1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
use crate::const_eval::CheckAlignment;
use crate::errors::ConstEvalError;
use either::{Left, Right};
use rustc_hir::def::DefKind;
use rustc_middle::mir::interpret::{ErrorHandled, InterpErrorInfo};
use rustc_middle::mir::pretty::write_allocation_bytes;
use rustc_middle::mir::{self, ConstAlloc, ConstValue};
use rustc_middle::traits::Reveal;
use rustc_middle::ty::layout::LayoutOf;
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{self, TyCtxt};
use rustc_span::source_map::Span;
use rustc_target::abi::{self, Abi};
use super::{CanAccessStatics, CompileTimeEvalContext, CompileTimeInterpreter};
use crate::errors;
use crate::interpret::eval_nullary_intrinsic;
use crate::interpret::{
intern_const_alloc_recursive, CtfeValidationMode, GlobalId, Immediate, InternKind, InterpCx,
InterpError, InterpResult, MPlaceTy, MemoryKind, OpTy, RefTracking, StackPopCleanup,
};
// Returns a pointer to where the result lives
fn eval_body_using_ecx<'mir, 'tcx>(
ecx: &mut CompileTimeEvalContext<'mir, 'tcx>,
cid: GlobalId<'tcx>,
body: &'mir mir::Body<'tcx>,
) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
debug!("eval_body_using_ecx: {:?}, {:?}", cid, ecx.param_env);
let tcx = *ecx.tcx;
assert!(
cid.promoted.is_some()
|| matches!(
ecx.tcx.def_kind(cid.instance.def_id()),
DefKind::Const
| DefKind::Static(_)
| DefKind::ConstParam
| DefKind::AnonConst
| DefKind::InlineConst
| DefKind::AssocConst
),
"Unexpected DefKind: {:?}",
ecx.tcx.def_kind(cid.instance.def_id())
);
let layout = ecx.layout_of(body.bound_return_ty().instantiate(tcx, cid.instance.args))?;
assert!(layout.is_sized());
let ret = ecx.allocate(layout, MemoryKind::Stack)?;
trace!(
"eval_body_using_ecx: pushing stack frame for global: {}{}",
with_no_trimmed_paths!(ecx.tcx.def_path_str(cid.instance.def_id())),
cid.promoted.map_or_else(String::new, |p| format!("::promoted[{p:?}]"))
);
ecx.push_stack_frame(
cid.instance,
body,
&ret.clone().into(),
StackPopCleanup::Root { cleanup: false },
)?;
ecx.storage_live_for_always_live_locals()?;
// The main interpreter loop.
while ecx.step()? {}
// Intern the result
let intern_kind = if cid.promoted.is_some() {
InternKind::Promoted
} else {
match tcx.static_mutability(cid.instance.def_id()) {
Some(m) => InternKind::Static(m),
None => InternKind::Constant,
}
};
ecx.machine.check_alignment = CheckAlignment::No; // interning doesn't need to respect alignment
intern_const_alloc_recursive(ecx, intern_kind, &ret)?;
// we leave alignment checks off, since this `ecx` will not be used for further evaluation anyway
debug!("eval_body_using_ecx done: {:?}", ret);
Ok(ret)
}
/// The `InterpCx` is only meant to be used to do field and index projections into constants for
/// `simd_shuffle` and const patterns in match arms. It never performs alignment checks.
///
/// The function containing the `match` that is currently being analyzed may have generic bounds
/// that inform us about the generic bounds of the constant. E.g., using an associated constant
/// of a function's generic parameter will require knowledge about the bounds on the generic
/// parameter. These bounds are passed to `mk_eval_cx` via the `ParamEnv` argument.
pub(super) fn mk_eval_cx<'mir, 'tcx>(
tcx: TyCtxt<'tcx>,
root_span: Span,
param_env: ty::ParamEnv<'tcx>,
can_access_statics: CanAccessStatics,
) -> CompileTimeEvalContext<'mir, 'tcx> {
debug!("mk_eval_cx: {:?}", param_env);
InterpCx::new(
tcx,
root_span,
param_env,
CompileTimeInterpreter::new(can_access_statics, CheckAlignment::No),
)
}
/// This function converts an interpreter value into a MIR constant.
#[instrument(skip(ecx), level = "debug")]
pub(super) fn op_to_const<'tcx>(
ecx: &CompileTimeEvalContext<'_, 'tcx>,
op: &OpTy<'tcx>,
) -> ConstValue<'tcx> {
// Handle ZST consistently and early.
if op.layout.is_zst() {
return ConstValue::ZeroSized;
}
// All scalar types should be stored as `ConstValue::Scalar`. This is needed to make
// `ConstValue::try_to_scalar` efficient; we want that to work for *all* constants of scalar
// type (it's used throughout the compiler and having it work just on literals is not enough)
// and we want it to be fast (i.e., don't go to an `Allocation` and reconstruct the `Scalar`
// from its byte-serialized form).
let force_as_immediate = match op.layout.abi {
Abi::Scalar(abi::Scalar::Initialized { .. }) => true,
// We don't *force* `ConstValue::Slice` for `ScalarPair`. This has the advantage that if the
// input `op` is a place, then turning it into a `ConstValue` and back into a `OpTy` will
// not have to generate any duplicate allocations (we preserve the original `AllocId` in
// `ConstValue::Indirect`). It means accessing the contents of a slice can be slow (since
// they can be stored as `ConstValue::Indirect`), but that's not relevant since we barely
// ever have to do this. (`try_get_slice_bytes_for_diagnostics` exists to provide this
// functionality.)
_ => false,
};
let immediate = if force_as_immediate {
Right(ecx.read_immediate(op).expect("normalization works on validated constants"))
} else {
op.as_mplace_or_imm()
};
debug!(?immediate);
match immediate {
Left(ref mplace) => {
// We know `offset` is relative to the allocation, so we can use `into_parts`.
let (alloc_id, offset) = mplace.ptr().into_parts();
let alloc_id = alloc_id.expect("cannot have `fake` place fot non-ZST type");
ConstValue::Indirect { alloc_id, offset }
}
// see comment on `let force_as_immediate` above
Right(imm) => match *imm {
Immediate::Scalar(x) => ConstValue::Scalar(x),
Immediate::ScalarPair(a, b) => {
debug!("ScalarPair(a: {:?}, b: {:?})", a, b);
// This codepath solely exists for `valtree_to_const_value` to not need to generate
// a `ConstValue::Indirect` for wide references, so it is tightly restricted to just
// that case.
let pointee_ty = imm.layout.ty.builtin_deref(false).unwrap().ty; // `false` = no raw ptrs
debug_assert!(
matches!(
ecx.tcx.struct_tail_without_normalization(pointee_ty).kind(),
ty::Str | ty::Slice(..),
),
"`ConstValue::Slice` is for slice-tailed types only, but got {}",
imm.layout.ty,
);
let msg = "`op_to_const` on an immediate scalar pair must only be used on slice references to the beginning of an actual allocation";
// We know `offset` is relative to the allocation, so we can use `into_parts`.
let (alloc_id, offset) = a.to_pointer(ecx).expect(msg).into_parts();
let alloc_id = alloc_id.expect(msg);
let data = ecx.tcx.global_alloc(alloc_id).unwrap_memory();
assert!(offset == abi::Size::ZERO, "{}", msg);
let meta = b.to_target_usize(ecx).expect(msg);
ConstValue::Slice { data, meta }
}
Immediate::Uninit => bug!("`Uninit` is not a valid value for {}", op.layout.ty),
},
}
}
#[instrument(skip(tcx), level = "debug", ret)]
pub(crate) fn turn_into_const_value<'tcx>(
tcx: TyCtxt<'tcx>,
constant: ConstAlloc<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ConstValue<'tcx> {
let cid = key.value;
let def_id = cid.instance.def.def_id();
let is_static = tcx.is_static(def_id);
// This is just accessing an already computed constant, so no need to check alignment here.
let ecx = mk_eval_cx(
tcx,
tcx.def_span(key.value.instance.def_id()),
key.param_env,
CanAccessStatics::from(is_static),
);
let mplace = ecx.raw_const_to_mplace(constant).expect(
"can only fail if layout computation failed, \
which should have given a good error before ever invoking this function",
);
assert!(
!is_static || cid.promoted.is_some(),
"the `eval_to_const_value_raw` query should not be used for statics, use `eval_to_allocation` instead"
);
// Turn this into a proper constant.
op_to_const(&ecx, &mplace.into())
}
#[instrument(skip(tcx), level = "debug")]
pub fn eval_to_const_value_raw_provider<'tcx>(
tcx: TyCtxt<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc_middle::mir::interpret::EvalToConstValueResult<'tcx> {
// see comment in eval_to_allocation_raw_provider for what we're doing here
if key.param_env.reveal() == Reveal::All {
let mut key = key;
key.param_env = key.param_env.with_user_facing();
match tcx.eval_to_const_value_raw(key) {
// try again with reveal all as requested
Err(ErrorHandled::TooGeneric(_)) => {}
// deduplicate calls
other => return other,
}
}
// We call `const_eval` for zero arg intrinsics, too, in order to cache their value.
// Catch such calls and evaluate them instead of trying to load a constant's MIR.
if let ty::InstanceDef::Intrinsic(def_id) = key.value.instance.def {
let ty = key.value.instance.ty(tcx, key.param_env);
let ty::FnDef(_, args) = ty.kind() else {
bug!("intrinsic with type {:?}", ty);
};
return eval_nullary_intrinsic(tcx, key.param_env, def_id, args).map_err(|error| {
let span = tcx.def_span(def_id);
super::report(
tcx,
error.into_kind(),
Some(span),
|| (span, vec![]),
|span, _| errors::NullaryIntrinsicError { span },
)
});
}
tcx.eval_to_allocation_raw(key).map(|val| turn_into_const_value(tcx, val, key))
}
#[instrument(skip(tcx), level = "debug")]
pub fn eval_to_allocation_raw_provider<'tcx>(
tcx: TyCtxt<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc_middle::mir::interpret::EvalToAllocationRawResult<'tcx> {
// Because the constant is computed twice (once per value of `Reveal`), we are at risk of
// reporting the same error twice here. To resolve this, we check whether we can evaluate the
// constant in the more restrictive `Reveal::UserFacing`, which most likely already was
// computed. For a large percentage of constants that will already have succeeded. Only
// associated constants of generic functions will fail due to not enough monomorphization
// information being available.
// In case we fail in the `UserFacing` variant, we just do the real computation.
if key.param_env.reveal() == Reveal::All {
let mut key = key;
key.param_env = key.param_env.with_user_facing();
match tcx.eval_to_allocation_raw(key) {
// try again with reveal all as requested
Err(ErrorHandled::TooGeneric(_)) => {}
// deduplicate calls
other => return other,
}
}
if cfg!(debug_assertions) {
// Make sure we format the instance even if we do not print it.
// This serves as a regression test against an ICE on printing.
// The next two lines concatenated contain some discussion:
// https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/
// subject/anon_const_instance_printing/near/135980032
let instance = with_no_trimmed_paths!(key.value.instance.to_string());
trace!("const eval: {:?} ({})", key, instance);
}
let cid = key.value;
let def = cid.instance.def.def_id();
let is_static = tcx.is_static(def);
let mut ecx = InterpCx::new(
tcx,
tcx.def_span(def),
key.param_env,
// Statics (and promoteds inside statics) may access other statics, because unlike consts
// they do not have to behave "as if" they were evaluated at runtime.
CompileTimeInterpreter::new(
CanAccessStatics::from(is_static),
if tcx.sess.opts.unstable_opts.extra_const_ub_checks {
CheckAlignment::Error
} else {
CheckAlignment::FutureIncompat
},
),
);
let res = ecx.load_mir(cid.instance.def, cid.promoted);
match res.and_then(|body| eval_body_using_ecx(&mut ecx, cid, &body)) {
Err(error) => {
let (error, backtrace) = error.into_parts();
backtrace.print_backtrace();
let (kind, instance) = if is_static {
("static", String::new())
} else {
// If the current item has generics, we'd like to enrich the message with the
// instance and its args: to show the actual compile-time values, in addition to
// the expression, leading to the const eval error.
let instance = &key.value.instance;
if !instance.args.is_empty() {
let instance = with_no_trimmed_paths!(instance.to_string());
("const_with_path", instance)
} else {
("const", String::new())
}
};
Err(super::report(
*ecx.tcx,
error,
None,
|| super::get_span_and_frames(&ecx),
|span, frames| ConstEvalError {
span,
error_kind: kind,
instance,
frame_notes: frames,
},
))
}
Ok(mplace) => {
// Since evaluation had no errors, validate the resulting constant.
// This is a separate `try` block to provide more targeted error reporting.
let validation: Result<_, InterpErrorInfo<'_>> = try {
let mut ref_tracking = RefTracking::new(mplace.clone());
let mut inner = false;
while let Some((mplace, path)) = ref_tracking.todo.pop() {
let mode = match tcx.static_mutability(cid.instance.def_id()) {
Some(_) if cid.promoted.is_some() => {
// Promoteds in statics are allowed to point to statics.
CtfeValidationMode::Const { inner, allow_static_ptrs: true }
}
Some(_) => CtfeValidationMode::Regular, // a `static`
None => CtfeValidationMode::Const { inner, allow_static_ptrs: false },
};
ecx.const_validate_operand(&mplace.into(), path, &mut ref_tracking, mode)?;
inner = true;
}
};
let alloc_id = mplace.ptr().provenance.unwrap();
// Validation failed, report an error.
if let Err(error) = validation {
let (error, backtrace) = error.into_parts();
backtrace.print_backtrace();
let ub_note = matches!(error, InterpError::UndefinedBehavior(_)).then(|| {});
let alloc = ecx.tcx.global_alloc(alloc_id).unwrap_memory().inner();
let mut bytes = String::new();
if alloc.size() != abi::Size::ZERO {
bytes = "\n".into();
// FIXME(translation) there might be pieces that are translatable.
write_allocation_bytes(*ecx.tcx, alloc, &mut bytes, " ").unwrap();
}
let raw_bytes = errors::RawBytesNote {
size: alloc.size().bytes(),
align: alloc.align.bytes(),
bytes,
};
Err(super::report(
*ecx.tcx,
error,
None,
|| super::get_span_and_frames(&ecx),
move |span, frames| errors::UndefinedBehavior {
span,
ub_note,
frames,
raw_bytes,
},
))
} else {
// Convert to raw constant
Ok(ConstAlloc { alloc_id, ty: mplace.layout.ty })
}
}
}
}