1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
//! Trait Resolution. See the [rustc dev guide] for more information on how this works.
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html

pub mod auto_trait;
mod chalk_fulfill;
pub mod codegen;
mod coherence;
pub mod const_evaluatable;
mod engine;
pub mod error_reporting;
mod fulfill;
pub mod misc;
mod object_safety;
mod on_unimplemented;
pub mod outlives_bounds;
mod project;
pub mod query;
pub(crate) mod relationships;
mod select;
mod specialize;
mod structural_match;
mod util;
pub mod wf;

use crate::errors::DumpVTableEntries;
use crate::infer::outlives::env::OutlivesEnvironment;
use crate::infer::{InferCtxt, TyCtxtInferExt};
use crate::traits::error_reporting::InferCtxtExt as _;
use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
use rustc_errors::ErrorGuaranteed;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::lang_items::LangItem;
use rustc_infer::traits::TraitEngineExt as _;
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::subst::{InternalSubsts, SubstsRef};
use rustc_middle::ty::visit::TypeVisitable;
use rustc_middle::ty::{
    self, DefIdTree, GenericParamDefKind, Subst, ToPredicate, Ty, TyCtxt, TypeSuperVisitable,
    VtblEntry,
};
use rustc_span::{sym, Span};
use smallvec::SmallVec;

use std::fmt::Debug;
use std::ops::ControlFlow;

pub use self::FulfillmentErrorCode::*;
pub use self::ImplSource::*;
pub use self::ObligationCauseCode::*;
pub use self::SelectionError::*;

pub use self::coherence::{add_placeholder_note, orphan_check, overlapping_impls};
pub use self::coherence::{OrphanCheckErr, OverlapResult};
pub use self::engine::{ObligationCtxt, TraitEngineExt};
pub use self::fulfill::{FulfillmentContext, PendingPredicateObligation};
pub use self::object_safety::astconv_object_safety_violations;
pub use self::object_safety::is_vtable_safe_method;
pub use self::object_safety::MethodViolationCode;
pub use self::object_safety::ObjectSafetyViolation;
pub use self::on_unimplemented::{OnUnimplementedDirective, OnUnimplementedNote};
pub use self::project::{normalize, normalize_projection_type, normalize_to};
pub use self::select::{EvaluationCache, SelectionCache, SelectionContext};
pub use self::select::{EvaluationResult, IntercrateAmbiguityCause, OverflowError};
pub use self::specialize::specialization_graph::FutureCompatOverlapError;
pub use self::specialize::specialization_graph::FutureCompatOverlapErrorKind;
pub use self::specialize::{specialization_graph, translate_substs, OverlapError};
pub use self::structural_match::{
    search_for_adt_const_param_violation, search_for_structural_match_violation,
};
pub use self::util::{
    elaborate_obligations, elaborate_predicates, elaborate_predicates_with_span,
    elaborate_trait_ref, elaborate_trait_refs,
};
pub use self::util::{expand_trait_aliases, TraitAliasExpander};
pub use self::util::{
    get_vtable_index_of_object_method, impl_item_is_final, predicate_for_trait_def, upcast_choices,
};
pub use self::util::{
    supertrait_def_ids, supertraits, transitive_bounds, transitive_bounds_that_define_assoc_type,
    SupertraitDefIds, Supertraits,
};

pub use self::chalk_fulfill::FulfillmentContext as ChalkFulfillmentContext;

pub use rustc_infer::traits::*;

/// Whether to skip the leak check, as part of a future compatibility warning step.
///
/// The "default" for skip-leak-check corresponds to the current
/// behavior (do not skip the leak check) -- not the behavior we are
/// transitioning into.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Default)]
pub enum SkipLeakCheck {
    Yes,
    #[default]
    No,
}

impl SkipLeakCheck {
    fn is_yes(self) -> bool {
        self == SkipLeakCheck::Yes
    }
}

/// The mode that trait queries run in.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum TraitQueryMode {
    /// Standard/un-canonicalized queries get accurate
    /// spans etc. passed in and hence can do reasonable
    /// error reporting on their own.
    Standard,
    /// Canonicalized queries get dummy spans and hence
    /// must generally propagate errors to
    /// pre-canonicalization callsites.
    Canonical,
}

/// Creates predicate obligations from the generic bounds.
pub fn predicates_for_generics<'tcx>(
    cause: impl Fn(usize, Span) -> ObligationCause<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    generic_bounds: ty::InstantiatedPredicates<'tcx>,
) -> impl Iterator<Item = PredicateObligation<'tcx>> {
    let generic_bounds = generic_bounds;
    debug!("predicates_for_generics(generic_bounds={:?})", generic_bounds);

    std::iter::zip(generic_bounds.predicates, generic_bounds.spans).enumerate().map(
        move |(idx, (predicate, span))| Obligation {
            cause: cause(idx, span),
            recursion_depth: 0,
            param_env: param_env,
            predicate,
        },
    )
}

/// Determines whether the type `ty` is known to meet `bound` and
/// returns true if so. Returns false if `ty` either does not meet
/// `bound` or is not known to meet bound (note that this is
/// conservative towards *no impl*, which is the opposite of the
/// `evaluate` methods).
pub fn type_known_to_meet_bound_modulo_regions<'a, 'tcx>(
    infcx: &InferCtxt<'a, 'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    ty: Ty<'tcx>,
    def_id: DefId,
    span: Span,
) -> bool {
    debug!(
        "type_known_to_meet_bound_modulo_regions(ty={:?}, bound={:?})",
        ty,
        infcx.tcx.def_path_str(def_id)
    );

    let trait_ref =
        ty::Binder::dummy(ty::TraitRef { def_id, substs: infcx.tcx.mk_substs_trait(ty, &[]) });
    let obligation = Obligation {
        param_env,
        cause: ObligationCause::misc(span, hir::CRATE_HIR_ID),
        recursion_depth: 0,
        predicate: trait_ref.without_const().to_predicate(infcx.tcx),
    };

    let result = infcx.predicate_must_hold_modulo_regions(&obligation);
    debug!(
        "type_known_to_meet_ty={:?} bound={} => {:?}",
        ty,
        infcx.tcx.def_path_str(def_id),
        result
    );

    if result && ty.has_infer_types_or_consts() {
        // Because of inference "guessing", selection can sometimes claim
        // to succeed while the success requires a guess. To ensure
        // this function's result remains infallible, we must confirm
        // that guess. While imperfect, I believe this is sound.

        // We can use a dummy node-id here because we won't pay any mind
        // to region obligations that arise (there shouldn't really be any
        // anyhow).
        let cause = ObligationCause::misc(span, hir::CRATE_HIR_ID);

        // The handling of regions in this area of the code is terrible,
        // see issue #29149. We should be able to improve on this with
        // NLL.
        let errors = fully_solve_bound(infcx, cause, param_env, ty, def_id);

        // Note: we only assume something is `Copy` if we can
        // *definitively* show that it implements `Copy`. Otherwise,
        // assume it is move; linear is always ok.
        match &errors[..] {
            [] => {
                debug!(
                    "type_known_to_meet_bound_modulo_regions: ty={:?} bound={} success",
                    ty,
                    infcx.tcx.def_path_str(def_id)
                );
                true
            }
            errors => {
                debug!(
                    ?ty,
                    bound = %infcx.tcx.def_path_str(def_id),
                    ?errors,
                    "type_known_to_meet_bound_modulo_regions"
                );
                false
            }
        }
    } else {
        result
    }
}

#[instrument(level = "debug", skip(tcx, elaborated_env))]
fn do_normalize_predicates<'tcx>(
    tcx: TyCtxt<'tcx>,
    cause: ObligationCause<'tcx>,
    elaborated_env: ty::ParamEnv<'tcx>,
    predicates: Vec<ty::Predicate<'tcx>>,
) -> Result<Vec<ty::Predicate<'tcx>>, ErrorGuaranteed> {
    let span = cause.span;
    // FIXME. We should really... do something with these region
    // obligations. But this call just continues the older
    // behavior (i.e., doesn't cause any new bugs), and it would
    // take some further refactoring to actually solve them. In
    // particular, we would have to handle implied bounds
    // properly, and that code is currently largely confined to
    // regionck (though I made some efforts to extract it
    // out). -nmatsakis
    //
    // @arielby: In any case, these obligations are checked
    // by wfcheck anyway, so I'm not sure we have to check
    // them here too, and we will remove this function when
    // we move over to lazy normalization *anyway*.
    tcx.infer_ctxt().ignoring_regions().enter(|infcx| {
        let predicates = match fully_normalize(&infcx, cause, elaborated_env, predicates) {
            Ok(predicates) => predicates,
            Err(errors) => {
                let reported = infcx.report_fulfillment_errors(&errors, None, false);
                return Err(reported);
            }
        };

        debug!("do_normalize_predictes: normalized predicates = {:?}", predicates);

        // We can use the `elaborated_env` here; the region code only
        // cares about declarations like `'a: 'b`.
        let outlives_env = OutlivesEnvironment::new(elaborated_env);

        // FIXME: It's very weird that we ignore region obligations but apparently
        // still need to use `resolve_regions` as we need the resolved regions in
        // the normalized predicates.
        let errors = infcx.resolve_regions(&outlives_env);
        if !errors.is_empty() {
            tcx.sess.delay_span_bug(
                span,
                format!(
                    "failed region resolution while normalizing {elaborated_env:?}: {errors:?}"
                ),
            );
        }

        match infcx.fully_resolve(predicates) {
            Ok(predicates) => Ok(predicates),
            Err(fixup_err) => {
                // If we encounter a fixup error, it means that some type
                // variable wound up unconstrained. I actually don't know
                // if this can happen, and I certainly don't expect it to
                // happen often, but if it did happen it probably
                // represents a legitimate failure due to some kind of
                // unconstrained variable.
                //
                // @lcnr: Let's still ICE here for now. I want a test case
                // for that.
                span_bug!(
                    span,
                    "inference variables in normalized parameter environment: {}",
                    fixup_err
                );
            }
        }
    })
}

// FIXME: this is gonna need to be removed ...
/// Normalizes the parameter environment, reporting errors if they occur.
#[instrument(level = "debug", skip(tcx))]
pub fn normalize_param_env_or_error<'tcx>(
    tcx: TyCtxt<'tcx>,
    unnormalized_env: ty::ParamEnv<'tcx>,
    cause: ObligationCause<'tcx>,
) -> ty::ParamEnv<'tcx> {
    // I'm not wild about reporting errors here; I'd prefer to
    // have the errors get reported at a defined place (e.g.,
    // during typeck). Instead I have all parameter
    // environments, in effect, going through this function
    // and hence potentially reporting errors. This ensures of
    // course that we never forget to normalize (the
    // alternative seemed like it would involve a lot of
    // manual invocations of this fn -- and then we'd have to
    // deal with the errors at each of those sites).
    //
    // In any case, in practice, typeck constructs all the
    // parameter environments once for every fn as it goes,
    // and errors will get reported then; so outside of type inference we
    // can be sure that no errors should occur.
    let mut predicates: Vec<_> =
        util::elaborate_predicates(tcx, unnormalized_env.caller_bounds().into_iter())
            .map(|obligation| obligation.predicate)
            .collect();

    debug!("normalize_param_env_or_error: elaborated-predicates={:?}", predicates);

    let elaborated_env = ty::ParamEnv::new(
        tcx.intern_predicates(&predicates),
        unnormalized_env.reveal(),
        unnormalized_env.constness(),
    );

    // HACK: we are trying to normalize the param-env inside *itself*. The problem is that
    // normalization expects its param-env to be already normalized, which means we have
    // a circularity.
    //
    // The way we handle this is by normalizing the param-env inside an unnormalized version
    // of the param-env, which means that if the param-env contains unnormalized projections,
    // we'll have some normalization failures. This is unfortunate.
    //
    // Lazy normalization would basically handle this by treating just the
    // normalizing-a-trait-ref-requires-itself cycles as evaluation failures.
    //
    // Inferred outlives bounds can create a lot of `TypeOutlives` predicates for associated
    // types, so to make the situation less bad, we normalize all the predicates *but*
    // the `TypeOutlives` predicates first inside the unnormalized parameter environment, and
    // then we normalize the `TypeOutlives` bounds inside the normalized parameter environment.
    //
    // This works fairly well because trait matching  does not actually care about param-env
    // TypeOutlives predicates - these are normally used by regionck.
    let outlives_predicates: Vec<_> = predicates
        .drain_filter(|predicate| {
            matches!(predicate.kind().skip_binder(), ty::PredicateKind::TypeOutlives(..))
        })
        .collect();

    debug!(
        "normalize_param_env_or_error: predicates=(non-outlives={:?}, outlives={:?})",
        predicates, outlives_predicates
    );
    let Ok(non_outlives_predicates) = do_normalize_predicates(
        tcx,
        cause.clone(),
        elaborated_env,
        predicates,
    ) else {
        // An unnormalized env is better than nothing.
        debug!("normalize_param_env_or_error: errored resolving non-outlives predicates");
        return elaborated_env;
    };

    debug!("normalize_param_env_or_error: non-outlives predicates={:?}", non_outlives_predicates);

    // Not sure whether it is better to include the unnormalized TypeOutlives predicates
    // here. I believe they should not matter, because we are ignoring TypeOutlives param-env
    // predicates here anyway. Keeping them here anyway because it seems safer.
    let outlives_env: Vec<_> =
        non_outlives_predicates.iter().chain(&outlives_predicates).cloned().collect();
    let outlives_env = ty::ParamEnv::new(
        tcx.intern_predicates(&outlives_env),
        unnormalized_env.reveal(),
        unnormalized_env.constness(),
    );
    let Ok(outlives_predicates) = do_normalize_predicates(
        tcx,
        cause,
        outlives_env,
        outlives_predicates,
    ) else {
        // An unnormalized env is better than nothing.
        debug!("normalize_param_env_or_error: errored resolving outlives predicates");
        return elaborated_env;
    };
    debug!("normalize_param_env_or_error: outlives predicates={:?}", outlives_predicates);

    let mut predicates = non_outlives_predicates;
    predicates.extend(outlives_predicates);
    debug!("normalize_param_env_or_error: final predicates={:?}", predicates);
    ty::ParamEnv::new(
        tcx.intern_predicates(&predicates),
        unnormalized_env.reveal(),
        unnormalized_env.constness(),
    )
}

/// Normalize a type and process all resulting obligations, returning any errors
pub fn fully_normalize<'a, 'tcx, T>(
    infcx: &InferCtxt<'a, 'tcx>,
    cause: ObligationCause<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    value: T,
) -> Result<T, Vec<FulfillmentError<'tcx>>>
where
    T: TypeFoldable<'tcx>,
{
    debug!("fully_normalize_with_fulfillcx(value={:?})", value);
    let selcx = &mut SelectionContext::new(infcx);
    let Normalized { value: normalized_value, obligations } =
        project::normalize(selcx, param_env, cause, value);
    debug!(
        "fully_normalize: normalized_value={:?} obligations={:?}",
        normalized_value, obligations
    );

    let mut fulfill_cx = FulfillmentContext::new();
    for obligation in obligations {
        fulfill_cx.register_predicate_obligation(infcx, obligation);
    }

    debug!("fully_normalize: select_all_or_error start");
    let errors = fulfill_cx.select_all_or_error(infcx);
    if !errors.is_empty() {
        return Err(errors);
    }
    debug!("fully_normalize: select_all_or_error complete");
    let resolved_value = infcx.resolve_vars_if_possible(normalized_value);
    debug!("fully_normalize: resolved_value={:?}", resolved_value);
    Ok(resolved_value)
}

/// Process an obligation (and any nested obligations that come from it) to
/// completion, returning any errors
pub fn fully_solve_obligation<'a, 'tcx>(
    infcx: &InferCtxt<'a, 'tcx>,
    obligation: PredicateObligation<'tcx>,
) -> Vec<FulfillmentError<'tcx>> {
    let mut engine = <dyn TraitEngine<'tcx>>::new(infcx.tcx);
    engine.register_predicate_obligation(infcx, obligation);
    engine.select_all_or_error(infcx)
}

/// Process a set of obligations (and any nested obligations that come from them)
/// to completion
pub fn fully_solve_obligations<'a, 'tcx>(
    infcx: &InferCtxt<'a, 'tcx>,
    obligations: impl IntoIterator<Item = PredicateObligation<'tcx>>,
) -> Vec<FulfillmentError<'tcx>> {
    let mut engine = <dyn TraitEngine<'tcx>>::new(infcx.tcx);
    engine.register_predicate_obligations(infcx, obligations);
    engine.select_all_or_error(infcx)
}

/// Process a bound (and any nested obligations that come from it) to completion.
/// This is a convenience function for traits that have no generic arguments, such
/// as auto traits, and builtin traits like Copy or Sized.
pub fn fully_solve_bound<'a, 'tcx>(
    infcx: &InferCtxt<'a, 'tcx>,
    cause: ObligationCause<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    ty: Ty<'tcx>,
    bound: DefId,
) -> Vec<FulfillmentError<'tcx>> {
    let mut engine = <dyn TraitEngine<'tcx>>::new(infcx.tcx);
    engine.register_bound(infcx, param_env, ty, bound, cause);
    engine.select_all_or_error(infcx)
}

/// Normalizes the predicates and checks whether they hold in an empty environment. If this
/// returns true, then either normalize encountered an error or one of the predicates did not
/// hold. Used when creating vtables to check for unsatisfiable methods.
pub fn impossible_predicates<'tcx>(
    tcx: TyCtxt<'tcx>,
    predicates: Vec<ty::Predicate<'tcx>>,
) -> bool {
    debug!("impossible_predicates(predicates={:?})", predicates);

    let result = tcx.infer_ctxt().enter(|infcx| {
        let param_env = ty::ParamEnv::reveal_all();
        let ocx = ObligationCtxt::new(&infcx);
        let predicates = ocx.normalize(ObligationCause::dummy(), param_env, predicates);
        for predicate in predicates {
            let obligation = Obligation::new(ObligationCause::dummy(), param_env, predicate);
            ocx.register_obligation(obligation);
        }
        let errors = ocx.select_all_or_error();

        // Clean up after ourselves
        let _ = infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();

        !errors.is_empty()
    });
    debug!("impossible_predicates = {:?}", result);
    result
}

fn subst_and_check_impossible_predicates<'tcx>(
    tcx: TyCtxt<'tcx>,
    key: (DefId, SubstsRef<'tcx>),
) -> bool {
    debug!("subst_and_check_impossible_predicates(key={:?})", key);

    let mut predicates = tcx.predicates_of(key.0).instantiate(tcx, key.1).predicates;

    // Specifically check trait fulfillment to avoid an error when trying to resolve
    // associated items.
    if let Some(trait_def_id) = tcx.trait_of_item(key.0) {
        let trait_ref = ty::TraitRef::from_method(tcx, trait_def_id, key.1);
        predicates.push(ty::Binder::dummy(trait_ref).to_poly_trait_predicate().to_predicate(tcx));
    }

    predicates.retain(|predicate| !predicate.needs_subst());
    let result = impossible_predicates(tcx, predicates);

    debug!("subst_and_check_impossible_predicates(key={:?}) = {:?}", key, result);
    result
}

/// Checks whether a trait's method is impossible to call on a given impl.
///
/// This only considers predicates that reference the impl's generics, and not
/// those that reference the method's generics.
fn is_impossible_method<'tcx>(
    tcx: TyCtxt<'tcx>,
    (impl_def_id, trait_item_def_id): (DefId, DefId),
) -> bool {
    struct ReferencesOnlyParentGenerics<'tcx> {
        tcx: TyCtxt<'tcx>,
        generics: &'tcx ty::Generics,
        trait_item_def_id: DefId,
    }
    impl<'tcx> ty::TypeVisitor<'tcx> for ReferencesOnlyParentGenerics<'tcx> {
        type BreakTy = ();
        fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
            // If this is a parameter from the trait item's own generics, then bail
            if let ty::Param(param) = t.kind()
                && let param_def_id = self.generics.type_param(param, self.tcx).def_id
                && self.tcx.parent(param_def_id) == self.trait_item_def_id
            {
                return ControlFlow::BREAK;
            }
            t.super_visit_with(self)
        }
        fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
            if let ty::ReEarlyBound(param) = r.kind()
                && let param_def_id = self.generics.region_param(&param, self.tcx).def_id
                && self.tcx.parent(param_def_id) == self.trait_item_def_id
            {
                return ControlFlow::BREAK;
            }
            r.super_visit_with(self)
        }
        fn visit_const(&mut self, ct: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
            if let ty::ConstKind::Param(param) = ct.kind()
                && let param_def_id = self.generics.const_param(&param, self.tcx).def_id
                && self.tcx.parent(param_def_id) == self.trait_item_def_id
            {
                return ControlFlow::BREAK;
            }
            ct.super_visit_with(self)
        }
    }

    let generics = tcx.generics_of(trait_item_def_id);
    let predicates = tcx.predicates_of(trait_item_def_id);
    let impl_trait_ref =
        tcx.impl_trait_ref(impl_def_id).expect("expected impl to correspond to trait");
    let param_env = tcx.param_env(impl_def_id);

    let mut visitor = ReferencesOnlyParentGenerics { tcx, generics, trait_item_def_id };
    let predicates_for_trait = predicates.predicates.iter().filter_map(|(pred, span)| {
        if pred.visit_with(&mut visitor).is_continue() {
            Some(Obligation::new(
                ObligationCause::dummy_with_span(*span),
                param_env,
                ty::EarlyBinder(*pred).subst(tcx, impl_trait_ref.substs),
            ))
        } else {
            None
        }
    });

    tcx.infer_ctxt().ignoring_regions().enter(|ref infcx| {
        for obligation in predicates_for_trait {
            // Ignore overflow error, to be conservative.
            if let Ok(result) = infcx.evaluate_obligation(&obligation)
                && !result.may_apply()
            {
                return true;
            }
        }

        false
    })
}

#[derive(Clone, Debug)]
enum VtblSegment<'tcx> {
    MetadataDSA,
    TraitOwnEntries { trait_ref: ty::PolyTraitRef<'tcx>, emit_vptr: bool },
}

/// Prepare the segments for a vtable
fn prepare_vtable_segments<'tcx, T>(
    tcx: TyCtxt<'tcx>,
    trait_ref: ty::PolyTraitRef<'tcx>,
    mut segment_visitor: impl FnMut(VtblSegment<'tcx>) -> ControlFlow<T>,
) -> Option<T> {
    // The following constraints holds for the final arrangement.
    // 1. The whole virtual table of the first direct super trait is included as the
    //    the prefix. If this trait doesn't have any super traits, then this step
    //    consists of the dsa metadata.
    // 2. Then comes the proper pointer metadata(vptr) and all own methods for all
    //    other super traits except those already included as part of the first
    //    direct super trait virtual table.
    // 3. finally, the own methods of this trait.

    // This has the advantage that trait upcasting to the first direct super trait on each level
    // is zero cost, and to another trait includes only replacing the pointer with one level indirection,
    // while not using too much extra memory.

    // For a single inheritance relationship like this,
    //   D --> C --> B --> A
    // The resulting vtable will consists of these segments:
    //  DSA, A, B, C, D

    // For a multiple inheritance relationship like this,
    //   D --> C --> A
    //           \-> B
    // The resulting vtable will consists of these segments:
    //  DSA, A, B, B-vptr, C, D

    // For a diamond inheritance relationship like this,
    //   D --> B --> A
    //     \-> C -/
    // The resulting vtable will consists of these segments:
    //  DSA, A, B, C, C-vptr, D

    // For a more complex inheritance relationship like this:
    //   O --> G --> C --> A
    //     \     \     \-> B
    //     |     |-> F --> D
    //     |           \-> E
    //     |-> N --> J --> H
    //           \     \-> I
    //           |-> M --> K
    //                 \-> L
    // The resulting vtable will consists of these segments:
    //  DSA, A, B, B-vptr, C, D, D-vptr, E, E-vptr, F, F-vptr, G,
    //  H, H-vptr, I, I-vptr, J, J-vptr, K, K-vptr, L, L-vptr, M, M-vptr,
    //  N, N-vptr, O

    // emit dsa segment first.
    if let ControlFlow::Break(v) = (segment_visitor)(VtblSegment::MetadataDSA) {
        return Some(v);
    }

    let mut emit_vptr_on_new_entry = false;
    let mut visited = util::PredicateSet::new(tcx);
    let predicate = trait_ref.without_const().to_predicate(tcx);
    let mut stack: SmallVec<[(ty::PolyTraitRef<'tcx>, _, _); 5]> =
        smallvec![(trait_ref, emit_vptr_on_new_entry, None)];
    visited.insert(predicate);

    // the main traversal loop:
    // basically we want to cut the inheritance directed graph into a few non-overlapping slices of nodes
    // that each node is emitted after all its descendents have been emitted.
    // so we convert the directed graph into a tree by skipping all previously visited nodes using a visited set.
    // this is done on the fly.
    // Each loop run emits a slice - it starts by find a "childless" unvisited node, backtracking upwards, and it
    // stops after it finds a node that has a next-sibling node.
    // This next-sibling node will used as the starting point of next slice.

    // Example:
    // For a diamond inheritance relationship like this,
    //   D#1 --> B#0 --> A#0
    //     \-> C#1 -/

    // Starting point 0 stack [D]
    // Loop run #0: Stack after diving in is [D B A], A is "childless"
    // after this point, all newly visited nodes won't have a vtable that equals to a prefix of this one.
    // Loop run #0: Emitting the slice [B A] (in reverse order), B has a next-sibling node, so this slice stops here.
    // Loop run #0: Stack after exiting out is [D C], C is the next starting point.
    // Loop run #1: Stack after diving in is [D C], C is "childless", since its child A is skipped(already emitted).
    // Loop run #1: Emitting the slice [D C] (in reverse order). No one has a next-sibling node.
    // Loop run #1: Stack after exiting out is []. Now the function exits.

    loop {
        // dive deeper into the stack, recording the path
        'diving_in: loop {
            if let Some((inner_most_trait_ref, _, _)) = stack.last() {
                let inner_most_trait_ref = *inner_most_trait_ref;
                let mut direct_super_traits_iter = tcx
                    .super_predicates_of(inner_most_trait_ref.def_id())
                    .predicates
                    .into_iter()
                    .filter_map(move |(pred, _)| {
                        pred.subst_supertrait(tcx, &inner_most_trait_ref).to_opt_poly_trait_pred()
                    });

                'diving_in_skip_visited_traits: loop {
                    if let Some(next_super_trait) = direct_super_traits_iter.next() {
                        if visited.insert(next_super_trait.to_predicate(tcx)) {
                            // We're throwing away potential constness of super traits here.
                            // FIXME: handle ~const super traits
                            let next_super_trait = next_super_trait.map_bound(|t| t.trait_ref);
                            stack.push((
                                next_super_trait,
                                emit_vptr_on_new_entry,
                                Some(direct_super_traits_iter),
                            ));
                            break 'diving_in_skip_visited_traits;
                        } else {
                            continue 'diving_in_skip_visited_traits;
                        }
                    } else {
                        break 'diving_in;
                    }
                }
            }
        }

        // Other than the left-most path, vptr should be emitted for each trait.
        emit_vptr_on_new_entry = true;

        // emit innermost item, move to next sibling and stop there if possible, otherwise jump to outer level.
        'exiting_out: loop {
            if let Some((inner_most_trait_ref, emit_vptr, siblings_opt)) = stack.last_mut() {
                if let ControlFlow::Break(v) = (segment_visitor)(VtblSegment::TraitOwnEntries {
                    trait_ref: *inner_most_trait_ref,
                    emit_vptr: *emit_vptr,
                }) {
                    return Some(v);
                }

                'exiting_out_skip_visited_traits: loop {
                    if let Some(siblings) = siblings_opt {
                        if let Some(next_inner_most_trait_ref) = siblings.next() {
                            if visited.insert(next_inner_most_trait_ref.to_predicate(tcx)) {
                                // We're throwing away potential constness of super traits here.
                                // FIXME: handle ~const super traits
                                let next_inner_most_trait_ref =
                                    next_inner_most_trait_ref.map_bound(|t| t.trait_ref);
                                *inner_most_trait_ref = next_inner_most_trait_ref;
                                *emit_vptr = emit_vptr_on_new_entry;
                                break 'exiting_out;
                            } else {
                                continue 'exiting_out_skip_visited_traits;
                            }
                        }
                    }
                    stack.pop();
                    continue 'exiting_out;
                }
            }
            // all done
            return None;
        }
    }
}

fn dump_vtable_entries<'tcx>(
    tcx: TyCtxt<'tcx>,
    sp: Span,
    trait_ref: ty::PolyTraitRef<'tcx>,
    entries: &[VtblEntry<'tcx>],
) {
    tcx.sess.emit_err(DumpVTableEntries {
        span: sp,
        trait_ref,
        entries: format!("{:#?}", entries),
    });
}

fn own_existential_vtable_entries<'tcx>(
    tcx: TyCtxt<'tcx>,
    trait_ref: ty::PolyExistentialTraitRef<'tcx>,
) -> &'tcx [DefId] {
    let trait_methods = tcx
        .associated_items(trait_ref.def_id())
        .in_definition_order()
        .filter(|item| item.kind == ty::AssocKind::Fn);
    // Now list each method's DefId (for within its trait).
    let own_entries = trait_methods.filter_map(move |trait_method| {
        debug!("own_existential_vtable_entry: trait_method={:?}", trait_method);
        let def_id = trait_method.def_id;

        // Some methods cannot be called on an object; skip those.
        if !is_vtable_safe_method(tcx, trait_ref.def_id(), &trait_method) {
            debug!("own_existential_vtable_entry: not vtable safe");
            return None;
        }

        Some(def_id)
    });

    tcx.arena.alloc_from_iter(own_entries.into_iter())
}

/// Given a trait `trait_ref`, iterates the vtable entries
/// that come from `trait_ref`, including its supertraits.
fn vtable_entries<'tcx>(
    tcx: TyCtxt<'tcx>,
    trait_ref: ty::PolyTraitRef<'tcx>,
) -> &'tcx [VtblEntry<'tcx>] {
    debug!("vtable_entries({:?})", trait_ref);

    let mut entries = vec![];

    let vtable_segment_callback = |segment| -> ControlFlow<()> {
        match segment {
            VtblSegment::MetadataDSA => {
                entries.extend(TyCtxt::COMMON_VTABLE_ENTRIES);
            }
            VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
                let existential_trait_ref = trait_ref
                    .map_bound(|trait_ref| ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref));

                // Lookup the shape of vtable for the trait.
                let own_existential_entries =
                    tcx.own_existential_vtable_entries(existential_trait_ref);

                let own_entries = own_existential_entries.iter().copied().map(|def_id| {
                    debug!("vtable_entries: trait_method={:?}", def_id);

                    // The method may have some early-bound lifetimes; add regions for those.
                    let substs = trait_ref.map_bound(|trait_ref| {
                        InternalSubsts::for_item(tcx, def_id, |param, _| match param.kind {
                            GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
                            GenericParamDefKind::Type { .. }
                            | GenericParamDefKind::Const { .. } => {
                                trait_ref.substs[param.index as usize]
                            }
                        })
                    });

                    // The trait type may have higher-ranked lifetimes in it;
                    // erase them if they appear, so that we get the type
                    // at some particular call site.
                    let substs = tcx
                        .normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), substs);

                    // It's possible that the method relies on where-clauses that
                    // do not hold for this particular set of type parameters.
                    // Note that this method could then never be called, so we
                    // do not want to try and codegen it, in that case (see #23435).
                    let predicates = tcx.predicates_of(def_id).instantiate_own(tcx, substs);
                    if impossible_predicates(tcx, predicates.predicates) {
                        debug!("vtable_entries: predicates do not hold");
                        return VtblEntry::Vacant;
                    }

                    let instance = ty::Instance::resolve_for_vtable(
                        tcx,
                        ty::ParamEnv::reveal_all(),
                        def_id,
                        substs,
                    )
                    .expect("resolution failed during building vtable representation");
                    VtblEntry::Method(instance)
                });

                entries.extend(own_entries);

                if emit_vptr {
                    entries.push(VtblEntry::TraitVPtr(trait_ref));
                }
            }
        }

        ControlFlow::Continue(())
    };

    let _ = prepare_vtable_segments(tcx, trait_ref, vtable_segment_callback);

    if tcx.has_attr(trait_ref.def_id(), sym::rustc_dump_vtable) {
        let sp = tcx.def_span(trait_ref.def_id());
        dump_vtable_entries(tcx, sp, trait_ref, &entries);
    }

    tcx.arena.alloc_from_iter(entries.into_iter())
}

/// Find slot base for trait methods within vtable entries of another trait
fn vtable_trait_first_method_offset<'tcx>(
    tcx: TyCtxt<'tcx>,
    key: (
        ty::PolyTraitRef<'tcx>, // trait_to_be_found
        ty::PolyTraitRef<'tcx>, // trait_owning_vtable
    ),
) -> usize {
    let (trait_to_be_found, trait_owning_vtable) = key;

    // #90177
    let trait_to_be_found_erased = tcx.erase_regions(trait_to_be_found);

    let vtable_segment_callback = {
        let mut vtable_base = 0;

        move |segment| {
            match segment {
                VtblSegment::MetadataDSA => {
                    vtable_base += TyCtxt::COMMON_VTABLE_ENTRIES.len();
                }
                VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
                    if tcx.erase_regions(trait_ref) == trait_to_be_found_erased {
                        return ControlFlow::Break(vtable_base);
                    }
                    vtable_base += util::count_own_vtable_entries(tcx, trait_ref);
                    if emit_vptr {
                        vtable_base += 1;
                    }
                }
            }
            ControlFlow::Continue(())
        }
    };

    if let Some(vtable_base) =
        prepare_vtable_segments(tcx, trait_owning_vtable, vtable_segment_callback)
    {
        vtable_base
    } else {
        bug!("Failed to find info for expected trait in vtable");
    }
}

/// Find slot offset for trait vptr within vtable entries of another trait
pub fn vtable_trait_upcasting_coercion_new_vptr_slot<'tcx>(
    tcx: TyCtxt<'tcx>,
    key: (
        Ty<'tcx>, // trait object type whose trait owning vtable
        Ty<'tcx>, // trait object for supertrait
    ),
) -> Option<usize> {
    let (source, target) = key;
    assert!(matches!(&source.kind(), &ty::Dynamic(..)) && !source.needs_infer());
    assert!(matches!(&target.kind(), &ty::Dynamic(..)) && !target.needs_infer());

    // this has been typecked-before, so diagnostics is not really needed.
    let unsize_trait_did = tcx.require_lang_item(LangItem::Unsize, None);

    let trait_ref = ty::TraitRef {
        def_id: unsize_trait_did,
        substs: tcx.mk_substs_trait(source, &[target.into()]),
    };
    let obligation = Obligation::new(
        ObligationCause::dummy(),
        ty::ParamEnv::reveal_all(),
        ty::Binder::dummy(ty::TraitPredicate {
            trait_ref,
            constness: ty::BoundConstness::NotConst,
            polarity: ty::ImplPolarity::Positive,
        }),
    );

    let implsrc = tcx.infer_ctxt().enter(|infcx| {
        let mut selcx = SelectionContext::new(&infcx);
        selcx.select(&obligation).unwrap()
    });

    let Some(ImplSource::TraitUpcasting(implsrc_traitcasting)) = implsrc else {
        bug!();
    };

    implsrc_traitcasting.vtable_vptr_slot
}

pub fn provide(providers: &mut ty::query::Providers) {
    object_safety::provide(providers);
    structural_match::provide(providers);
    *providers = ty::query::Providers {
        specialization_graph_of: specialize::specialization_graph_provider,
        specializes: specialize::specializes,
        codegen_select_candidate: codegen::codegen_select_candidate,
        own_existential_vtable_entries,
        vtable_entries,
        vtable_trait_upcasting_coercion_new_vptr_slot,
        subst_and_check_impossible_predicates,
        is_impossible_method,
        try_unify_abstract_consts: |tcx, param_env_and| {
            let (param_env, (a, b)) = param_env_and.into_parts();
            const_evaluatable::try_unify_abstract_consts(tcx, (a, b), param_env)
        },
        ..*providers
    };
}