1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
use crate::infer::{InferCtxt, TyCtxtInferExt};
use crate::traits::ObligationCause;
use crate::traits::{TraitEngine, TraitEngineExt};
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_hir::lang_items::LangItem;
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor};
use rustc_span::Span;
use std::ops::ControlFlow;
/// This method traverses the structure of `ty`, trying to find an
/// instance of an ADT (i.e. struct or enum) that doesn't implement
/// the structural-match traits, or a generic type parameter
/// (which cannot be determined to be structural-match).
///
/// The "structure of a type" includes all components that would be
/// considered when doing a pattern match on a constant of that
/// type.
///
/// * This means this method descends into fields of structs/enums,
/// and also descends into the inner type `T` of `&T` and `&mut T`
///
/// * The traversal doesn't dereference unsafe pointers (`*const T`,
/// `*mut T`), and it does not visit the type arguments of an
/// instantiated generic like `PhantomData<T>`.
///
/// The reason we do this search is Rust currently require all ADTs
/// reachable from a constant's type to implement the
/// structural-match traits, which essentially say that
/// the implementation of `PartialEq::eq` behaves *equivalently* to a
/// comparison against the unfolded structure.
///
/// For more background on why Rust has this requirement, and issues
/// that arose when the requirement was not enforced completely, see
/// Rust RFC 1445, rust-lang/rust#61188, and rust-lang/rust#62307.
pub fn search_for_structural_match_violation<'tcx>(
span: Span,
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
) -> Option<Ty<'tcx>> {
ty.visit_with(&mut Search { tcx, span, seen: FxHashSet::default(), adt_const_param: false })
.break_value()
}
/// This method traverses the structure of `ty`, trying to find any
/// types that are not allowed to be used in a const generic.
///
/// This is either because the type does not implement `StructuralEq`
/// and `StructuralPartialEq`, or because the type is intentionally
/// not supported in const generics (such as floats and raw pointers,
/// which are allowed in match blocks).
pub fn search_for_adt_const_param_violation<'tcx>(
span: Span,
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
) -> Option<Ty<'tcx>> {
ty.visit_with(&mut Search { tcx, span, seen: FxHashSet::default(), adt_const_param: true })
.break_value()
}
/// This method returns true if and only if `adt_ty` itself has been marked as
/// eligible for structural-match: namely, if it implements both
/// `StructuralPartialEq` and `StructuralEq` (which are respectively injected by
/// `#[derive(PartialEq)]` and `#[derive(Eq)]`).
///
/// Note that this does *not* recursively check if the substructure of `adt_ty`
/// implements the traits.
fn type_marked_structural<'tcx>(
infcx: &InferCtxt<'_, 'tcx>,
adt_ty: Ty<'tcx>,
cause: ObligationCause<'tcx>,
) -> bool {
let mut fulfillment_cx = <dyn TraitEngine<'tcx>>::new(infcx.tcx);
// require `#[derive(PartialEq)]`
let structural_peq_def_id =
infcx.tcx.require_lang_item(LangItem::StructuralPeq, Some(cause.span));
fulfillment_cx.register_bound(
infcx,
ty::ParamEnv::empty(),
adt_ty,
structural_peq_def_id,
cause.clone(),
);
// for now, require `#[derive(Eq)]`. (Doing so is a hack to work around
// the type `for<'a> fn(&'a ())` failing to implement `Eq` itself.)
let structural_teq_def_id =
infcx.tcx.require_lang_item(LangItem::StructuralTeq, Some(cause.span));
fulfillment_cx.register_bound(
infcx,
ty::ParamEnv::empty(),
adt_ty,
structural_teq_def_id,
cause,
);
// We deliberately skip *reporting* fulfillment errors (via
// `report_fulfillment_errors`), for two reasons:
//
// 1. The error messages would mention `std::marker::StructuralPartialEq`
// (a trait which is solely meant as an implementation detail
// for now), and
//
// 2. We are sometimes doing future-incompatibility lints for
// now, so we do not want unconditional errors here.
fulfillment_cx.select_all_or_error(infcx).is_empty()
}
/// This implements the traversal over the structure of a given type to try to
/// find instances of ADTs (specifically structs or enums) that do not implement
/// the structural-match traits (`StructuralPartialEq` and `StructuralEq`).
struct Search<'tcx> {
span: Span,
tcx: TyCtxt<'tcx>,
/// Tracks ADTs previously encountered during search, so that
/// we will not recur on them again.
seen: FxHashSet<hir::def_id::DefId>,
// Additionally deny things that have been allowed in patterns,
// but are not allowed in adt const params, such as floats and
// fn ptrs.
adt_const_param: bool,
}
impl<'tcx> Search<'tcx> {
fn type_marked_structural(&self, adt_ty: Ty<'tcx>) -> bool {
adt_ty.is_structural_eq_shallow(self.tcx)
}
}
impl<'tcx> TypeVisitor<'tcx> for Search<'tcx> {
type BreakTy = Ty<'tcx>;
fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
debug!("Search visiting ty: {:?}", ty);
let (adt_def, substs) = match *ty.kind() {
ty::Adt(adt_def, substs) => (adt_def, substs),
ty::Param(_) => {
return ControlFlow::Break(ty);
}
ty::Dynamic(..) => {
return ControlFlow::Break(ty);
}
ty::Foreign(_) => {
return ControlFlow::Break(ty);
}
ty::Opaque(..) => {
return ControlFlow::Break(ty);
}
ty::Projection(..) => {
return ControlFlow::Break(ty);
}
ty::Closure(..) => {
return ControlFlow::Break(ty);
}
ty::Generator(..) | ty::GeneratorWitness(..) => {
return ControlFlow::Break(ty);
}
ty::FnDef(..) => {
// Types of formals and return in `fn(_) -> _` are also irrelevant;
// so we do not recur into them via `super_visit_with`
return ControlFlow::CONTINUE;
}
ty::Array(_, n)
if { n.try_eval_usize(self.tcx, ty::ParamEnv::reveal_all()) == Some(0) } =>
{
// rust-lang/rust#62336: ignore type of contents
// for empty array.
return ControlFlow::CONTINUE;
}
ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Str | ty::Never => {
// These primitive types are always structural match.
//
// `Never` is kind of special here, but as it is not inhabitable, this should be fine.
return ControlFlow::CONTINUE;
}
ty::FnPtr(..) => {
if !self.adt_const_param {
return ControlFlow::CONTINUE;
} else {
return ControlFlow::Break(ty);
}
}
ty::RawPtr(..) => {
if !self.adt_const_param {
// structural-match ignores substructure of
// `*const _`/`*mut _`, so skip `super_visit_with`.
//
// For example, if you have:
// ```
// struct NonStructural;
// #[derive(PartialEq, Eq)]
// struct T(*const NonStructural);
// const C: T = T(std::ptr::null());
// ```
//
// Even though `NonStructural` does not implement `PartialEq`,
// structural equality on `T` does not recur into the raw
// pointer. Therefore, one can still use `C` in a pattern.
return ControlFlow::CONTINUE;
} else {
return ControlFlow::Break(ty);
}
}
ty::Float(_) => {
if !self.adt_const_param {
return ControlFlow::CONTINUE;
} else {
return ControlFlow::Break(ty);
}
}
ty::Array(..) | ty::Slice(_) | ty::Ref(..) | ty::Tuple(..) => {
// First check all contained types and then tell the caller to continue searching.
return ty.super_visit_with(self);
}
ty::Infer(_) | ty::Placeholder(_) | ty::Bound(..) => {
bug!("unexpected type during structural-match checking: {:?}", ty);
}
ty::Error(_) => {
self.tcx.sess.delay_span_bug(self.span, "ty::Error in structural-match check");
// We still want to check other types after encountering an error,
// as this may still emit relevant errors.
return ControlFlow::CONTINUE;
}
};
if !self.seen.insert(adt_def.did()) {
debug!("Search already seen adt_def: {:?}", adt_def);
return ControlFlow::CONTINUE;
}
if !self.type_marked_structural(ty) {
debug!("Search found ty: {:?}", ty);
return ControlFlow::Break(ty);
}
// structural-match does not care about the
// instantiation of the generics in an ADT (it
// instead looks directly at its fields outside
// this match), so we skip super_visit_with.
//
// (Must not recur on substs for `PhantomData<T>` cf
// rust-lang/rust#55028 and rust-lang/rust#55837; but also
// want to skip substs when only uses of generic are
// behind unsafe pointers `*const T`/`*mut T`.)
// even though we skip super_visit_with, we must recur on
// fields of ADT.
let tcx = self.tcx;
adt_def.all_fields().map(|field| field.ty(tcx, substs)).try_for_each(|field_ty| {
let ty = self.tcx.normalize_erasing_regions(ty::ParamEnv::empty(), field_ty);
debug!("structural-match ADT: field_ty={:?}, ty={:?}", field_ty, ty);
ty.visit_with(self)
})
}
}
pub fn provide(providers: &mut Providers) {
providers.has_structural_eq_impls = |tcx, ty| {
tcx.infer_ctxt().enter(|infcx| {
let cause = ObligationCause::dummy();
type_marked_structural(&infcx, ty, cause)
})
};
}