<Symbol>,
cx: &mut DocContext<'tcx>,
) -> Vec<Item> {
let cnum = cx.tcx.extern_mod_stmt_cnum(krate.owner_id.def_id).unwrap_or(LOCAL_CRATE);
let crate_def_id = cnum.as_def_id();
let attrs = cx.tcx.hir().attrs(krate.hir_id());
let ty_vis = cx.tcx.visibility(krate.owner_id);
let please_inline = ty_vis.is_public()
&& attrs.iter().any(|a| {
a.has_name(sym::doc)
&& match a.meta_item_list() {
Some(l) => attr::list_contains_name(&l, sym::inline),
None => false,
}
})
&& !cx.output_format.is_json();
let krate_owner_def_id = krate.owner_id.to_def_id();
if please_inline {
if let Some(items) = inline::try_inline(
cx,
Res::Def(DefKind::Mod, crate_def_id),
name,
Some((attrs, Some(krate_owner_def_id))),
&mut Default::default(),
) {
return items;
}
}
vec![Item::from_def_id_and_parts(
krate_owner_def_id,
Some(name),
ExternCrateItem { src: orig_name },
cx,
)]
}
fn clean_use_statement<'tcx>(
import: &hir::Item<'tcx>,
name: Symbol,
path: &hir::UsePath<'tcx>,
kind: hir::UseKind,
cx: &mut DocContext<'tcx>,
inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
) -> Vec<Item> {
let mut items = Vec::new();
let hir::UsePath { segments, ref res, span } = *path;
for &res in res {
let path = hir::Path { segments, res, span };
items.append(&mut clean_use_statement_inner(import, name, &path, kind, cx, inlined_names));
}
items
}
fn clean_use_statement_inner<'tcx>(
import: &hir::Item<'tcx>,
name: Symbol,
path: &hir::Path<'tcx>,
kind: hir::UseKind,
cx: &mut DocContext<'tcx>,
inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
) -> Vec<Item> {
if should_ignore_res(path.res) {
return Vec::new();
}
if import.span.ctxt().outer_expn_data().kind == ExpnKind::AstPass(AstPass::StdImports) {
return Vec::new();
}
let visibility = cx.tcx.visibility(import.owner_id);
let attrs = cx.tcx.hir().attrs(import.hir_id());
let inline_attr = attrs.lists(sym::doc).get_word_attr(sym::inline);
let pub_underscore = visibility.is_public() && name == kw::Underscore;
let current_mod = cx.tcx.parent_module_from_def_id(import.owner_id.def_id);
let import_def_id = import.owner_id.def_id.to_def_id();
let parent_mod = cx.tcx.parent_module_from_def_id(current_mod.to_local_def_id());
let is_visible_from_parent_mod =
visibility.is_accessible_from(parent_mod, cx.tcx) && !current_mod.is_top_level_module();
if pub_underscore && let Some(ref inline) = inline_attr {
rustc_errors::struct_span_err!(
cx.tcx.sess,
inline.span(),
E0780,
"anonymous imports cannot be inlined"
)
.span_label(import.span, "anonymous import")
.emit();
}
let mut denied = cx.output_format.is_json()
|| !(visibility.is_public()
|| (cx.render_options.document_private && is_visible_from_parent_mod))
|| pub_underscore
|| attrs.iter().any(|a| {
a.has_name(sym::doc)
&& match a.meta_item_list() {
Some(l) => {
attr::list_contains_name(&l, sym::no_inline)
|| attr::list_contains_name(&l, sym::hidden)
}
None => false,
}
});
let path = clean_path(path, cx);
let inner = if kind == hir::UseKind::Glob {
if !denied {
let mut visited = DefIdSet::default();
if let Some(items) = inline::try_inline_glob(
cx,
path.res,
current_mod,
&mut visited,
inlined_names,
import,
) {
return items;
}
}
Import::new_glob(resolve_use_source(cx, path), true)
} else {
if inline_attr.is_none()
&& let Res::Def(DefKind::Mod, did) = path.res
&& !did.is_local()
&& did.is_crate_root()
{
denied = true;
}
if !denied {
if let Some(mut items) = inline::try_inline(
cx,
path.res,
name,
Some((attrs, Some(import_def_id))),
&mut Default::default(),
) {
items.push(Item::from_def_id_and_parts(
import_def_id,
None,
ImportItem(Import::new_simple(name, resolve_use_source(cx, path), false)),
cx,
));
return items;
}
}
Import::new_simple(name, resolve_use_source(cx, path), true)
};
vec![Item::from_def_id_and_parts(import_def_id, None, ImportItem(inner), cx)]
}
fn clean_maybe_renamed_foreign_item<'tcx>(
cx: &mut DocContext<'tcx>,
item: &hir::ForeignItem<'tcx>,
renamed: Option<Symbol>,
) -> Item {
let def_id = item.owner_id.to_def_id();
cx.with_param_env(def_id, |cx| {
let kind = match item.kind {
hir::ForeignItemKind::Fn(decl, names, generics) => {
let (generics, decl) = enter_impl_trait(cx, |cx| {
let generics = clean_generics(generics, cx);
let args = clean_args_from_types_and_names(cx, decl.inputs, names);
let decl = clean_fn_decl_with_args(cx, decl, None, args);
(generics, decl)
});
ForeignFunctionItem(Box::new(Function { decl, generics }))
}
hir::ForeignItemKind::Static(ty, mutability) => {
ForeignStaticItem(Static { type_: clean_ty(ty, cx), mutability, expr: None })
}
hir::ForeignItemKind::Type => ForeignTypeItem,
};
Item::from_def_id_and_parts(
item.owner_id.def_id.to_def_id(),
Some(renamed.unwrap_or(item.ident.name)),
kind,
cx,
)
})
}
fn clean_type_binding<'tcx>(
type_binding: &hir::TypeBinding<'tcx>,
cx: &mut DocContext<'tcx>,
) -> TypeBinding {
TypeBinding {
assoc: PathSegment {
name: type_binding.ident.name,
args: clean_generic_args(type_binding.gen_args, cx),
},
kind: match type_binding.kind {
hir::TypeBindingKind::Equality { ref term } => {
TypeBindingKind::Equality { term: clean_hir_term(term, cx) }
}
hir::TypeBindingKind::Constraint { bounds } => TypeBindingKind::Constraint {
bounds: bounds.iter().filter_map(|b| clean_generic_bound(b, cx)).collect(),
},
},
}
}
fn clean_bound_vars<'tcx>(
bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
) -> Vec<GenericParamDef> {
bound_vars
.into_iter()
.filter_map(|var| match var {
ty::BoundVariableKind::Region(ty::BrNamed(_, name))
if name != kw::UnderscoreLifetime =>
{
Some(GenericParamDef::lifetime(name))
}
ty::BoundVariableKind::Ty(ty::BoundTyKind::Param(did, name)) => Some(GenericParamDef {
name,
kind: GenericParamDefKind::Type {
did,
bounds: Vec::new(),
default: None,
synthetic: false,
},
}),
ty::BoundVariableKind::Const => None,
_ => None,
})
.collect()
}