1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
//! A visiting traversal mechanism for complex data structures that contain type
//! information.
//!
//! This is a read-only traversal of the data structure.
//!
//! This traversal has limited flexibility. Only a small number of "types of
//! interest" within the complex data structures can receive custom
//! visitation. These are the ones containing the most important type-related
//! information, such as `Ty`, `Predicate`, `Region`, and `Const`.
//!
//! There are three groups of traits involved in each traversal.
//! - `TypeVisitable`. This is implemented once for many types, including:
//!   - Types of interest, for which the the methods delegate to the
//!     visitor.
//!   - All other types, including generic containers like `Vec` and `Option`.
//!     It defines a "skeleton" of how they should be visited.
//! - `TypeSuperVisitable`. This is implemented only for each type of interest,
//!   and defines the visiting "skeleton" for these types.
//! - `TypeVisitor`. This is implemented for each visitor. This defines how
//!   types of interest are visited.
//!
//! This means each visit is a mixture of (a) generic visiting operations, and (b)
//! custom visit operations that are specific to the visitor.
//! - The `TypeVisitable` impls handle most of the traversal, and call into
//!   `TypeVisitor` when they encounter a type of interest.
//! - A `TypeVisitor` may call into another `TypeVisitable` impl, because some of
//!   the types of interest are recursive and can contain other types of interest.
//! - A `TypeVisitor` may also call into a `TypeSuperVisitable` impl, because each
//!   visitor might provide custom handling only for some types of interest, or
//!   only for some variants of each type of interest, and then use default
//!   traversal for the remaining cases.
//!
//! For example, if you have `struct S(Ty, U)` where `S: TypeVisitable` and `U:
//! TypeVisitable`, and an instance `s = S(ty, u)`, it would be visited like so:
//! ```text
//! s.visit_with(visitor) calls
//! - ty.visit_with(visitor) calls
//!   - visitor.visit_ty(ty) may call
//!     - ty.super_visit_with(visitor)
//! - u.visit_with(visitor)
//! ```
use crate::mir;
use crate::ty::{self, flags::FlagComputation, Binder, Ty, TyCtxt, TypeFlags};
use rustc_errors::ErrorGuaranteed;

use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::sso::SsoHashSet;
use std::fmt;
use std::ops::ControlFlow;

/// This trait is implemented for every type that can be visited,
/// providing the skeleton of the traversal.
///
/// To implement this conveniently, use the derive macro located in
/// `rustc_macros`.
pub trait TypeVisitable<'tcx>: fmt::Debug + Clone {
    /// The entry point for visiting. To visit a value `t` with a visitor `v`
    /// call: `t.visit_with(v)`.
    ///
    /// For most types, this just traverses the value, calling `visit_with` on
    /// each field/element.
    ///
    /// For types of interest (such as `Ty`), the implementation of this method
    /// that calls a visitor method specifically for that type (such as
    /// `V::visit_ty`). This is where control transfers from `TypeFoldable` to
    /// `TypeVisitor`.
    fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy>;

    /// Returns `true` if `self` has any late-bound regions that are either
    /// bound by `binder` or bound by some binder outside of `binder`.
    /// If `binder` is `ty::INNERMOST`, this indicates whether
    /// there are any late-bound regions that appear free.
    fn has_vars_bound_at_or_above(&self, binder: ty::DebruijnIndex) -> bool {
        self.visit_with(&mut HasEscapingVarsVisitor { outer_index: binder }).is_break()
    }

    /// Returns `true` if this `self` has any regions that escape `binder` (and
    /// hence are not bound by it).
    fn has_vars_bound_above(&self, binder: ty::DebruijnIndex) -> bool {
        self.has_vars_bound_at_or_above(binder.shifted_in(1))
    }

    fn has_escaping_bound_vars(&self) -> bool {
        self.has_vars_bound_at_or_above(ty::INNERMOST)
    }

    #[instrument(level = "trace", ret)]
    fn has_type_flags(&self, flags: TypeFlags) -> bool {
        self.visit_with(&mut HasTypeFlagsVisitor { flags }).break_value() == Some(FoundFlags)
    }
    fn has_projections(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_PROJECTION)
    }
    fn has_opaque_types(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_OPAQUE)
    }
    fn references_error(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_ERROR)
    }
    fn error_reported(&self) -> Option<ErrorGuaranteed> {
        if self.references_error() {
            Some(ErrorGuaranteed::unchecked_claim_error_was_emitted())
        } else {
            None
        }
    }
    fn has_param_types_or_consts(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_PARAM | TypeFlags::HAS_CT_PARAM)
    }
    fn has_infer_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_RE_INFER)
    }
    fn has_infer_types(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_INFER)
    }
    fn has_infer_types_or_consts(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_INFER | TypeFlags::HAS_CT_INFER)
    }
    fn needs_infer(&self) -> bool {
        self.has_type_flags(TypeFlags::NEEDS_INFER)
    }
    fn has_placeholders(&self) -> bool {
        self.has_type_flags(
            TypeFlags::HAS_RE_PLACEHOLDER
                | TypeFlags::HAS_TY_PLACEHOLDER
                | TypeFlags::HAS_CT_PLACEHOLDER,
        )
    }
    fn needs_subst(&self) -> bool {
        self.has_type_flags(TypeFlags::NEEDS_SUBST)
    }
    /// "Free" regions in this context means that it has any region
    /// that is not (a) erased or (b) late-bound.
    fn has_free_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
    }

    fn has_erased_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_RE_ERASED)
    }

    /// True if there are any un-erased free regions.
    fn has_erasable_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
    }

    /// Indicates whether this value references only 'global'
    /// generic parameters that are the same regardless of what fn we are
    /// in. This is used for caching.
    fn is_global(&self) -> bool {
        !self.has_type_flags(TypeFlags::HAS_FREE_LOCAL_NAMES)
    }

    /// True if there are any late-bound regions
    fn has_late_bound_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_RE_LATE_BOUND)
    }

    /// Indicates whether this value still has parameters/placeholders/inference variables
    /// which could be replaced later, in a way that would change the results of `impl`
    /// specialization.
    fn still_further_specializable(&self) -> bool {
        self.has_type_flags(TypeFlags::STILL_FURTHER_SPECIALIZABLE)
    }
}

pub trait TypeSuperVisitable<'tcx>: TypeVisitable<'tcx> {
    /// Provides a default visit for a type of interest. This should only be
    /// called within `TypeVisitor` methods, when a non-custom traversal is
    /// desired for the value of the type of interest passed to that method.
    /// For example, in `MyVisitor::visit_ty(ty)`, it is valid to call
    /// `ty.super_visit_with(self)`, but any other visiting should be done
    /// with `xyz.visit_with(self)`.
    fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy>;
}

/// This trait is implemented for every visiting traversal. There is a visit
/// method defined for every type of interest. Each such method has a default
/// that recurses into the type's fields in a non-custom fashion.
pub trait TypeVisitor<'tcx>: Sized {
    type BreakTy = !;

    fn visit_binder<T: TypeVisitable<'tcx>>(
        &mut self,
        t: &Binder<'tcx, T>,
    ) -> ControlFlow<Self::BreakTy> {
        t.super_visit_with(self)
    }

    fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
        t.super_visit_with(self)
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
        r.super_visit_with(self)
    }

    fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
        c.super_visit_with(self)
    }

    fn visit_unevaluated(&mut self, uv: ty::Unevaluated<'tcx>) -> ControlFlow<Self::BreakTy> {
        uv.super_visit_with(self)
    }

    fn visit_predicate(&mut self, p: ty::Predicate<'tcx>) -> ControlFlow<Self::BreakTy> {
        p.super_visit_with(self)
    }

    fn visit_mir_const(&mut self, c: mir::ConstantKind<'tcx>) -> ControlFlow<Self::BreakTy> {
        c.super_visit_with(self)
    }
}

///////////////////////////////////////////////////////////////////////////
// Region folder

impl<'tcx> TyCtxt<'tcx> {
    /// Invoke `callback` on every region appearing free in `value`.
    pub fn for_each_free_region(
        self,
        value: &impl TypeVisitable<'tcx>,
        mut callback: impl FnMut(ty::Region<'tcx>),
    ) {
        self.any_free_region_meets(value, |r| {
            callback(r);
            false
        });
    }

    /// Returns `true` if `callback` returns true for every region appearing free in `value`.
    pub fn all_free_regions_meet(
        self,
        value: &impl TypeVisitable<'tcx>,
        mut callback: impl FnMut(ty::Region<'tcx>) -> bool,
    ) -> bool {
        !self.any_free_region_meets(value, |r| !callback(r))
    }

    /// Returns `true` if `callback` returns true for some region appearing free in `value`.
    pub fn any_free_region_meets(
        self,
        value: &impl TypeVisitable<'tcx>,
        callback: impl FnMut(ty::Region<'tcx>) -> bool,
    ) -> bool {
        struct RegionVisitor<F> {
            /// The index of a binder *just outside* the things we have
            /// traversed. If we encounter a bound region bound by this
            /// binder or one outer to it, it appears free. Example:
            ///
            /// ```ignore (illustrative)
            ///       for<'a> fn(for<'b> fn(), T)
            /// // ^          ^          ^     ^
            /// // |          |          |     | here, would be shifted in 1
            /// // |          |          | here, would be shifted in 2
            /// // |          | here, would be `INNERMOST` shifted in by 1
            /// // | here, initially, binder would be `INNERMOST`
            /// ```
            ///
            /// You see that, initially, *any* bound value is free,
            /// because we've not traversed any binders. As we pass
            /// through a binder, we shift the `outer_index` by 1 to
            /// account for the new binder that encloses us.
            outer_index: ty::DebruijnIndex,
            callback: F,
        }

        impl<'tcx, F> TypeVisitor<'tcx> for RegionVisitor<F>
        where
            F: FnMut(ty::Region<'tcx>) -> bool,
        {
            type BreakTy = ();

            fn visit_binder<T: TypeVisitable<'tcx>>(
                &mut self,
                t: &Binder<'tcx, T>,
            ) -> ControlFlow<Self::BreakTy> {
                self.outer_index.shift_in(1);
                let result = t.super_visit_with(self);
                self.outer_index.shift_out(1);
                result
            }

            fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
                match *r {
                    ty::ReLateBound(debruijn, _) if debruijn < self.outer_index => {
                        ControlFlow::CONTINUE
                    }
                    _ => {
                        if (self.callback)(r) {
                            ControlFlow::BREAK
                        } else {
                            ControlFlow::CONTINUE
                        }
                    }
                }
            }

            fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
                // We're only interested in types involving regions
                if ty.flags().intersects(TypeFlags::HAS_FREE_REGIONS) {
                    ty.super_visit_with(self)
                } else {
                    ControlFlow::CONTINUE
                }
            }
        }

        value.visit_with(&mut RegionVisitor { outer_index: ty::INNERMOST, callback }).is_break()
    }

    /// Returns a set of all late-bound regions that are constrained
    /// by `value`, meaning that if we instantiate those LBR with
    /// variables and equate `value` with something else, those
    /// variables will also be equated.
    pub fn collect_constrained_late_bound_regions<T>(
        self,
        value: &Binder<'tcx, T>,
    ) -> FxHashSet<ty::BoundRegionKind>
    where
        T: TypeVisitable<'tcx>,
    {
        self.collect_late_bound_regions(value, true)
    }

    /// Returns a set of all late-bound regions that appear in `value` anywhere.
    pub fn collect_referenced_late_bound_regions<T>(
        self,
        value: &Binder<'tcx, T>,
    ) -> FxHashSet<ty::BoundRegionKind>
    where
        T: TypeVisitable<'tcx>,
    {
        self.collect_late_bound_regions(value, false)
    }

    fn collect_late_bound_regions<T>(
        self,
        value: &Binder<'tcx, T>,
        just_constraint: bool,
    ) -> FxHashSet<ty::BoundRegionKind>
    where
        T: TypeVisitable<'tcx>,
    {
        let mut collector = LateBoundRegionsCollector::new(just_constraint);
        let result = value.as_ref().skip_binder().visit_with(&mut collector);
        assert!(result.is_continue()); // should never have stopped early
        collector.regions
    }
}

pub struct ValidateBoundVars<'tcx> {
    bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
    binder_index: ty::DebruijnIndex,
    // We may encounter the same variable at different levels of binding, so
    // this can't just be `Ty`
    visited: SsoHashSet<(ty::DebruijnIndex, Ty<'tcx>)>,
}

impl<'tcx> ValidateBoundVars<'tcx> {
    pub fn new(bound_vars: &'tcx ty::List<ty::BoundVariableKind>) -> Self {
        ValidateBoundVars {
            bound_vars,
            binder_index: ty::INNERMOST,
            visited: SsoHashSet::default(),
        }
    }
}

impl<'tcx> TypeVisitor<'tcx> for ValidateBoundVars<'tcx> {
    type BreakTy = ();

    fn visit_binder<T: TypeVisitable<'tcx>>(
        &mut self,
        t: &Binder<'tcx, T>,
    ) -> ControlFlow<Self::BreakTy> {
        self.binder_index.shift_in(1);
        let result = t.super_visit_with(self);
        self.binder_index.shift_out(1);
        result
    }

    fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
        if t.outer_exclusive_binder() < self.binder_index
            || !self.visited.insert((self.binder_index, t))
        {
            return ControlFlow::BREAK;
        }
        match *t.kind() {
            ty::Bound(debruijn, bound_ty) if debruijn == self.binder_index => {
                if self.bound_vars.len() <= bound_ty.var.as_usize() {
                    bug!("Not enough bound vars: {:?} not found in {:?}", t, self.bound_vars);
                }
                let list_var = self.bound_vars[bound_ty.var.as_usize()];
                match list_var {
                    ty::BoundVariableKind::Ty(kind) => {
                        if kind != bound_ty.kind {
                            bug!(
                                "Mismatched type kinds: {:?} doesn't var in list {:?}",
                                bound_ty.kind,
                                list_var
                            );
                        }
                    }
                    _ => {
                        bug!("Mismatched bound variable kinds! Expected type, found {:?}", list_var)
                    }
                }
            }

            _ => (),
        };

        t.super_visit_with(self)
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
        match *r {
            ty::ReLateBound(index, br) if index == self.binder_index => {
                if self.bound_vars.len() <= br.var.as_usize() {
                    bug!("Not enough bound vars: {:?} not found in {:?}", br, self.bound_vars);
                }
                let list_var = self.bound_vars[br.var.as_usize()];
                match list_var {
                    ty::BoundVariableKind::Region(kind) => {
                        if kind != br.kind {
                            bug!(
                                "Mismatched region kinds: {:?} doesn't match var ({:?}) in list ({:?})",
                                br.kind,
                                list_var,
                                self.bound_vars
                            );
                        }
                    }
                    _ => bug!(
                        "Mismatched bound variable kinds! Expected region, found {:?}",
                        list_var
                    ),
                }
            }

            _ => (),
        };

        r.super_visit_with(self)
    }
}

#[derive(Debug, PartialEq, Eq, Copy, Clone)]
struct FoundEscapingVars;

/// An "escaping var" is a bound var whose binder is not part of `t`. A bound var can be a
/// bound region or a bound type.
///
/// So, for example, consider a type like the following, which has two binders:
///
///    for<'a> fn(x: for<'b> fn(&'a isize, &'b isize))
///    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ outer scope
///                  ^~~~~~~~~~~~~~~~~~~~~~~~~~~~  inner scope
///
/// This type has *bound regions* (`'a`, `'b`), but it does not have escaping regions, because the
/// binders of both `'a` and `'b` are part of the type itself. However, if we consider the *inner
/// fn type*, that type has an escaping region: `'a`.
///
/// Note that what I'm calling an "escaping var" is often just called a "free var". However,
/// we already use the term "free var". It refers to the regions or types that we use to represent
/// bound regions or type params on a fn definition while we are type checking its body.
///
/// To clarify, conceptually there is no particular difference between
/// an "escaping" var and a "free" var. However, there is a big
/// difference in practice. Basically, when "entering" a binding
/// level, one is generally required to do some sort of processing to
/// a bound var, such as replacing it with a fresh/placeholder
/// var, or making an entry in the environment to represent the
/// scope to which it is attached, etc. An escaping var represents
/// a bound var for which this processing has not yet been done.
struct HasEscapingVarsVisitor {
    /// Anything bound by `outer_index` or "above" is escaping.
    outer_index: ty::DebruijnIndex,
}

impl<'tcx> TypeVisitor<'tcx> for HasEscapingVarsVisitor {
    type BreakTy = FoundEscapingVars;

    fn visit_binder<T: TypeVisitable<'tcx>>(
        &mut self,
        t: &Binder<'tcx, T>,
    ) -> ControlFlow<Self::BreakTy> {
        self.outer_index.shift_in(1);
        let result = t.super_visit_with(self);
        self.outer_index.shift_out(1);
        result
    }

    #[inline]
    fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
        // If the outer-exclusive-binder is *strictly greater* than
        // `outer_index`, that means that `t` contains some content
        // bound at `outer_index` or above (because
        // `outer_exclusive_binder` is always 1 higher than the
        // content in `t`). Therefore, `t` has some escaping vars.
        if t.outer_exclusive_binder() > self.outer_index {
            ControlFlow::Break(FoundEscapingVars)
        } else {
            ControlFlow::CONTINUE
        }
    }

    #[inline]
    fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
        // If the region is bound by `outer_index` or anything outside
        // of outer index, then it escapes the binders we have
        // visited.
        if r.bound_at_or_above_binder(self.outer_index) {
            ControlFlow::Break(FoundEscapingVars)
        } else {
            ControlFlow::CONTINUE
        }
    }

    fn visit_const(&mut self, ct: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
        // we don't have a `visit_infer_const` callback, so we have to
        // hook in here to catch this case (annoying...), but
        // otherwise we do want to remember to visit the rest of the
        // const, as it has types/regions embedded in a lot of other
        // places.
        match ct.kind() {
            ty::ConstKind::Bound(debruijn, _) if debruijn >= self.outer_index => {
                ControlFlow::Break(FoundEscapingVars)
            }
            _ => ct.super_visit_with(self),
        }
    }

    #[inline]
    fn visit_predicate(&mut self, predicate: ty::Predicate<'tcx>) -> ControlFlow<Self::BreakTy> {
        if predicate.outer_exclusive_binder() > self.outer_index {
            ControlFlow::Break(FoundEscapingVars)
        } else {
            ControlFlow::CONTINUE
        }
    }
}

#[derive(Debug, PartialEq, Eq, Copy, Clone)]
struct FoundFlags;

// FIXME: Optimize for checking for infer flags
struct HasTypeFlagsVisitor {
    flags: ty::TypeFlags,
}

impl std::fmt::Debug for HasTypeFlagsVisitor {
    fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        self.flags.fmt(fmt)
    }
}

impl<'tcx> TypeVisitor<'tcx> for HasTypeFlagsVisitor {
    type BreakTy = FoundFlags;

    #[inline]
    #[instrument(skip(self), level = "trace", ret)]
    fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
        let flags = t.flags();
        trace!(t.flags=?t.flags());
        if flags.intersects(self.flags) {
            ControlFlow::Break(FoundFlags)
        } else {
            ControlFlow::CONTINUE
        }
    }

    #[inline]
    #[instrument(skip(self), level = "trace", ret)]
    fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
        let flags = r.type_flags();
        trace!(r.flags=?flags);
        if flags.intersects(self.flags) {
            ControlFlow::Break(FoundFlags)
        } else {
            ControlFlow::CONTINUE
        }
    }

    #[inline]
    #[instrument(level = "trace", ret)]
    fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
        let flags = FlagComputation::for_const(c);
        trace!(r.flags=?flags);
        if flags.intersects(self.flags) {
            ControlFlow::Break(FoundFlags)
        } else {
            ControlFlow::CONTINUE
        }
    }

    #[inline]
    #[instrument(level = "trace", ret)]
    fn visit_unevaluated(&mut self, uv: ty::Unevaluated<'tcx>) -> ControlFlow<Self::BreakTy> {
        let flags = FlagComputation::for_unevaluated_const(uv);
        trace!(r.flags=?flags);
        if flags.intersects(self.flags) {
            ControlFlow::Break(FoundFlags)
        } else {
            ControlFlow::CONTINUE
        }
    }

    #[inline]
    #[instrument(level = "trace", ret)]
    fn visit_predicate(&mut self, predicate: ty::Predicate<'tcx>) -> ControlFlow<Self::BreakTy> {
        debug!(
            "HasTypeFlagsVisitor: predicate={:?} predicate.flags={:?} self.flags={:?}",
            predicate,
            predicate.flags(),
            self.flags
        );
        if predicate.flags().intersects(self.flags) {
            ControlFlow::Break(FoundFlags)
        } else {
            ControlFlow::CONTINUE
        }
    }
}

/// Collects all the late-bound regions at the innermost binding level
/// into a hash set.
struct LateBoundRegionsCollector {
    current_index: ty::DebruijnIndex,
    regions: FxHashSet<ty::BoundRegionKind>,

    /// `true` if we only want regions that are known to be
    /// "constrained" when you equate this type with another type. In
    /// particular, if you have e.g., `&'a u32` and `&'b u32`, equating
    /// them constraints `'a == 'b`. But if you have `<&'a u32 as
    /// Trait>::Foo` and `<&'b u32 as Trait>::Foo`, normalizing those
    /// types may mean that `'a` and `'b` don't appear in the results,
    /// so they are not considered *constrained*.
    just_constrained: bool,
}

impl LateBoundRegionsCollector {
    fn new(just_constrained: bool) -> Self {
        LateBoundRegionsCollector {
            current_index: ty::INNERMOST,
            regions: Default::default(),
            just_constrained,
        }
    }
}

impl<'tcx> TypeVisitor<'tcx> for LateBoundRegionsCollector {
    fn visit_binder<T: TypeVisitable<'tcx>>(
        &mut self,
        t: &Binder<'tcx, T>,
    ) -> ControlFlow<Self::BreakTy> {
        self.current_index.shift_in(1);
        let result = t.super_visit_with(self);
        self.current_index.shift_out(1);
        result
    }

    fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
        // if we are only looking for "constrained" region, we have to
        // ignore the inputs to a projection, as they may not appear
        // in the normalized form
        if self.just_constrained {
            if let ty::Projection(..) | ty::Opaque(..) = t.kind() {
                return ControlFlow::CONTINUE;
            }
        }

        t.super_visit_with(self)
    }

    fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
        // if we are only looking for "constrained" region, we have to
        // ignore the inputs of an unevaluated const, as they may not appear
        // in the normalized form
        if self.just_constrained {
            if let ty::ConstKind::Unevaluated(..) = c.kind() {
                return ControlFlow::CONTINUE;
            }
        }

        c.super_visit_with(self)
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
        if let ty::ReLateBound(debruijn, br) = *r {
            if debruijn == self.current_index {
                self.regions.insert(br.kind);
            }
        }
        ControlFlow::CONTINUE
    }
}

/// Finds the max universe present
pub struct MaxUniverse {
    max_universe: ty::UniverseIndex,
}

impl MaxUniverse {
    pub fn new() -> Self {
        MaxUniverse { max_universe: ty::UniverseIndex::ROOT }
    }

    pub fn max_universe(self) -> ty::UniverseIndex {
        self.max_universe
    }
}

impl<'tcx> TypeVisitor<'tcx> for MaxUniverse {
    fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
        if let ty::Placeholder(placeholder) = t.kind() {
            self.max_universe = ty::UniverseIndex::from_u32(
                self.max_universe.as_u32().max(placeholder.universe.as_u32()),
            );
        }

        t.super_visit_with(self)
    }

    fn visit_const(&mut self, c: ty::consts::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
        if let ty::ConstKind::Placeholder(placeholder) = c.kind() {
            self.max_universe = ty::UniverseIndex::from_u32(
                self.max_universe.as_u32().max(placeholder.universe.as_u32()),
            );
        }

        c.super_visit_with(self)
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
        if let ty::RePlaceholder(placeholder) = *r {
            self.max_universe = ty::UniverseIndex::from_u32(
                self.max_universe.as_u32().max(placeholder.universe.as_u32()),
            );
        }

        ControlFlow::CONTINUE
    }
}