1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
//! Defines how the compiler represents types internally.
//!
//! Two important entities in this module are:
//!
//! - [`rustc_middle::ty::Ty`], used to represent the semantics of a type.
//! - [`rustc_middle::ty::TyCtxt`], the central data structure in the compiler.
//!
//! For more information, see ["The `ty` module: representing types"] in the rustc-dev-guide.
//!
//! ["The `ty` module: representing types"]: https://rustc-dev-guide.rust-lang.org/ty.html

pub use self::fold::{FallibleTypeFolder, TypeFoldable, TypeFolder, TypeSuperFoldable};
pub use self::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor};
pub use self::AssocItemContainer::*;
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
pub use self::Variance::*;
use crate::error::{OpaqueHiddenTypeMismatch, TypeMismatchReason};
use crate::metadata::ModChild;
use crate::middle::privacy::AccessLevels;
use crate::mir::{Body, GeneratorLayout};
use crate::traits::{self, Reveal};
use crate::ty;
use crate::ty::fast_reject::SimplifiedType;
use crate::ty::util::Discr;
pub use adt::*;
pub use assoc::*;
pub use generics::*;
use rustc_ast as ast;
use rustc_ast::node_id::NodeMap;
use rustc_attr as attr;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet};
use rustc_data_structures::intern::{Interned, WithStableHash};
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::tagged_ptr::CopyTaggedPtr;
use rustc_hir as hir;
use rustc_hir::def::{CtorKind, CtorOf, DefKind, LifetimeRes, Res};
use rustc_hir::def_id::{CrateNum, DefId, LocalDefId, LocalDefIdMap};
use rustc_hir::Node;
use rustc_index::vec::IndexVec;
use rustc_macros::HashStable;
use rustc_query_system::ich::StableHashingContext;
use rustc_serialize::{Decodable, Encodable};
use rustc_span::hygiene::MacroKind;
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{ExpnId, Span};
use rustc_target::abi::{Align, VariantIdx};
pub use subst::*;
pub use vtable::*;

use std::fmt::Debug;
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
use std::mem;
use std::num::NonZeroUsize;
use std::ops::ControlFlow;
use std::{fmt, str};

pub use crate::ty::diagnostics::*;
pub use rustc_type_ir::DynKind::*;
pub use rustc_type_ir::InferTy::*;
pub use rustc_type_ir::RegionKind::*;
pub use rustc_type_ir::TyKind::*;
pub use rustc_type_ir::*;

pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;
pub use self::closure::{
    is_ancestor_or_same_capture, place_to_string_for_capture, BorrowKind, CaptureInfo,
    CapturedPlace, ClosureKind, MinCaptureInformationMap, MinCaptureList,
    RootVariableMinCaptureList, UpvarCapture, UpvarCaptureMap, UpvarId, UpvarListMap, UpvarPath,
    CAPTURE_STRUCT_LOCAL,
};
pub use self::consts::{
    Const, ConstInt, ConstKind, ConstS, InferConst, ScalarInt, Unevaluated, ValTree,
};
pub use self::context::{
    tls, CanonicalUserType, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations,
    CtxtInterners, DelaySpanBugEmitted, FreeRegionInfo, GeneratorDiagnosticData,
    GeneratorInteriorTypeCause, GlobalCtxt, Lift, OnDiskCache, TyCtxt, TypeckResults, UserType,
    UserTypeAnnotationIndex,
};
pub use self::instance::{Instance, InstanceDef};
pub use self::list::List;
pub use self::parameterized::ParameterizedOverTcx;
pub use self::rvalue_scopes::RvalueScopes;
pub use self::sty::BoundRegionKind::*;
pub use self::sty::{
    Article, Binder, BoundRegion, BoundRegionKind, BoundTy, BoundTyKind, BoundVar,
    BoundVariableKind, CanonicalPolyFnSig, ClosureSubsts, ClosureSubstsParts, ConstVid,
    EarlyBinder, EarlyBoundRegion, ExistentialPredicate, ExistentialProjection,
    ExistentialTraitRef, FnSig, FreeRegion, GenSig, GeneratorSubsts, GeneratorSubstsParts,
    InlineConstSubsts, InlineConstSubstsParts, ParamConst, ParamTy, PolyExistentialProjection,
    PolyExistentialTraitRef, PolyFnSig, PolyGenSig, PolyTraitRef, ProjectionTy, Region, RegionKind,
    RegionVid, TraitRef, TyKind, TypeAndMut, UpvarSubsts, VarianceDiagInfo,
};
pub use self::trait_def::TraitDef;

pub mod _match;
pub mod abstract_const;
pub mod adjustment;
pub mod binding;
pub mod cast;
pub mod codec;
pub mod error;
pub mod fast_reject;
pub mod flags;
pub mod fold;
pub mod inhabitedness;
pub mod layout;
pub mod normalize_erasing_regions;
pub mod print;
pub mod query;
pub mod relate;
pub mod subst;
pub mod trait_def;
pub mod util;
pub mod visit;
pub mod vtable;
pub mod walk;

mod adt;
mod assoc;
mod closure;
mod consts;
mod context;
mod diagnostics;
mod erase_regions;
mod generics;
mod impls_ty;
mod instance;
mod layout_sanity_check;
mod list;
mod parameterized;
mod rvalue_scopes;
mod structural_impls;
mod sty;

// Data types

pub type RegisteredTools = FxHashSet<Ident>;

#[derive(Debug)]
pub struct ResolverOutputs {
    pub visibilities: FxHashMap<LocalDefId, Visibility>,
    /// This field is used to decide whether we should make `PRIVATE_IN_PUBLIC` a hard error.
    pub has_pub_restricted: bool,
    /// Item with a given `LocalDefId` was defined during macro expansion with ID `ExpnId`.
    pub expn_that_defined: FxHashMap<LocalDefId, ExpnId>,
    /// Reference span for definitions.
    pub source_span: IndexVec<LocalDefId, Span>,
    pub access_levels: AccessLevels,
    pub extern_crate_map: FxHashMap<LocalDefId, CrateNum>,
    pub maybe_unused_trait_imports: FxIndexSet<LocalDefId>,
    pub maybe_unused_extern_crates: Vec<(LocalDefId, Span)>,
    pub reexport_map: FxHashMap<LocalDefId, Vec<ModChild>>,
    pub glob_map: FxHashMap<LocalDefId, FxHashSet<Symbol>>,
    /// Extern prelude entries. The value is `true` if the entry was introduced
    /// via `extern crate` item and not `--extern` option or compiler built-in.
    pub extern_prelude: FxHashMap<Symbol, bool>,
    pub main_def: Option<MainDefinition>,
    pub trait_impls: FxIndexMap<DefId, Vec<LocalDefId>>,
    /// A list of proc macro LocalDefIds, written out in the order in which
    /// they are declared in the static array generated by proc_macro_harness.
    pub proc_macros: Vec<LocalDefId>,
    /// Mapping from ident span to path span for paths that don't exist as written, but that
    /// exist under `std`. For example, wrote `str::from_utf8` instead of `std::str::from_utf8`.
    pub confused_type_with_std_module: FxHashMap<Span, Span>,
    pub registered_tools: RegisteredTools,
}

/// Resolutions that should only be used for lowering.
/// This struct is meant to be consumed by lowering.
#[derive(Debug)]
pub struct ResolverAstLowering {
    pub legacy_const_generic_args: FxHashMap<DefId, Option<Vec<usize>>>,

    /// Resolutions for nodes that have a single resolution.
    pub partial_res_map: NodeMap<hir::def::PartialRes>,
    /// Resolutions for import nodes, which have multiple resolutions in different namespaces.
    pub import_res_map: NodeMap<hir::def::PerNS<Option<Res<ast::NodeId>>>>,
    /// Resolutions for labels (node IDs of their corresponding blocks or loops).
    pub label_res_map: NodeMap<ast::NodeId>,
    /// Resolutions for lifetimes.
    pub lifetimes_res_map: NodeMap<LifetimeRes>,
    /// Lifetime parameters that lowering will have to introduce.
    pub extra_lifetime_params_map: NodeMap<Vec<(Ident, ast::NodeId, LifetimeRes)>>,

    pub next_node_id: ast::NodeId,

    pub node_id_to_def_id: FxHashMap<ast::NodeId, LocalDefId>,
    pub def_id_to_node_id: IndexVec<LocalDefId, ast::NodeId>,

    pub trait_map: NodeMap<Vec<hir::TraitCandidate>>,
    /// A small map keeping true kinds of built-in macros that appear to be fn-like on
    /// the surface (`macro` items in libcore), but are actually attributes or derives.
    pub builtin_macro_kinds: FxHashMap<LocalDefId, MacroKind>,
}

#[derive(Clone, Copy, Debug)]
pub struct MainDefinition {
    pub res: Res<ast::NodeId>,
    pub is_import: bool,
    pub span: Span,
}

impl MainDefinition {
    pub fn opt_fn_def_id(self) -> Option<DefId> {
        if let Res::Def(DefKind::Fn, def_id) = self.res { Some(def_id) } else { None }
    }
}

/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds / where-clauses).
#[derive(Clone, Debug, TypeFoldable, TypeVisitable)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable)]
pub enum ImplSubject<'tcx> {
    Trait(TraitRef<'tcx>),
    Inherent(Ty<'tcx>),
}

#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, HashStable, Debug)]
#[derive(TypeFoldable, TypeVisitable)]
pub enum ImplPolarity {
    /// `impl Trait for Type`
    Positive,
    /// `impl !Trait for Type`
    Negative,
    /// `#[rustc_reservation_impl] impl Trait for Type`
    ///
    /// This is a "stability hack", not a real Rust feature.
    /// See #64631 for details.
    Reservation,
}

impl ImplPolarity {
    /// Flips polarity by turning `Positive` into `Negative` and `Negative` into `Positive`.
    pub fn flip(&self) -> Option<ImplPolarity> {
        match self {
            ImplPolarity::Positive => Some(ImplPolarity::Negative),
            ImplPolarity::Negative => Some(ImplPolarity::Positive),
            ImplPolarity::Reservation => None,
        }
    }
}

impl fmt::Display for ImplPolarity {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::Positive => f.write_str("positive"),
            Self::Negative => f.write_str("negative"),
            Self::Reservation => f.write_str("reservation"),
        }
    }
}

#[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, Encodable, Decodable, HashStable)]
pub enum Visibility<Id = LocalDefId> {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
    Restricted(Id),
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable, TyEncodable, TyDecodable)]
pub enum BoundConstness {
    /// `T: Trait`
    NotConst,
    /// `T: ~const Trait`
    ///
    /// Requires resolving to const only when we are in a const context.
    ConstIfConst,
}

impl BoundConstness {
    /// Reduce `self` and `constness` to two possible combined states instead of four.
    pub fn and(&mut self, constness: hir::Constness) -> hir::Constness {
        match (constness, self) {
            (hir::Constness::Const, BoundConstness::ConstIfConst) => hir::Constness::Const,
            (_, this) => {
                *this = BoundConstness::NotConst;
                hir::Constness::NotConst
            }
        }
    }
}

impl fmt::Display for BoundConstness {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::NotConst => f.write_str("normal"),
            Self::ConstIfConst => f.write_str("`~const`"),
        }
    }
}

#[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, TyEncodable, TyDecodable, HashStable)]
#[derive(TypeFoldable, TypeVisitable)]
pub struct ClosureSizeProfileData<'tcx> {
    /// Tuple containing the types of closure captures before the feature `capture_disjoint_fields`
    pub before_feature_tys: Ty<'tcx>,
    /// Tuple containing the types of closure captures after the feature `capture_disjoint_fields`
    pub after_feature_tys: Ty<'tcx>,
}

pub trait DefIdTree: Copy {
    fn opt_parent(self, id: DefId) -> Option<DefId>;

    #[inline]
    #[track_caller]
    fn parent(self, id: DefId) -> DefId {
        match self.opt_parent(id) {
            Some(id) => id,
            // not `unwrap_or_else` to avoid breaking caller tracking
            None => bug!("{id:?} doesn't have a parent"),
        }
    }

    #[inline]
    #[track_caller]
    fn opt_local_parent(self, id: LocalDefId) -> Option<LocalDefId> {
        self.opt_parent(id.to_def_id()).map(DefId::expect_local)
    }

    #[inline]
    #[track_caller]
    fn local_parent(self, id: LocalDefId) -> LocalDefId {
        self.parent(id.to_def_id()).expect_local()
    }

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.opt_parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
}

impl<'tcx> DefIdTree for TyCtxt<'tcx> {
    #[inline]
    fn opt_parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index, ..id })
    }
}

impl<Id> Visibility<Id> {
    pub fn is_public(self) -> bool {
        matches!(self, Visibility::Public)
    }

    pub fn map_id<OutId>(self, f: impl FnOnce(Id) -> OutId) -> Visibility<OutId> {
        match self {
            Visibility::Public => Visibility::Public,
            Visibility::Restricted(id) => Visibility::Restricted(f(id)),
        }
    }
}

impl<Id: Into<DefId>> Visibility<Id> {
    pub fn to_def_id(self) -> Visibility<DefId> {
        self.map_id(Into::into)
    }

    /// Returns `true` if an item with this visibility is accessible from the given module.
    pub fn is_accessible_from(self, module: impl Into<DefId>, tree: impl DefIdTree) -> bool {
        match self {
            // Public items are visible everywhere.
            Visibility::Public => true,
            Visibility::Restricted(id) => tree.is_descendant_of(module.into(), id.into()),
        }
    }

    /// Returns `true` if this visibility is at least as accessible as the given visibility
    pub fn is_at_least(self, vis: Visibility<impl Into<DefId>>, tree: impl DefIdTree) -> bool {
        match vis {
            Visibility::Public => self.is_public(),
            Visibility::Restricted(id) => self.is_accessible_from(id, tree),
        }
    }
}

impl Visibility<DefId> {
    pub fn expect_local(self) -> Visibility {
        self.map_id(|id| id.expect_local())
    }

    // Returns `true` if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
        }
    }
}

/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.variances_of()` to get the variance for a *particular*
/// item.
#[derive(HashStable, Debug)]
pub struct CrateVariancesMap<'tcx> {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics. If an item has no generics, it will have no
    /// entry.
    pub variances: FxHashMap<DefId, &'tcx [ty::Variance]>,
}

// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct CReaderCacheKey {
    pub cnum: Option<CrateNum>,
    pub pos: usize,
}

/// Represents a type.
///
/// IMPORTANT:
/// - This is a very "dumb" struct (with no derives and no `impls`).
/// - Values of this type are always interned and thus unique, and are stored
///   as an `Interned<TyS>`.
/// - `Ty` (which contains a reference to a `Interned<TyS>`) or `Interned<TyS>`
///   should be used everywhere instead of `TyS`. In particular, `Ty` has most
///   of the relevant methods.
#[derive(PartialEq, Eq, PartialOrd, Ord)]
#[allow(rustc::usage_of_ty_tykind)]
pub(crate) struct TyS<'tcx> {
    /// This field shouldn't be used directly and may be removed in the future.
    /// Use `Ty::kind()` instead.
    kind: TyKind<'tcx>,

    /// This field provides fast access to information that is also contained
    /// in `kind`.
    ///
    /// This field shouldn't be used directly and may be removed in the future.
    /// Use `Ty::flags()` instead.
    flags: TypeFlags,

    /// This field provides fast access to information that is also contained
    /// in `kind`.
    ///
    /// This is a kind of confusing thing: it stores the smallest
    /// binder such that
    ///
    /// (a) the binder itself captures nothing but
    /// (b) all the late-bound things within the type are captured
    ///     by some sub-binder.
    ///
    /// So, for a type without any late-bound things, like `u32`, this
    /// will be *innermost*, because that is the innermost binder that
    /// captures nothing. But for a type `&'D u32`, where `'D` is a
    /// late-bound region with De Bruijn index `D`, this would be `D + 1`
    /// -- the binder itself does not capture `D`, but `D` is captured
    /// by an inner binder.
    ///
    /// We call this concept an "exclusive" binder `D` because all
    /// De Bruijn indices within the type are contained within `0..D`
    /// (exclusive).
    outer_exclusive_binder: ty::DebruijnIndex,
}

/// Use this rather than `TyS`, whenever possible.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, HashStable)]
#[rustc_diagnostic_item = "Ty"]
#[rustc_pass_by_value]
pub struct Ty<'tcx>(Interned<'tcx, WithStableHash<TyS<'tcx>>>);

impl<'tcx> TyCtxt<'tcx> {
    /// A "bool" type used in rustc_mir_transform unit tests when we
    /// have not spun up a TyCtxt.
    pub const BOOL_TY_FOR_UNIT_TESTING: Ty<'tcx> = Ty(Interned::new_unchecked(&WithStableHash {
        internee: TyS {
            kind: ty::Bool,
            flags: TypeFlags::empty(),
            outer_exclusive_binder: DebruijnIndex::from_usize(0),
        },
        stable_hash: Fingerprint::ZERO,
    }));
}

impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for TyS<'tcx> {
    #[inline]
    fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
        let TyS {
            kind,

            // The other fields just provide fast access to information that is
            // also contained in `kind`, so no need to hash them.
            flags: _,

            outer_exclusive_binder: _,
        } = self;

        kind.hash_stable(hcx, hasher)
    }
}

impl ty::EarlyBoundRegion {
    /// Does this early bound region have a name? Early bound regions normally
    /// always have names except when using anonymous lifetimes (`'_`).
    pub fn has_name(&self) -> bool {
        self.name != kw::UnderscoreLifetime
    }
}

/// Represents a predicate.
///
/// See comments on `TyS`, which apply here too (albeit for
/// `PredicateS`/`Predicate` rather than `TyS`/`Ty`).
#[derive(Debug)]
pub(crate) struct PredicateS<'tcx> {
    kind: Binder<'tcx, PredicateKind<'tcx>>,
    flags: TypeFlags,
    /// See the comment for the corresponding field of [TyS].
    outer_exclusive_binder: ty::DebruijnIndex,
}

/// Use this rather than `PredicateS`, whenever possible.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
#[rustc_pass_by_value]
pub struct Predicate<'tcx>(Interned<'tcx, PredicateS<'tcx>>);

impl<'tcx> Predicate<'tcx> {
    /// Gets the inner `Binder<'tcx, PredicateKind<'tcx>>`.
    #[inline]
    pub fn kind(self) -> Binder<'tcx, PredicateKind<'tcx>> {
        self.0.kind
    }

    #[inline(always)]
    pub fn flags(self) -> TypeFlags {
        self.0.flags
    }

    #[inline(always)]
    pub fn outer_exclusive_binder(self) -> DebruijnIndex {
        self.0.outer_exclusive_binder
    }

    /// Flips the polarity of a Predicate.
    ///
    /// Given `T: Trait` predicate it returns `T: !Trait` and given `T: !Trait` returns `T: Trait`.
    pub fn flip_polarity(self, tcx: TyCtxt<'tcx>) -> Option<Predicate<'tcx>> {
        let kind = self
            .kind()
            .map_bound(|kind| match kind {
                PredicateKind::Trait(TraitPredicate { trait_ref, constness, polarity }) => {
                    Some(PredicateKind::Trait(TraitPredicate {
                        trait_ref,
                        constness,
                        polarity: polarity.flip()?,
                    }))
                }

                _ => None,
            })
            .transpose()?;

        Some(tcx.mk_predicate(kind))
    }

    pub fn without_const(mut self, tcx: TyCtxt<'tcx>) -> Self {
        if let PredicateKind::Trait(TraitPredicate { trait_ref, constness, polarity }) = self.kind().skip_binder()
            && constness != BoundConstness::NotConst
        {
            self = tcx.mk_predicate(self.kind().rebind(PredicateKind::Trait(TraitPredicate {
                trait_ref,
                constness: BoundConstness::NotConst,
                polarity,
            })));
        }
        self
    }

    /// Whether this projection can be soundly normalized.
    ///
    /// Wf predicates must not be normalized, as normalization
    /// can remove required bounds which would cause us to
    /// unsoundly accept some programs. See #91068.
    #[inline]
    pub fn allow_normalization(self) -> bool {
        match self.kind().skip_binder() {
            PredicateKind::WellFormed(_) => false,
            PredicateKind::Trait(_)
            | PredicateKind::RegionOutlives(_)
            | PredicateKind::TypeOutlives(_)
            | PredicateKind::Projection(_)
            | PredicateKind::ObjectSafe(_)
            | PredicateKind::ClosureKind(_, _, _)
            | PredicateKind::Subtype(_)
            | PredicateKind::Coerce(_)
            | PredicateKind::ConstEvaluatable(_)
            | PredicateKind::ConstEquate(_, _)
            | PredicateKind::TypeWellFormedFromEnv(_) => true,
        }
    }
}

impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for Predicate<'tcx> {
    fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
        let PredicateS {
            ref kind,

            // The other fields just provide fast access to information that is
            // also contained in `kind`, so no need to hash them.
            flags: _,
            outer_exclusive_binder: _,
        } = self.0.0;

        kind.hash_stable(hcx, hasher);
    }
}

impl rustc_errors::IntoDiagnosticArg for Predicate<'_> {
    fn into_diagnostic_arg(self) -> rustc_errors::DiagnosticArgValue<'static> {
        rustc_errors::DiagnosticArgValue::Str(std::borrow::Cow::Owned(self.to_string()))
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub enum PredicateKind<'tcx> {
    /// Corresponds to `where Foo: Bar<A, B, C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
    /// would be the type parameters.
    Trait(TraitPredicate<'tcx>),

    /// `where 'a: 'b`
    RegionOutlives(RegionOutlivesPredicate<'tcx>),

    /// `where T: 'a`
    TypeOutlives(TypeOutlivesPredicate<'tcx>),

    /// `where <T as TraitRef>::Name == X`, approximately.
    /// See the `ProjectionPredicate` struct for details.
    Projection(ProjectionPredicate<'tcx>),

    /// No syntax: `T` well-formed.
    WellFormed(GenericArg<'tcx>),

    /// Trait must be object-safe.
    ObjectSafe(DefId),

    /// No direct syntax. May be thought of as `where T: FnFoo<...>`
    /// for some substitutions `...` and `T` being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
    ClosureKind(DefId, SubstsRef<'tcx>, ClosureKind),

    /// `T1 <: T2`
    ///
    /// This obligation is created most often when we have two
    /// unresolved type variables and hence don't have enough
    /// information to process the subtyping obligation yet.
    Subtype(SubtypePredicate<'tcx>),

    /// `T1` coerced to `T2`
    ///
    /// Like a subtyping obligation, this is created most often
    /// when we have two unresolved type variables and hence
    /// don't have enough information to process the coercion
    /// obligation yet. At the moment, we actually process coercions
    /// very much like subtyping and don't handle the full coercion
    /// logic.
    Coerce(CoercePredicate<'tcx>),

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(ty::Unevaluated<'tcx, ()>),

    /// Constants must be equal. The first component is the const that is expected.
    ConstEquate(Const<'tcx>, Const<'tcx>),

    /// Represents a type found in the environment that we can use for implied bounds.
    ///
    /// Only used for Chalk.
    TypeWellFormedFromEnv(Ty<'tcx>),
}

/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
#[derive(HashStable, Debug)]
pub struct CratePredicatesMap<'tcx> {
    /// For each struct with outlive bounds, maps to a vector of the
    /// predicate of its outlive bounds. If an item has no outlives
    /// bounds, it will have no entry.
    pub predicates: FxHashMap<DefId, &'tcx [(Predicate<'tcx>, Span)]>,
}

impl<'tcx> Predicate<'tcx> {
    /// Performs a substitution suitable for going from a
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions. See
    /// lengthy comment below for details.
    pub fn subst_supertrait(
        self,
        tcx: TyCtxt<'tcx>,
        trait_ref: &ty::PolyTraitRef<'tcx>,
    ) -> Predicate<'tcx> {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a>: Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T: Foo<'x>`, then
        // we can deduce that `for<'x> T: Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a>: for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T: Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T: Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T: Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T: Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T: Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The supertrait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

        // Working through the second example:
        // trait_ref: for<'x> T: Foo1<'^0.0>; substs: [T, '^0.0]
        // predicate: for<'b> Self: Bar1<'a, '^0.0>; substs: [Self, 'a, '^0.0]
        // We want to end up with:
        //     for<'x, 'b> T: Bar1<'^0.0, '^0.1>
        // To do this:
        // 1) We must shift all bound vars in predicate by the length
        //    of trait ref's bound vars. So, we would end up with predicate like
        //    Self: Bar1<'a, '^0.1>
        // 2) We can then apply the trait substs to this, ending up with
        //    T: Bar1<'^0.0, '^0.1>
        // 3) Finally, to create the final bound vars, we concatenate the bound
        //    vars of the trait ref with those of the predicate:
        //    ['x, 'b]
        let bound_pred = self.kind();
        let pred_bound_vars = bound_pred.bound_vars();
        let trait_bound_vars = trait_ref.bound_vars();
        // 1) Self: Bar1<'a, '^0.0> -> Self: Bar1<'a, '^0.1>
        let shifted_pred =
            tcx.shift_bound_var_indices(trait_bound_vars.len(), bound_pred.skip_binder());
        // 2) Self: Bar1<'a, '^0.1> -> T: Bar1<'^0.0, '^0.1>
        let new = EarlyBinder(shifted_pred).subst(tcx, trait_ref.skip_binder().substs);
        // 3) ['x] + ['b] -> ['x, 'b]
        let bound_vars =
            tcx.mk_bound_variable_kinds(trait_bound_vars.iter().chain(pred_bound_vars));
        tcx.reuse_or_mk_predicate(self, ty::Binder::bind_with_vars(new, bound_vars))
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct TraitPredicate<'tcx> {
    pub trait_ref: TraitRef<'tcx>,

    pub constness: BoundConstness,

    /// If polarity is Positive: we are proving that the trait is implemented.
    ///
    /// If polarity is Negative: we are proving that a negative impl of this trait
    /// exists. (Note that coherence also checks whether negative impls of supertraits
    /// exist via a series of predicates.)
    ///
    /// If polarity is Reserved: that's a bug.
    pub polarity: ImplPolarity,
}

pub type PolyTraitPredicate<'tcx> = ty::Binder<'tcx, TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
    pub fn remap_constness(&mut self, param_env: &mut ParamEnv<'tcx>) {
        *param_env = param_env.with_constness(self.constness.and(param_env.constness()))
    }

    /// Remap the constness of this predicate before emitting it for diagnostics.
    pub fn remap_constness_diag(&mut self, param_env: ParamEnv<'tcx>) {
        // this is different to `remap_constness` that callees want to print this predicate
        // in case of selection errors. `T: ~const Drop` bounds cannot end up here when the
        // param_env is not const because it is always satisfied in non-const contexts.
        if let hir::Constness::NotConst = param_env.constness() {
            self.constness = ty::BoundConstness::NotConst;
        }
    }

    pub fn def_id(self) -> DefId {
        self.trait_ref.def_id
    }

    pub fn self_ty(self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }

    #[inline]
    pub fn is_const_if_const(self) -> bool {
        self.constness == BoundConstness::ConstIfConst
    }

    pub fn is_constness_satisfied_by(self, constness: hir::Constness) -> bool {
        match (self.constness, constness) {
            (BoundConstness::NotConst, _)
            | (BoundConstness::ConstIfConst, hir::Constness::Const) => true,
            (BoundConstness::ConstIfConst, hir::Constness::NotConst) => false,
        }
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
    pub fn def_id(self) -> DefId {
        // Ok to skip binder since trait `DefId` does not care about regions.
        self.skip_binder().def_id()
    }

    pub fn self_ty(self) -> ty::Binder<'tcx, Ty<'tcx>> {
        self.map_bound(|trait_ref| trait_ref.self_ty())
    }

    /// Remap the constness of this predicate before emitting it for diagnostics.
    pub fn remap_constness_diag(&mut self, param_env: ParamEnv<'tcx>) {
        *self = self.map_bound(|mut p| {
            p.remap_constness_diag(param_env);
            p
        });
    }

    #[inline]
    pub fn is_const_if_const(self) -> bool {
        self.skip_binder().is_const_if_const()
    }
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct OutlivesPredicate<A, B>(pub A, pub B); // `A: B`
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>, ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<'tcx, RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<'tcx, TypeOutlivesPredicate<'tcx>>;

/// Encodes that `a` must be a subtype of `b`. The `a_is_expected` flag indicates
/// whether the `a` type is the type that we should label as "expected" when
/// presenting user diagnostics.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>,
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<'tcx, SubtypePredicate<'tcx>>;

/// Encodes that we have to coerce *from* the `a` type to the `b` type.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct CoercePredicate<'tcx> {
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>,
}
pub type PolyCoercePredicate<'tcx> = ty::Binder<'tcx, CoercePredicate<'tcx>>;

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Term<'tcx> {
    ptr: NonZeroUsize,
    marker: PhantomData<(Ty<'tcx>, Const<'tcx>)>,
}

impl Debug for Term<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let data = if let Some(ty) = self.ty() {
            format!("Term::Ty({:?})", ty)
        } else if let Some(ct) = self.ct() {
            format!("Term::Ct({:?})", ct)
        } else {
            unreachable!()
        };
        f.write_str(&data)
    }
}

impl<'tcx> From<Ty<'tcx>> for Term<'tcx> {
    fn from(ty: Ty<'tcx>) -> Self {
        TermKind::Ty(ty).pack()
    }
}

impl<'tcx> From<Const<'tcx>> for Term<'tcx> {
    fn from(c: Const<'tcx>) -> Self {
        TermKind::Const(c).pack()
    }
}

impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for Term<'tcx> {
    fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
        self.unpack().hash_stable(hcx, hasher);
    }
}

impl<'tcx> TypeFoldable<'tcx> for Term<'tcx> {
    fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
        Ok(self.unpack().try_fold_with(folder)?.pack())
    }
}

impl<'tcx> TypeVisitable<'tcx> for Term<'tcx> {
    fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
        self.unpack().visit_with(visitor)
    }
}

impl<'tcx, E: TyEncoder<I = TyCtxt<'tcx>>> Encodable<E> for Term<'tcx> {
    fn encode(&self, e: &mut E) {
        self.unpack().encode(e)
    }
}

impl<'tcx, D: TyDecoder<I = TyCtxt<'tcx>>> Decodable<D> for Term<'tcx> {
    fn decode(d: &mut D) -> Self {
        let res: TermKind<'tcx> = Decodable::decode(d);
        res.pack()
    }
}

impl<'tcx> Term<'tcx> {
    #[inline]
    pub fn unpack(self) -> TermKind<'tcx> {
        let ptr = self.ptr.get();
        // SAFETY: use of `Interned::new_unchecked` here is ok because these
        // pointers were originally created from `Interned` types in `pack()`,
        // and this is just going in the other direction.
        unsafe {
            match ptr & TAG_MASK {
                TYPE_TAG => TermKind::Ty(Ty(Interned::new_unchecked(
                    &*((ptr & !TAG_MASK) as *const WithStableHash<ty::TyS<'tcx>>),
                ))),
                CONST_TAG => TermKind::Const(ty::Const(Interned::new_unchecked(
                    &*((ptr & !TAG_MASK) as *const ty::ConstS<'tcx>),
                ))),
                _ => core::intrinsics::unreachable(),
            }
        }
    }

    pub fn ty(&self) -> Option<Ty<'tcx>> {
        if let TermKind::Ty(ty) = self.unpack() { Some(ty) } else { None }
    }

    pub fn ct(&self) -> Option<Const<'tcx>> {
        if let TermKind::Const(c) = self.unpack() { Some(c) } else { None }
    }

    pub fn into_arg(self) -> GenericArg<'tcx> {
        match self.unpack() {
            TermKind::Ty(ty) => ty.into(),
            TermKind::Const(c) => c.into(),
        }
    }
}

const TAG_MASK: usize = 0b11;
const TYPE_TAG: usize = 0b00;
const CONST_TAG: usize = 0b01;

#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable)]
pub enum TermKind<'tcx> {
    Ty(Ty<'tcx>),
    Const(Const<'tcx>),
}

impl<'tcx> TermKind<'tcx> {
    #[inline]
    fn pack(self) -> Term<'tcx> {
        let (tag, ptr) = match self {
            TermKind::Ty(ty) => {
                // Ensure we can use the tag bits.
                assert_eq!(mem::align_of_val(&*ty.0.0) & TAG_MASK, 0);
                (TYPE_TAG, ty.0.0 as *const WithStableHash<ty::TyS<'tcx>> as usize)
            }
            TermKind::Const(ct) => {
                // Ensure we can use the tag bits.
                assert_eq!(mem::align_of_val(&*ct.0.0) & TAG_MASK, 0);
                (CONST_TAG, ct.0.0 as *const ty::ConstS<'tcx> as usize)
            }
        };

        Term { ptr: unsafe { NonZeroUsize::new_unchecked(ptr | tag) }, marker: PhantomData }
    }
}

/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T: TraitRef<..., Item = Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T: TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
/// instances to normalize the LHS.
#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub term: Term<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<'tcx, ProjectionPredicate<'tcx>>;

impl<'tcx> PolyProjectionPredicate<'tcx> {
    /// Returns the `DefId` of the trait of the associated item being projected.
    #[inline]
    pub fn trait_def_id(&self, tcx: TyCtxt<'tcx>) -> DefId {
        self.skip_binder().projection_ty.trait_def_id(tcx)
    }

    /// Get the [PolyTraitRef] required for this projection to be well formed.
    /// Note that for generic associated types the predicates of the associated
    /// type also need to be checked.
    #[inline]
    pub fn required_poly_trait_ref(&self, tcx: TyCtxt<'tcx>) -> PolyTraitRef<'tcx> {
        // Note: unlike with `TraitRef::to_poly_trait_ref()`,
        // `self.0.trait_ref` is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
    }

    pub fn term(&self) -> Binder<'tcx, Term<'tcx>> {
        self.map_bound(|predicate| predicate.term)
    }

    /// The `DefId` of the `TraitItem` for the associated type.
    ///
    /// Note that this is not the `DefId` of the `TraitRef` containing this
    /// associated type, which is in `tcx.associated_item(projection_def_id()).container`.
    pub fn projection_def_id(&self) -> DefId {
        // Ok to skip binder since trait `DefId` does not care about regions.
        self.skip_binder().projection_ty.item_def_id
    }
}

pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
    }
}

pub trait ToPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx>;
}

impl<'tcx> ToPredicate<'tcx> for Predicate<'tcx> {
    fn to_predicate(self, _tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        self
    }
}

impl<'tcx> ToPredicate<'tcx> for Binder<'tcx, PredicateKind<'tcx>> {
    #[inline(always)]
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        tcx.mk_predicate(self)
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        self.map_bound(PredicateKind::Trait).to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        self.map_bound(PredicateKind::RegionOutlives).to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        self.map_bound(PredicateKind::TypeOutlives).to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        self.map_bound(PredicateKind::Projection).to_predicate(tcx)
    }
}

impl<'tcx> Predicate<'tcx> {
    pub fn to_opt_poly_trait_pred(self) -> Option<PolyTraitPredicate<'tcx>> {
        let predicate = self.kind();
        match predicate.skip_binder() {
            PredicateKind::Trait(t) => Some(predicate.rebind(t)),
            PredicateKind::Projection(..)
            | PredicateKind::Subtype(..)
            | PredicateKind::Coerce(..)
            | PredicateKind::RegionOutlives(..)
            | PredicateKind::WellFormed(..)
            | PredicateKind::ObjectSafe(..)
            | PredicateKind::ClosureKind(..)
            | PredicateKind::TypeOutlives(..)
            | PredicateKind::ConstEvaluatable(..)
            | PredicateKind::ConstEquate(..)
            | PredicateKind::TypeWellFormedFromEnv(..) => None,
        }
    }

    pub fn to_opt_poly_projection_pred(self) -> Option<PolyProjectionPredicate<'tcx>> {
        let predicate = self.kind();
        match predicate.skip_binder() {
            PredicateKind::Projection(t) => Some(predicate.rebind(t)),
            PredicateKind::Trait(..)
            | PredicateKind::Subtype(..)
            | PredicateKind::Coerce(..)
            | PredicateKind::RegionOutlives(..)
            | PredicateKind::WellFormed(..)
            | PredicateKind::ObjectSafe(..)
            | PredicateKind::ClosureKind(..)
            | PredicateKind::TypeOutlives(..)
            | PredicateKind::ConstEvaluatable(..)
            | PredicateKind::ConstEquate(..)
            | PredicateKind::TypeWellFormedFromEnv(..) => None,
        }
    }

    pub fn to_opt_type_outlives(self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        let predicate = self.kind();
        match predicate.skip_binder() {
            PredicateKind::TypeOutlives(data) => Some(predicate.rebind(data)),
            PredicateKind::Trait(..)
            | PredicateKind::Projection(..)
            | PredicateKind::Subtype(..)
            | PredicateKind::Coerce(..)
            | PredicateKind::RegionOutlives(..)
            | PredicateKind::WellFormed(..)
            | PredicateKind::ObjectSafe(..)
            | PredicateKind::ClosureKind(..)
            | PredicateKind::ConstEvaluatable(..)
            | PredicateKind::ConstEquate(..)
            | PredicateKind::TypeWellFormedFromEnv(..) => None,
        }
    }
}

/// Represents the bounds declared on a particular set of type
/// parameters. Should eventually be generalized into a flag list of
/// where-clauses. You can obtain an `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
/// ```ignore (illustrative)
/// struct Foo<T, U: Bar<T>> { ... }
/// ```
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
/// `[[], [U:Bar<T>]]`. Now if there were some particular reference
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
#[derive(Clone, Debug, TypeFoldable, TypeVisitable)]
pub struct InstantiatedPredicates<'tcx> {
    pub predicates: Vec<Predicate<'tcx>>,
    pub spans: Vec<Span>,
}

impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
        InstantiatedPredicates { predicates: vec![], spans: vec![] }
    }

    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, HashStable, TyEncodable, TyDecodable, Lift)]
#[derive(TypeFoldable, TypeVisitable)]
pub struct OpaqueTypeKey<'tcx> {
    pub def_id: LocalDefId,
    pub substs: SubstsRef<'tcx>,
}

#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable, HashStable, TyEncodable, TyDecodable)]
pub struct OpaqueHiddenType<'tcx> {
    /// The span of this particular definition of the opaque type. So
    /// for example:
    ///
    /// ```ignore (incomplete snippet)
    /// type Foo = impl Baz;
    /// fn bar() -> Foo {
    /// //          ^^^ This is the span we are looking for!
    /// }
    /// ```
    ///
    /// In cases where the fn returns `(impl Trait, impl Trait)` or
    /// other such combinations, the result is currently
    /// over-approximated, but better than nothing.
    pub span: Span,

    /// The type variable that represents the value of the opaque type
    /// that we require. In other words, after we compile this function,
    /// we will be created a constraint like:
    /// ```ignore (pseudo-rust)
    /// Foo<'a, T> = ?C
    /// ```
    /// where `?C` is the value of this type variable. =) It may
    /// naturally refer to the type and lifetime parameters in scope
    /// in this function, though ultimately it should only reference
    /// those that are arguments to `Foo` in the constraint above. (In
    /// other words, `?C` should not include `'b`, even though it's a
    /// lifetime parameter on `foo`.)
    pub ty: Ty<'tcx>,
}

impl<'tcx> OpaqueHiddenType<'tcx> {
    pub fn report_mismatch(&self, other: &Self, tcx: TyCtxt<'tcx>) {
        // Found different concrete types for the opaque type.
        let sub_diag = if self.span == other.span {
            TypeMismatchReason::ConflictType { span: self.span }
        } else {
            TypeMismatchReason::PreviousUse { span: self.span }
        };
        tcx.sess.emit_err(OpaqueHiddenTypeMismatch {
            self_ty: self.ty,
            other_ty: other.ty,
            other_span: other.span,
            sub: sub_diag,
        });
    }
}

/// The "placeholder index" fully defines a placeholder region, type, or const. Placeholders are
/// identified by both a universe, as well as a name residing within that universe. Distinct bound
/// regions/types/consts within the same universe simply have an unknown relationship to one
/// another.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
#[derive(HashStable, TyEncodable, TyDecodable)]
pub struct Placeholder<T> {
    pub universe: UniverseIndex,
    pub name: T,
}

pub type PlaceholderRegion = Placeholder<BoundRegionKind>;

pub type PlaceholderType = Placeholder<BoundVar>;

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
#[derive(TyEncodable, TyDecodable, PartialOrd, Ord)]
pub struct BoundConst<'tcx> {
    pub var: BoundVar,
    pub ty: Ty<'tcx>,
}

pub type PlaceholderConst<'tcx> = Placeholder<BoundVar>;

/// A `DefId` which, in case it is a const argument, is potentially bundled with
/// the `DefId` of the generic parameter it instantiates.
///
/// This is used to avoid calls to `type_of` for const arguments during typeck
/// which cause cycle errors.
///
/// ```rust
/// struct A;
/// impl A {
///     fn foo<const N: usize>(&self) -> [u8; N] { [0; N] }
///     //           ^ const parameter
/// }
/// struct B;
/// impl B {
///     fn foo<const M: u8>(&self) -> usize { 42 }
///     //           ^ const parameter
/// }
///
/// fn main() {
///     let a = A;
///     let _b = a.foo::<{ 3 + 7 }>();
///     //               ^^^^^^^^^ const argument
/// }
/// ```
///
/// Let's look at the call `a.foo::<{ 3 + 7 }>()` here. We do not know
/// which `foo` is used until we know the type of `a`.
///
/// We only know the type of `a` once we are inside of `typeck(main)`.
/// We also end up normalizing the type of `_b` during `typeck(main)` which
/// requires us to evaluate the const argument.
///
/// To evaluate that const argument we need to know its type,
/// which we would get using `type_of(const_arg)`. This requires us to
/// resolve `foo` as it can be either `usize` or `u8` in this example.
/// However, resolving `foo` once again requires `typeck(main)` to get the type of `a`,
/// which results in a cycle.
///
/// In short we must not call `type_of(const_arg)` during `typeck(main)`.
///
/// When first creating the `ty::Const` of the const argument inside of `typeck` we have
/// already resolved `foo` so we know which const parameter this argument instantiates.
/// This means that we also know the expected result of `type_of(const_arg)` even if we
/// aren't allowed to call that query: it is equal to `type_of(const_param)` which is
/// trivial to compute.
///
/// If we now want to use that constant in a place which potentially needs its type
/// we also pass the type of its `const_param`. This is the point of `WithOptConstParam`,
/// except that instead of a `Ty` we bundle the `DefId` of the const parameter.
/// Meaning that we need to use `type_of(const_param_did)` if `const_param_did` is `Some`
/// to get the type of `did`.
#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable, Lift, TyEncodable, TyDecodable)]
#[derive(PartialEq, Eq, PartialOrd, Ord)]
#[derive(Hash, HashStable)]
pub struct WithOptConstParam<T> {
    pub did: T,
    /// The `DefId` of the corresponding generic parameter in case `did` is
    /// a const argument.
    ///
    /// Note that even if `did` is a const argument, this may still be `None`.
    /// All queries taking `WithOptConstParam` start by calling `tcx.opt_const_param_of(def.did)`
    /// to potentially update `param_did` in the case it is `None`.
    pub const_param_did: Option<DefId>,
}

impl<T> WithOptConstParam<T> {
    /// Creates a new `WithOptConstParam` setting `const_param_did` to `None`.
    #[inline(always)]
    pub fn unknown(did: T) -> WithOptConstParam<T> {
        WithOptConstParam { did, const_param_did: None }
    }
}

impl WithOptConstParam<LocalDefId> {
    /// Returns `Some((did, param_did))` if `def_id` is a const argument,
    /// `None` otherwise.
    #[inline(always)]
    pub fn try_lookup(did: LocalDefId, tcx: TyCtxt<'_>) -> Option<(LocalDefId, DefId)> {
        tcx.opt_const_param_of(did).map(|param_did| (did, param_did))
    }

    /// In case `self` is unknown but `self.did` is a const argument, this returns
    /// a `WithOptConstParam` with the correct `const_param_did`.
    #[inline(always)]
    pub fn try_upgrade(self, tcx: TyCtxt<'_>) -> Option<WithOptConstParam<LocalDefId>> {
        if self.const_param_did.is_none() {
            if let const_param_did @ Some(_) = tcx.opt_const_param_of(self.did) {
                return Some(WithOptConstParam { did: self.did, const_param_did });
            }
        }

        None
    }

    pub fn to_global(self) -> WithOptConstParam<DefId> {
        WithOptConstParam { did: self.did.to_def_id(), const_param_did: self.const_param_did }
    }

    pub fn def_id_for_type_of(self) -> DefId {
        if let Some(did) = self.const_param_did { did } else { self.did.to_def_id() }
    }
}

impl WithOptConstParam<DefId> {
    pub fn as_local(self) -> Option<WithOptConstParam<LocalDefId>> {
        self.did
            .as_local()
            .map(|did| WithOptConstParam { did, const_param_did: self.const_param_did })
    }

    pub fn as_const_arg(self) -> Option<(LocalDefId, DefId)> {
        if let Some(param_did) = self.const_param_did {
            if let Some(did) = self.did.as_local() {
                return Some((did, param_did));
            }
        }

        None
    }

    pub fn is_local(self) -> bool {
        self.did.is_local()
    }

    pub fn def_id_for_type_of(self) -> DefId {
        self.const_param_did.unwrap_or(self.did)
    }
}

/// When type checking, we use the `ParamEnv` to track
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Hash, PartialEq, Eq)]
pub struct ParamEnv<'tcx> {
    /// This packs both caller bounds and the reveal enum into one pointer.
    ///
    /// Caller bounds are `Obligation`s that the caller must satisfy. This is
    /// basically the set of bounds on the in-scope type parameters, translated
    /// into `Obligation`s, and elaborated and normalized.
    ///
    /// Use the `caller_bounds()` method to access.
    ///
    /// Typically, this is `Reveal::UserFacing`, but during codegen we
    /// want `Reveal::All`.
    ///
    /// Note: This is packed, use the reveal() method to access it.
    packed: CopyTaggedPtr<&'tcx List<Predicate<'tcx>>, ParamTag, true>,
}

#[derive(Copy, Clone)]
struct ParamTag {
    reveal: traits::Reveal,
    constness: hir::Constness,
}

unsafe impl rustc_data_structures::tagged_ptr::Tag for ParamTag {
    const BITS: usize = 2;
    #[inline]
    fn into_usize(self) -> usize {
        match self {
            Self { reveal: traits::Reveal::UserFacing, constness: hir::Constness::NotConst } => 0,
            Self { reveal: traits::Reveal::All, constness: hir::Constness::NotConst } => 1,
            Self { reveal: traits::Reveal::UserFacing, constness: hir::Constness::Const } => 2,
            Self { reveal: traits::Reveal::All, constness: hir::Constness::Const } => 3,
        }
    }
    #[inline]
    unsafe fn from_usize(ptr: usize) -> Self {
        match ptr {
            0 => Self { reveal: traits::Reveal::UserFacing, constness: hir::Constness::NotConst },
            1 => Self { reveal: traits::Reveal::All, constness: hir::Constness::NotConst },
            2 => Self { reveal: traits::Reveal::UserFacing, constness: hir::Constness::Const },
            3 => Self { reveal: traits::Reveal::All, constness: hir::Constness::Const },
            _ => std::hint::unreachable_unchecked(),
        }
    }
}

impl<'tcx> fmt::Debug for ParamEnv<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("ParamEnv")
            .field("caller_bounds", &self.caller_bounds())
            .field("reveal", &self.reveal())
            .field("constness", &self.constness())
            .finish()
    }
}

impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for ParamEnv<'tcx> {
    fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
        self.caller_bounds().hash_stable(hcx, hasher);
        self.reveal().hash_stable(hcx, hasher);
        self.constness().hash_stable(hcx, hasher);
    }
}

impl<'tcx> TypeFoldable<'tcx> for ParamEnv<'tcx> {
    fn try_fold_with<F: ty::fold::FallibleTypeFolder<'tcx>>(
        self,
        folder: &mut F,
    ) -> Result<Self, F::Error> {
        Ok(ParamEnv::new(
            self.caller_bounds().try_fold_with(folder)?,
            self.reveal().try_fold_with(folder)?,
            self.constness(),
        ))
    }
}

impl<'tcx> TypeVisitable<'tcx> for ParamEnv<'tcx> {
    fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
        self.caller_bounds().visit_with(visitor)?;
        self.reveal().visit_with(visitor)
    }
}

impl<'tcx> ParamEnv<'tcx> {
    /// Construct a trait environment suitable for contexts where
    /// there are no where-clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    #[inline]
    pub fn empty() -> Self {
        Self::new(List::empty(), Reveal::UserFacing, hir::Constness::NotConst)
    }

    #[inline]
    pub fn caller_bounds(self) -> &'tcx List<Predicate<'tcx>> {
        self.packed.pointer()
    }

    #[inline]
    pub fn reveal(self) -> traits::Reveal {
        self.packed.tag().reveal
    }

    #[inline]
    pub fn constness(self) -> hir::Constness {
        self.packed.tag().constness
    }

    #[inline]
    pub fn is_const(self) -> bool {
        self.packed.tag().constness == hir::Constness::Const
    }

    /// Construct a trait environment with no where-clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
    /// environments like codegen or doing optimizations.
    ///
    /// N.B., if you want to have predicates in scope, use `ParamEnv::new`,
    /// or invoke `param_env.with_reveal_all()`.
    #[inline]
    pub fn reveal_all() -> Self {
        Self::new(List::empty(), Reveal::All, hir::Constness::NotConst)
    }

    /// Construct a trait environment with the given set of predicates.
    #[inline]
    pub fn new(
        caller_bounds: &'tcx List<Predicate<'tcx>>,
        reveal: Reveal,
        constness: hir::Constness,
    ) -> Self {
        ty::ParamEnv { packed: CopyTaggedPtr::new(caller_bounds, ParamTag { reveal, constness }) }
    }

    pub fn with_user_facing(mut self) -> Self {
        self.packed.set_tag(ParamTag { reveal: Reveal::UserFacing, ..self.packed.tag() });
        self
    }

    #[inline]
    pub fn with_constness(mut self, constness: hir::Constness) -> Self {
        self.packed.set_tag(ParamTag { constness, ..self.packed.tag() });
        self
    }

    #[inline]
    pub fn with_const(mut self) -> Self {
        self.packed.set_tag(ParamTag { constness: hir::Constness::Const, ..self.packed.tag() });
        self
    }

    #[inline]
    pub fn without_const(mut self) -> Self {
        self.packed.set_tag(ParamTag { constness: hir::Constness::NotConst, ..self.packed.tag() });
        self
    }

    #[inline]
    pub fn remap_constness_with(&mut self, mut constness: ty::BoundConstness) {
        *self = self.with_constness(constness.and(self.constness()))
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable). This is
    /// the desired behavior during codegen and certain other special
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    /// All opaque types in the caller_bounds of the `ParamEnv`
    /// will be normalized to their underlying types.
    /// See PR #65989 and issue #65918 for more details
    pub fn with_reveal_all_normalized(self, tcx: TyCtxt<'tcx>) -> Self {
        if self.packed.tag().reveal == traits::Reveal::All {
            return self;
        }

        ParamEnv::new(
            tcx.normalize_opaque_types(self.caller_bounds()),
            Reveal::All,
            self.constness(),
        )
    }

    /// Returns this same environment but with no caller bounds.
    #[inline]
    pub fn without_caller_bounds(self) -> Self {
        Self::new(List::empty(), self.reveal(), self.constness())
    }

    /// Creates a suitable environment in which to perform trait
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
    ///
    /// N.B., we preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
    /// `where Box<u32>: Copy`, which are clearly never
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
    pub fn and<T: TypeVisitable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
        match self.reveal() {
            Reveal::UserFacing => ParamEnvAnd { param_env: self, value },

            Reveal::All => {
                if value.is_global() {
                    ParamEnvAnd { param_env: self.without_caller_bounds(), value }
                } else {
                    ParamEnvAnd { param_env: self, value }
                }
            }
        }
    }
}

// FIXME(ecstaticmorse): Audit all occurrences of `without_const().to_predicate(tcx)` to ensure that
// the constness of trait bounds is being propagated correctly.
impl<'tcx> PolyTraitRef<'tcx> {
    #[inline]
    pub fn with_constness(self, constness: BoundConstness) -> PolyTraitPredicate<'tcx> {
        self.map_bound(|trait_ref| ty::TraitPredicate {
            trait_ref,
            constness,
            polarity: ty::ImplPolarity::Positive,
        })
    }

    #[inline]
    pub fn without_const(self) -> PolyTraitPredicate<'tcx> {
        self.with_constness(BoundConstness::NotConst)
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable)]
#[derive(HashStable, Lift)]
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
    pub value: T,
}

impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
        (self.param_env, self.value)
    }

    #[inline]
    pub fn without_const(mut self) -> Self {
        self.param_env = self.param_env.without_const();
        self
    }
}

#[derive(Copy, Clone, Debug, HashStable, Encodable, Decodable)]
pub struct Destructor {
    /// The `DefId` of the destructor method
    pub did: DefId,
    /// The constness of the destructor method
    pub constness: hir::Constness,
}

bitflags! {
    #[derive(HashStable, TyEncodable, TyDecodable)]
    pub struct VariantFlags: u32 {
        const NO_VARIANT_FLAGS        = 0;
        /// Indicates whether the field list of this variant is `#[non_exhaustive]`.
        const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
        /// Indicates whether this variant was obtained as part of recovering from
        /// a syntactic error. May be incomplete or bogus.
        const IS_RECOVERED = 1 << 1;
    }
}

/// Definition of a variant -- a struct's fields or an enum variant.
#[derive(Debug, HashStable, TyEncodable, TyDecodable)]
pub struct VariantDef {
    /// `DefId` that identifies the variant itself.
    /// If this variant belongs to a struct or union, then this is a copy of its `DefId`.
    pub def_id: DefId,
    /// `DefId` that identifies the variant's constructor.
    /// If this variant is a struct variant, then this is `None`.
    pub ctor_def_id: Option<DefId>,
    /// Variant or struct name.
    pub name: Symbol,
    /// Discriminant of this variant.
    pub discr: VariantDiscr,
    /// Fields of this variant.
    pub fields: Vec<FieldDef>,
    /// Type of constructor of variant.
    pub ctor_kind: CtorKind,
    /// Flags of the variant (e.g. is field list non-exhaustive)?
    flags: VariantFlags,
}

impl VariantDef {
    /// Creates a new `VariantDef`.
    ///
    /// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef`
    /// represents an enum variant).
    ///
    /// `ctor_did` is the `DefId` that identifies the constructor of unit or
    /// tuple-variants/structs. If this is a `struct`-variant then this should be `None`.
    ///
    /// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that
    /// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having
    /// to go through the redirect of checking the ctor's attributes - but compiling a small crate
    /// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any
    /// built-in trait), and we do not want to load attributes twice.
    ///
    /// If someone speeds up attribute loading to not be a performance concern, they can
    /// remove this hack and use the constructor `DefId` everywhere.
    pub fn new(
        name: Symbol,
        variant_did: Option<DefId>,
        ctor_def_id: Option<DefId>,
        discr: VariantDiscr,
        fields: Vec<FieldDef>,
        ctor_kind: CtorKind,
        adt_kind: AdtKind,
        parent_did: DefId,
        recovered: bool,
        is_field_list_non_exhaustive: bool,
    ) -> Self {
        debug!(
            "VariantDef::new(name = {:?}, variant_did = {:?}, ctor_def_id = {:?}, discr = {:?},
             fields = {:?}, ctor_kind = {:?}, adt_kind = {:?}, parent_did = {:?})",
            name, variant_did, ctor_def_id, discr, fields, ctor_kind, adt_kind, parent_did,
        );

        let mut flags = VariantFlags::NO_VARIANT_FLAGS;
        if is_field_list_non_exhaustive {
            flags |= VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
        }

        if recovered {
            flags |= VariantFlags::IS_RECOVERED;
        }

        VariantDef {
            def_id: variant_did.unwrap_or(parent_did),
            ctor_def_id,
            name,
            discr,
            fields,
            ctor_kind,
            flags,
        }
    }

    /// Is this field list non-exhaustive?
    #[inline]
    pub fn is_field_list_non_exhaustive(&self) -> bool {
        self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
    }

    /// Was this variant obtained as part of recovering from a syntactic error?
    #[inline]
    pub fn is_recovered(&self) -> bool {
        self.flags.intersects(VariantFlags::IS_RECOVERED)
    }

    /// Computes the `Ident` of this variant by looking up the `Span`
    pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident {
        Ident::new(self.name, tcx.def_ident_span(self.def_id).unwrap())
    }
}

impl PartialEq for VariantDef {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        // There should be only one `VariantDef` for each `def_id`, therefore
        // it is fine to implement `PartialEq` only based on `def_id`.
        //
        // Below, we exhaustively destructure `self` and `other` so that if the
        // definition of `VariantDef` changes, a compile-error will be produced,
        // reminding us to revisit this assumption.

        let Self {
            def_id: lhs_def_id,
            ctor_def_id: _,
            name: _,
            discr: _,
            fields: _,
            ctor_kind: _,
            flags: _,
        } = &self;

        let Self {
            def_id: rhs_def_id,
            ctor_def_id: _,
            name: _,
            discr: _,
            fields: _,
            ctor_kind: _,
            flags: _,
        } = other;

        lhs_def_id == rhs_def_id
    }
}

impl Eq for VariantDef {}

impl Hash for VariantDef {
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
        // There should be only one `VariantDef` for each `def_id`, therefore
        // it is fine to implement `Hash` only based on `def_id`.
        //
        // Below, we exhaustively destructure `self` so that if the definition
        // of `VariantDef` changes, a compile-error will be produced, reminding
        // us to revisit this assumption.

        let Self { def_id, ctor_def_id: _, name: _, discr: _, fields: _, ctor_kind: _, flags: _ } =
            &self;

        def_id.hash(s)
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e., `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(u32),
}

#[derive(Debug, HashStable, TyEncodable, TyDecodable)]
pub struct FieldDef {
    pub did: DefId,
    pub name: Symbol,
    pub vis: Visibility<DefId>,
}

impl PartialEq for FieldDef {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        // There should be only one `FieldDef` for each `did`, therefore it is
        // fine to implement `PartialEq` only based on `did`.
        //
        // Below, we exhaustively destructure `self` so that if the definition
        // of `FieldDef` changes, a compile-error will be produced, reminding
        // us to revisit this assumption.

        let Self { did: lhs_did, name: _, vis: _ } = &self;

        let Self { did: rhs_did, name: _, vis: _ } = other;

        lhs_did == rhs_did
    }
}

impl Eq for FieldDef {}

impl Hash for FieldDef {
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
        // There should be only one `FieldDef` for each `did`, therefore it is
        // fine to implement `Hash` only based on `did`.
        //
        // Below, we exhaustively destructure `self` so that if the definition
        // of `FieldDef` changes, a compile-error will be produced, reminding
        // us to revisit this assumption.

        let Self { did, name: _, vis: _ } = &self;

        did.hash(s)
    }
}

bitflags! {
    #[derive(TyEncodable, TyDecodable, Default, HashStable)]
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
        // Internal only for now. If true, don't reorder fields.
        const IS_LINEAR          = 1 << 3;
        // If true, the type's layout can be randomized using
        // the seed stored in `ReprOptions.layout_seed`
        const RANDOMIZE_LAYOUT   = 1 << 4;
        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits
                                 | ReprFlags::IS_SIMD.bits
                                 | ReprFlags::IS_LINEAR.bits;
    }
}

/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Default, HashStable)]
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
    pub align: Option<Align>,
    pub pack: Option<Align>,
    pub flags: ReprFlags,
    /// The seed to be used for randomizing a type's layout
    ///
    /// Note: This could technically be a `[u8; 16]` (a `u128`) which would
    /// be the "most accurate" hash as it'd encompass the item and crate
    /// hash without loss, but it does pay the price of being larger.
    /// Everything's a tradeoff, a `u64` seed should be sufficient for our
    /// purposes (primarily `-Z randomize-layout`)
    pub field_shuffle_seed: u64,
}

impl ReprOptions {
    pub fn new(tcx: TyCtxt<'_>, did: DefId) -> ReprOptions {
        let mut flags = ReprFlags::empty();
        let mut size = None;
        let mut max_align: Option<Align> = None;
        let mut min_pack: Option<Align> = None;

        // Generate a deterministically-derived seed from the item's path hash
        // to allow for cross-crate compilation to actually work
        let mut field_shuffle_seed = tcx.def_path_hash(did).0.to_smaller_hash();

        // If the user defined a custom seed for layout randomization, xor the item's
        // path hash with the user defined seed, this will allowing determinism while
        // still allowing users to further randomize layout generation for e.g. fuzzing
        if let Some(user_seed) = tcx.sess.opts.unstable_opts.layout_seed {
            field_shuffle_seed ^= user_seed;
        }

        for attr in tcx.get_attrs(did, sym::repr) {
            for r in attr::parse_repr_attr(&tcx.sess, attr) {
                flags.insert(match r {
                    attr::ReprC => ReprFlags::IS_C,
                    attr::ReprPacked(pack) => {
                        let pack = Align::from_bytes(pack as u64).unwrap();
                        min_pack = Some(if let Some(min_pack) = min_pack {
                            min_pack.min(pack)
                        } else {
                            pack
                        });
                        ReprFlags::empty()
                    }
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    }
                    attr::ReprAlign(align) => {
                        max_align = max_align.max(Some(Align::from_bytes(align as u64).unwrap()));
                        ReprFlags::empty()
                    }
                });
            }
        }

        // If `-Z randomize-layout` was enabled for the type definition then we can
        // consider performing layout randomization
        if tcx.sess.opts.unstable_opts.randomize_layout {
            flags.insert(ReprFlags::RANDOMIZE_LAYOUT);
        }

        // This is here instead of layout because the choice must make it into metadata.
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.def_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }

        Self { int: size, align: max_align, pack: min_pack, flags, field_shuffle_seed }
    }

    #[inline]
    pub fn simd(&self) -> bool {
        self.flags.contains(ReprFlags::IS_SIMD)
    }

    #[inline]
    pub fn c(&self) -> bool {
        self.flags.contains(ReprFlags::IS_C)
    }

    #[inline]
    pub fn packed(&self) -> bool {
        self.pack.is_some()
    }

    #[inline]
    pub fn transparent(&self) -> bool {
        self.flags.contains(ReprFlags::IS_TRANSPARENT)
    }

    #[inline]
    pub fn linear(&self) -> bool {
        self.flags.contains(ReprFlags::IS_LINEAR)
    }

    /// Returns the discriminant type, given these `repr` options.
    /// This must only be called on enums!
    pub fn discr_type(&self) -> attr::IntType {
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
    }

    /// Returns `true` if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
        self.c() || self.int.is_some()
    }

    /// Returns `true` if this `#[repr()]` should inhibit struct field reordering
    /// optimizations, such as with `repr(C)`, `repr(packed(1))`, or `repr(<int>)`.
    pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
        if let Some(pack) = self.pack {
            if pack.bytes() == 1 {
                return true;
            }
        }

        self.flags.intersects(ReprFlags::IS_UNOPTIMISABLE) || self.int.is_some()
    }

    /// Returns `true` if this type is valid for reordering and `-Z randomize-layout`
    /// was enabled for its declaration crate
    pub fn can_randomize_type_layout(&self) -> bool {
        !self.inhibit_struct_field_reordering_opt()
            && self.flags.contains(ReprFlags::RANDOMIZE_LAYOUT)
    }

    /// Returns `true` if this `#[repr()]` should inhibit union ABI optimisations.
    pub fn inhibit_union_abi_opt(&self) -> bool {
        self.c()
    }
}

impl<'tcx> FieldDef {
    /// Returns the type of this field. The resulting type is not normalized. The `subst` is
    /// typically obtained via the second field of [`TyKind::Adt`].
    pub fn ty(&self, tcx: TyCtxt<'tcx>, subst: SubstsRef<'tcx>) -> Ty<'tcx> {
        tcx.bound_type_of(self.did).subst(tcx, subst)
    }

    /// Computes the `Ident` of this variant by looking up the `Span`
    pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident {
        Ident::new(self.name, tcx.def_ident_span(self.did).unwrap())
    }
}

pub type Attributes<'tcx> = impl Iterator<Item = &'tcx ast::Attribute>;
#[derive(Debug, PartialEq, Eq)]
pub enum ImplOverlapKind {
    /// These impls are always allowed to overlap.
    Permitted {
        /// Whether or not the impl is permitted due to the trait being a `#[marker]` trait
        marker: bool,
    },
    /// These impls are allowed to overlap, but that raises
    /// an issue #33140 future-compatibility warning.
    ///
    /// Some background: in Rust 1.0, the trait-object types `Send + Sync` (today's
    /// `dyn Send + Sync`) and `Sync + Send` (now `dyn Sync + Send`) were different.
    ///
    /// The widely-used version 0.1.0 of the crate `traitobject` had accidentally relied
    /// that difference, making what reduces to the following set of impls:
    ///
    /// ```compile_fail,(E0119)
    /// trait Trait {}
    /// impl Trait for dyn Send + Sync {}
    /// impl Trait for dyn Sync + Send {}
    /// ```
    ///
    /// Obviously, once we made these types be identical, that code causes a coherence
    /// error and a fairly big headache for us. However, luckily for us, the trait
    /// `Trait` used in this case is basically a marker trait, and therefore having
    /// overlapping impls for it is sound.
    ///
    /// To handle this, we basically regard the trait as a marker trait, with an additional
    /// future-compatibility warning. To avoid accidentally "stabilizing" this feature,
    /// it has the following restrictions:
    ///
    /// 1. The trait must indeed be a marker-like trait (i.e., no items), and must be
    /// positive impls.
    /// 2. The trait-ref of both impls must be equal.
    /// 3. The trait-ref of both impls must be a trait object type consisting only of
    /// marker traits.
    /// 4. Neither of the impls can have any where-clauses.
    ///
    /// Once `traitobject` 0.1.0 is no longer an active concern, this hack can be removed.
    Issue33140,
}

impl<'tcx> TyCtxt<'tcx> {
    pub fn typeck_body(self, body: hir::BodyId) -> &'tcx TypeckResults<'tcx> {
        self.typeck(self.hir().body_owner_def_id(body))
    }

    pub fn provided_trait_methods(self, id: DefId) -> impl 'tcx + Iterator<Item = &'tcx AssocItem> {
        self.associated_items(id)
            .in_definition_order()
            .filter(move |item| item.kind == AssocKind::Fn && item.defaultness(self).has_value())
    }

    /// Look up the name of a definition across crates. This does not look at HIR.
    pub fn opt_item_name(self, def_id: DefId) -> Option<Symbol> {
        if let Some(cnum) = def_id.as_crate_root() {
            Some(self.crate_name(cnum))
        } else {
            let def_key = self.def_key(def_id);
            match def_key.disambiguated_data.data {
                // The name of a constructor is that of its parent.
                rustc_hir::definitions::DefPathData::Ctor => self
                    .opt_item_name(DefId { krate: def_id.krate, index: def_key.parent.unwrap() }),
                // The name of opaque types only exists in HIR.
                rustc_hir::definitions::DefPathData::ImplTrait
                    if let Some(def_id) = def_id.as_local() =>
                    self.hir().opt_name(self.hir().local_def_id_to_hir_id(def_id)),
                _ => def_key.get_opt_name(),
            }
        }
    }

    /// Look up the name of a definition across crates. This does not look at HIR.
    ///
    /// This method will ICE if the corresponding item does not have a name.  In these cases, use
    /// [`opt_item_name`] instead.
    ///
    /// [`opt_item_name`]: Self::opt_item_name
    pub fn item_name(self, id: DefId) -> Symbol {
        self.opt_item_name(id).unwrap_or_else(|| {
            bug!("item_name: no name for {:?}", self.def_path(id));
        })
    }

    /// Look up the name and span of a definition.
    ///
    /// See [`item_name`][Self::item_name] for more information.
    pub fn opt_item_ident(self, def_id: DefId) -> Option<Ident> {
        let def = self.opt_item_name(def_id)?;
        let span = def_id
            .as_local()
            .and_then(|id| self.def_ident_span(id))
            .unwrap_or(rustc_span::DUMMY_SP);
        Some(Ident::new(def, span))
    }

    pub fn opt_associated_item(self, def_id: DefId) -> Option<&'tcx AssocItem> {
        if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

    pub fn field_index(self, hir_id: hir::HirId, typeck_results: &TypeckResults<'_>) -> usize {
        typeck_results.field_indices().get(hir_id).cloned().expect("no index for a field")
    }

    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
        variant
            .fields
            .iter()
            .position(|field| self.hygienic_eq(ident, field.ident(self), variant.def_id))
    }

    /// Returns `true` if the impls are the same polarity and the trait either
    /// has no items or is annotated `#[marker]` and prevents item overrides.
    pub fn impls_are_allowed_to_overlap(
        self,
        def_id1: DefId,
        def_id2: DefId,
    ) -> Option<ImplOverlapKind> {
        // If either trait impl references an error, they're allowed to overlap,
        // as one of them essentially doesn't exist.
        if self.impl_trait_ref(def_id1).map_or(false, |tr| tr.references_error())
            || self.impl_trait_ref(def_id2).map_or(false, |tr| tr.references_error())
        {
            return Some(ImplOverlapKind::Permitted { marker: false });
        }

        match (self.impl_polarity(def_id1), self.impl_polarity(def_id2)) {
            (ImplPolarity::Reservation, _) | (_, ImplPolarity::Reservation) => {
                // `#[rustc_reservation_impl]` impls don't overlap with anything
                debug!(
                    "impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted) (reservations)",
                    def_id1, def_id2
                );
                return Some(ImplOverlapKind::Permitted { marker: false });
            }
            (ImplPolarity::Positive, ImplPolarity::Negative)
            | (ImplPolarity::Negative, ImplPolarity::Positive) => {
                // `impl AutoTrait for Type` + `impl !AutoTrait for Type`
                debug!(
                    "impls_are_allowed_to_overlap({:?}, {:?}) - None (differing polarities)",
                    def_id1, def_id2
                );
                return None;
            }
            (ImplPolarity::Positive, ImplPolarity::Positive)
            | (ImplPolarity::Negative, ImplPolarity::Negative) => {}
        };

        let is_marker_overlap = {
            let is_marker_impl = |def_id: DefId| -> bool {
                let trait_ref = self.impl_trait_ref(def_id);
                trait_ref.map_or(false, |tr| self.trait_def(tr.def_id).is_marker)
            };
            is_marker_impl(def_id1) && is_marker_impl(def_id2)
        };

        if is_marker_overlap {
            debug!(
                "impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted) (marker overlap)",
                def_id1, def_id2
            );
            Some(ImplOverlapKind::Permitted { marker: true })
        } else {
            if let Some(self_ty1) = self.issue33140_self_ty(def_id1) {
                if let Some(self_ty2) = self.issue33140_self_ty(def_id2) {
                    if self_ty1 == self_ty2 {
                        debug!(
                            "impls_are_allowed_to_overlap({:?}, {:?}) - issue #33140 HACK",
                            def_id1, def_id2
                        );
                        return Some(ImplOverlapKind::Issue33140);
                    } else {
                        debug!(
                            "impls_are_allowed_to_overlap({:?}, {:?}) - found {:?} != {:?}",
                            def_id1, def_id2, self_ty1, self_ty2
                        );
                    }
                }
            }

            debug!("impls_are_allowed_to_overlap({:?}, {:?}) = None", def_id1, def_id2);
            None
        }
    }

    /// Returns `ty::VariantDef` if `res` refers to a struct,
    /// or variant or their constructors, panics otherwise.
    pub fn expect_variant_res(self, res: Res) -> &'tcx VariantDef {
        match res {
            Res::Def(DefKind::Variant, did) => {
                let enum_did = self.parent(did);
                self.adt_def(enum_did).variant_with_id(did)
            }
            Res::Def(DefKind::Struct | DefKind::Union, did) => self.adt_def(did).non_enum_variant(),
            Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_did) => {
                let variant_did = self.parent(variant_ctor_did);
                let enum_did = self.parent(variant_did);
                self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did)
            }
            Res::Def(DefKind::Ctor(CtorOf::Struct, ..), ctor_did) => {
                let struct_did = self.parent(ctor_did);
                self.adt_def(struct_did).non_enum_variant()
            }
            _ => bug!("expect_variant_res used with unexpected res {:?}", res),
        }
    }

    /// Returns the possibly-auto-generated MIR of a `(DefId, Subst)` pair.
    #[instrument(skip(self), level = "debug")]
    pub fn instance_mir(self, instance: ty::InstanceDef<'tcx>) -> &'tcx Body<'tcx> {
        match instance {
            ty::InstanceDef::Item(def) => {
                debug!("calling def_kind on def: {:?}", def);
                let def_kind = self.def_kind(def.did);
                debug!("returned from def_kind: {:?}", def_kind);
                match def_kind {
                    DefKind::Const
                    | DefKind::Static(..)
                    | DefKind::AssocConst
                    | DefKind::Ctor(..)
                    | DefKind::AnonConst
                    | DefKind::InlineConst => self.mir_for_ctfe_opt_const_arg(def),
                    // If the caller wants `mir_for_ctfe` of a function they should not be using
                    // `instance_mir`, so we'll assume const fn also wants the optimized version.
                    _ => {
                        assert_eq!(def.const_param_did, None);
                        self.optimized_mir(def.did)
                    }
                }
            }
            ty::InstanceDef::VTableShim(..)
            | ty::InstanceDef::ReifyShim(..)
            | ty::InstanceDef::Intrinsic(..)
            | ty::InstanceDef::FnPtrShim(..)
            | ty::InstanceDef::Virtual(..)
            | ty::InstanceDef::ClosureOnceShim { .. }
            | ty::InstanceDef::DropGlue(..)
            | ty::InstanceDef::CloneShim(..) => self.mir_shims(instance),
        }
    }

    // FIXME(@lcnr): Remove this function.
    pub fn get_attrs_unchecked(self, did: DefId) -> &'tcx [ast::Attribute] {
        if let Some(did) = did.as_local() {
            self.hir().attrs(self.hir().local_def_id_to_hir_id(did))
        } else {
            self.item_attrs(did)
        }
    }

    /// Gets all attributes with the given name.
    pub fn get_attrs(self, did: DefId, attr: Symbol) -> ty::Attributes<'tcx> {
        let filter_fn = move |a: &&ast::Attribute| a.has_name(attr);
        if let Some(did) = did.as_local() {
            self.hir().attrs(self.hir().local_def_id_to_hir_id(did)).iter().filter(filter_fn)
        } else if cfg!(debug_assertions) && rustc_feature::is_builtin_only_local(attr) {
            bug!("tried to access the `only_local` attribute `{}` from an extern crate", attr);
        } else {
            self.item_attrs(did).iter().filter(filter_fn)
        }
    }

    pub fn get_attr(self, did: DefId, attr: Symbol) -> Option<&'tcx ast::Attribute> {
        if cfg!(debug_assertions) && !rustc_feature::is_valid_for_get_attr(attr) {
            bug!("get_attr: unexpected called with DefId `{:?}`, attr `{:?}`", did, attr);
        } else {
            self.get_attrs(did, attr).next()
        }
    }

    /// Determines whether an item is annotated with an attribute.
    pub fn has_attr(self, did: DefId, attr: Symbol) -> bool {
        if cfg!(debug_assertions) && !did.is_local() && rustc_feature::is_builtin_only_local(attr) {
            bug!("tried to access the `only_local` attribute `{}` from an extern crate", attr);
        } else {
            self.get_attrs(did, attr).next().is_some()
        }
    }

    /// Returns `true` if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
        self.trait_def(trait_def_id).has_auto_impl
    }

    /// Returns layout of a generator. Layout might be unavailable if the
    /// generator is tainted by errors.
    pub fn generator_layout(self, def_id: DefId) -> Option<&'tcx GeneratorLayout<'tcx>> {
        self.optimized_mir(def_id).generator_layout()
    }

    /// Given the `DefId` of an impl, returns the `DefId` of the trait it implements.
    /// If it implements no trait, returns `None`.
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
    }

    /// If the given `DefId` describes an item belonging to a trait,
    /// returns the `DefId` of the trait that the trait item belongs to;
    /// otherwise, returns `None`.
    pub fn trait_of_item(self, def_id: DefId) -> Option<DefId> {
        if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
            let parent = self.parent(def_id);
            if let DefKind::Trait | DefKind::TraitAlias = self.def_kind(parent) {
                return Some(parent);
            }
        }
        None
    }

    /// If the given `DefId` describes a method belonging to an impl, returns the
    /// `DefId` of the impl that the method belongs to; otherwise, returns `None`.
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
        if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
            let parent = self.parent(def_id);
            if let DefKind::Impl = self.def_kind(parent) {
                return Some(parent);
            }
        }
        None
    }

    /// If the given `DefId` belongs to a trait that was automatically derived, returns `true`.
    pub fn is_builtin_derive(self, def_id: DefId) -> bool {
        self.has_attr(def_id, sym::automatically_derived)
    }

    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
        if let Some(impl_did) = impl_did.as_local() {
            Ok(self.def_span(impl_did))
        } else {
            Err(self.crate_name(impl_did.krate))
        }
    }

    /// Hygienically compares a use-site name (`use_name`) for a field or an associated item with
    /// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    /// definition's parent/scope to perform comparison.
    pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
        // We could use `Ident::eq` here, but we deliberately don't. The name
        // comparison fails frequently, and we want to avoid the expensive
        // `normalize_to_macros_2_0()` calls required for the span comparison whenever possible.
        use_name.name == def_name.name
            && use_name
                .span
                .ctxt()
                .hygienic_eq(def_name.span.ctxt(), self.expn_that_defined(def_parent_def_id))
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident {
        ident.span.normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope));
        ident
    }

    pub fn adjust_ident_and_get_scope(
        self,
        mut ident: Ident,
        scope: DefId,
        block: hir::HirId,
    ) -> (Ident, DefId) {
        let scope = ident
            .span
            .normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope))
            .and_then(|actual_expansion| actual_expansion.expn_data().parent_module)
            .unwrap_or_else(|| self.parent_module(block).to_def_id());
        (ident, scope)
    }

    /// Returns `true` if the debuginfo for `span` should be collapsed to the outermost expansion
    /// site. Only applies when `Span` is the result of macro expansion.
    ///
    /// - If the `collapse_debuginfo` feature is enabled then debuginfo is not collapsed by default
    ///   and only when a macro definition is annotated with `#[collapse_debuginfo]`.
    /// - If `collapse_debuginfo` is not enabled, then debuginfo is collapsed by default.
    ///
    /// When `-Zdebug-macros` is provided then debuginfo will never be collapsed.
    pub fn should_collapse_debuginfo(self, span: Span) -> bool {
        !self.sess.opts.unstable_opts.debug_macros
            && if self.features().collapse_debuginfo {
                span.in_macro_expansion_with_collapse_debuginfo()
            } else {
                span.from_expansion()
            }
    }

    pub fn is_object_safe(self, key: DefId) -> bool {
        self.object_safety_violations(key).is_empty()
    }

    #[inline]
    pub fn is_const_fn_raw(self, def_id: DefId) -> bool {
        matches!(self.def_kind(def_id), DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(..))
            && self.constness(def_id) == hir::Constness::Const
    }

    #[inline]
    pub fn is_const_default_method(self, def_id: DefId) -> bool {
        matches!(self.trait_of_item(def_id), Some(trait_id) if self.has_attr(trait_id, sym::const_trait))
    }

    pub fn impl_trait_in_trait_parent(self, mut def_id: DefId) -> DefId {
        while let def_kind = self.def_kind(def_id) && def_kind != DefKind::AssocFn {
            debug_assert_eq!(def_kind, DefKind::ImplTraitPlaceholder);
            def_id = self.parent(def_id);
        }
        def_id
    }
}

/// Yields the parent function's `LocalDefId` if `def_id` is an `impl Trait` definition.
pub fn is_impl_trait_defn(tcx: TyCtxt<'_>, def_id: DefId) -> Option<LocalDefId> {
    let def_id = def_id.as_local()?;
    if let Node::Item(item) = tcx.hir().get_by_def_id(def_id) {
        if let hir::ItemKind::OpaqueTy(ref opaque_ty) = item.kind {
            return match opaque_ty.origin {
                hir::OpaqueTyOrigin::FnReturn(parent) | hir::OpaqueTyOrigin::AsyncFn(parent) => {
                    Some(parent)
                }
                hir::OpaqueTyOrigin::TyAlias => None,
            };
        }
    }
    None
}

pub fn int_ty(ity: ast::IntTy) -> IntTy {
    match ity {
        ast::IntTy::Isize => IntTy::Isize,
        ast::IntTy::I8 => IntTy::I8,
        ast::IntTy::I16 => IntTy::I16,
        ast::IntTy::I32 => IntTy::I32,
        ast::IntTy::I64 => IntTy::I64,
        ast::IntTy::I128 => IntTy::I128,
    }
}

pub fn uint_ty(uty: ast::UintTy) -> UintTy {
    match uty {
        ast::UintTy::Usize => UintTy::Usize,
        ast::UintTy::U8 => UintTy::U8,
        ast::UintTy::U16 => UintTy::U16,
        ast::UintTy::U32 => UintTy::U32,
        ast::UintTy::U64 => UintTy::U64,
        ast::UintTy::U128 => UintTy::U128,
    }
}

pub fn float_ty(fty: ast::FloatTy) -> FloatTy {
    match fty {
        ast::FloatTy::F32 => FloatTy::F32,
        ast::FloatTy::F64 => FloatTy::F64,
    }
}

pub fn ast_int_ty(ity: IntTy) -> ast::IntTy {
    match ity {
        IntTy::Isize => ast::IntTy::Isize,
        IntTy::I8 => ast::IntTy::I8,
        IntTy::I16 => ast::IntTy::I16,
        IntTy::I32 => ast::IntTy::I32,
        IntTy::I64 => ast::IntTy::I64,
        IntTy::I128 => ast::IntTy::I128,
    }
}

pub fn ast_uint_ty(uty: UintTy) -> ast::UintTy {
    match uty {
        UintTy::Usize => ast::UintTy::Usize,
        UintTy::U8 => ast::UintTy::U8,
        UintTy::U16 => ast::UintTy::U16,
        UintTy::U32 => ast::UintTy::U32,
        UintTy::U64 => ast::UintTy::U64,
        UintTy::U128 => ast::UintTy::U128,
    }
}

pub fn provide(providers: &mut ty::query::Providers) {
    closure::provide(providers);
    context::provide(providers);
    erase_regions::provide(providers);
    layout::provide(providers);
    util::provide(providers);
    print::provide(providers);
    super::util::bug::provide(providers);
    super::middle::provide(providers);
    *providers = ty::query::Providers {
        trait_impls_of: trait_def::trait_impls_of_provider,
        incoherent_impls: trait_def::incoherent_impls_provider,
        type_uninhabited_from: inhabitedness::type_uninhabited_from,
        const_param_default: consts::const_param_default,
        vtable_allocation: vtable::vtable_allocation_provider,
        ..*providers
    };
}

/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
#[derive(Clone, Debug, Default, HashStable)]
pub struct CrateInherentImpls {
    pub inherent_impls: LocalDefIdMap<Vec<DefId>>,
    pub incoherent_impls: FxHashMap<SimplifiedType, Vec<LocalDefId>>,
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)]
pub struct SymbolName<'tcx> {
    /// `&str` gives a consistent ordering, which ensures reproducible builds.
    pub name: &'tcx str,
}

impl<'tcx> SymbolName<'tcx> {
    pub fn new(tcx: TyCtxt<'tcx>, name: &str) -> SymbolName<'tcx> {
        SymbolName {
            name: unsafe { str::from_utf8_unchecked(tcx.arena.alloc_slice(name.as_bytes())) },
        }
    }
}

impl<'tcx> fmt::Display for SymbolName<'tcx> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}

impl<'tcx> fmt::Debug for SymbolName<'tcx> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}

#[derive(Debug, Default, Copy, Clone)]
pub struct FoundRelationships {
    /// This is true if we identified that this Ty (`?T`) is found in a `?T: Foo`
    /// obligation, where:
    ///
    ///  * `Foo` is not `Sized`
    ///  * `(): Foo` may be satisfied
    pub self_in_trait: bool,
    /// This is true if we identified that this Ty (`?T`) is found in a `<_ as
    /// _>::AssocType = ?T`
    pub output: bool,
}

/// The constituent parts of a type level constant of kind ADT or array.
#[derive(Copy, Clone, Debug, HashStable)]
pub struct DestructuredConst<'tcx> {
    pub variant: Option<VariantIdx>,
    pub fields: &'tcx [ty::Const<'tcx>],
}

// Some types are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
mod size_asserts {
    use super::*;
    use rustc_data_structures::static_assert_size;
    // These are in alphabetical order, which is easy to maintain.
    static_assert_size!(PredicateS<'_>, 48);
    static_assert_size!(TyS<'_>, 40);
    static_assert_size!(WithStableHash<TyS<'_>>, 56);
}