1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
use crate::ty::fast_reject::SimplifiedType;
use crate::ty::visit::TypeVisitable;
use crate::ty::{self, TyCtxt};
use rustc_data_structures::fx::FxIndexMap;
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def_id::{DefId, DefIdMap};
use rustc_span::symbol::sym;

/// A per-trait graph of impls in specialization order. At the moment, this
/// graph forms a tree rooted with the trait itself, with all other nodes
/// representing impls, and parent-child relationships representing
/// specializations.
///
/// The graph provides two key services:
///
/// - Construction. This implicitly checks for overlapping impls (i.e., impls
///   that overlap but where neither specializes the other -- an artifact of the
///   simple "chain" rule.
///
/// - Parent extraction. In particular, the graph can give you the *immediate*
///   parents of a given specializing impl, which is needed for extracting
///   default items amongst other things. In the simple "chain" rule, every impl
///   has at most one parent.
#[derive(TyEncodable, TyDecodable, HashStable, Debug)]
pub struct Graph {
    /// All impls have a parent; the "root" impls have as their parent the `def_id`
    /// of the trait.
    pub parent: DefIdMap<DefId>,

    /// The "root" impls are found by looking up the trait's def_id.
    pub children: DefIdMap<Children>,

    /// Whether an error was emitted while constructing the graph.
    pub has_errored: Option<ErrorGuaranteed>,
}

impl Graph {
    pub fn new() -> Graph {
        Graph { parent: Default::default(), children: Default::default(), has_errored: None }
    }

    /// The parent of a given impl, which is the `DefId` of the trait when the
    /// impl is a "specialization root".
    pub fn parent(&self, child: DefId) -> DefId {
        *self.parent.get(&child).unwrap_or_else(|| panic!("Failed to get parent for {:?}", child))
    }
}

/// What kind of overlap check are we doing -- this exists just for testing and feature-gating
/// purposes.
#[derive(Copy, Clone, PartialEq, Eq, Hash, HashStable, Debug, TyEncodable, TyDecodable)]
pub enum OverlapMode {
    /// The 1.0 rules (either types fail to unify, or where clauses are not implemented for crate-local types)
    Stable,
    /// Feature-gated test: Stable, *or* there is an explicit negative impl that rules out one of the where-clauses.
    WithNegative,
    /// Just check for negative impls, not for "where clause not implemented": used for testing.
    Strict,
}

impl OverlapMode {
    pub fn get<'tcx>(tcx: TyCtxt<'tcx>, trait_id: DefId) -> OverlapMode {
        let with_negative_coherence = tcx.features().with_negative_coherence;
        let strict_coherence = tcx.has_attr(trait_id, sym::rustc_strict_coherence);

        if with_negative_coherence {
            if strict_coherence { OverlapMode::Strict } else { OverlapMode::WithNegative }
        } else if strict_coherence {
            bug!("To use strict_coherence you need to set with_negative_coherence feature flag");
        } else {
            OverlapMode::Stable
        }
    }

    pub fn use_negative_impl(&self) -> bool {
        *self == OverlapMode::Strict || *self == OverlapMode::WithNegative
    }

    pub fn use_implicit_negative(&self) -> bool {
        *self == OverlapMode::Stable || *self == OverlapMode::WithNegative
    }
}

/// Children of a given impl, grouped into blanket/non-blanket varieties as is
/// done in `TraitDef`.
#[derive(Default, TyEncodable, TyDecodable, Debug, HashStable)]
pub struct Children {
    // Impls of a trait (or specializations of a given impl). To allow for
    // quicker lookup, the impls are indexed by a simplified version of their
    // `Self` type: impls with a simplifiable `Self` are stored in
    // `non_blanket_impls` keyed by it, while all other impls are stored in
    // `blanket_impls`.
    //
    // A similar division is used within `TraitDef`, but the lists there collect
    // together *all* the impls for a trait, and are populated prior to building
    // the specialization graph.
    /// Impls of the trait.
    pub non_blanket_impls: FxIndexMap<SimplifiedType, Vec<DefId>>,

    /// Blanket impls associated with the trait.
    pub blanket_impls: Vec<DefId>,
}

/// A node in the specialization graph is either an impl or a trait
/// definition; either can serve as a source of item definitions.
/// There is always exactly one trait definition node: the root.
#[derive(Debug, Copy, Clone)]
pub enum Node {
    Impl(DefId),
    Trait(DefId),
}

impl Node {
    pub fn is_from_trait(&self) -> bool {
        matches!(self, Node::Trait(..))
    }

    /// Tries to find the associated item that implements `trait_item_def_id`
    /// defined in this node.
    ///
    /// If this returns `None`, the item can potentially still be found in
    /// parents of this node.
    pub fn item<'tcx>(
        &self,
        tcx: TyCtxt<'tcx>,
        trait_item_def_id: DefId,
    ) -> Option<&'tcx ty::AssocItem> {
        match *self {
            Node::Trait(_) => Some(tcx.associated_item(trait_item_def_id)),
            Node::Impl(impl_def_id) => {
                let id = tcx.impl_item_implementor_ids(impl_def_id).get(&trait_item_def_id)?;
                Some(tcx.associated_item(*id))
            }
        }
    }

    pub fn def_id(&self) -> DefId {
        match *self {
            Node::Impl(did) => did,
            Node::Trait(did) => did,
        }
    }
}

#[derive(Copy, Clone)]
pub struct Ancestors<'tcx> {
    trait_def_id: DefId,
    specialization_graph: &'tcx Graph,
    current_source: Option<Node>,
}

impl Iterator for Ancestors<'_> {
    type Item = Node;
    fn next(&mut self) -> Option<Node> {
        let cur = self.current_source.take();
        if let Some(Node::Impl(cur_impl)) = cur {
            let parent = self.specialization_graph.parent(cur_impl);

            self.current_source = if parent == self.trait_def_id {
                Some(Node::Trait(parent))
            } else {
                Some(Node::Impl(parent))
            };
        }
        cur
    }
}

/// Information about the most specialized definition of an associated item.
pub struct LeafDef {
    /// The associated item described by this `LeafDef`.
    pub item: ty::AssocItem,

    /// The node in the specialization graph containing the definition of `item`.
    pub defining_node: Node,

    /// The "top-most" (ie. least specialized) specialization graph node that finalized the
    /// definition of `item`.
    ///
    /// Example:
    ///
    /// ```
    /// #![feature(specialization)]
    /// trait Tr {
    ///     fn assoc(&self);
    /// }
    ///
    /// impl<T> Tr for T {
    ///     default fn assoc(&self) {}
    /// }
    ///
    /// impl Tr for u8 {}
    /// ```
    ///
    /// If we start the leaf definition search at `impl Tr for u8`, that impl will be the
    /// `finalizing_node`, while `defining_node` will be the generic impl.
    ///
    /// If the leaf definition search is started at the generic impl, `finalizing_node` will be
    /// `None`, since the most specialized impl we found still allows overriding the method
    /// (doesn't finalize it).
    pub finalizing_node: Option<Node>,
}

impl LeafDef {
    /// Returns whether this definition is known to not be further specializable.
    pub fn is_final(&self) -> bool {
        self.finalizing_node.is_some()
    }
}

impl<'tcx> Ancestors<'tcx> {
    /// Finds the bottom-most (ie. most specialized) definition of an associated
    /// item.
    pub fn leaf_def(mut self, tcx: TyCtxt<'tcx>, trait_item_def_id: DefId) -> Option<LeafDef> {
        let mut finalizing_node = None;

        self.find_map(|node| {
            if let Some(item) = node.item(tcx, trait_item_def_id) {
                if finalizing_node.is_none() {
                    let is_specializable = item.defaultness(tcx).is_default()
                        || tcx.impl_defaultness(node.def_id()).is_default();

                    if !is_specializable {
                        finalizing_node = Some(node);
                    }
                }

                Some(LeafDef { item: *item, defining_node: node, finalizing_node })
            } else {
                // Item not mentioned. This "finalizes" any defaulted item provided by an ancestor.
                finalizing_node = Some(node);
                None
            }
        })
    }
}

/// Walk up the specialization ancestors of a given impl, starting with that
/// impl itself.
///
/// Returns `Err` if an error was reported while building the specialization
/// graph.
pub fn ancestors<'tcx>(
    tcx: TyCtxt<'tcx>,
    trait_def_id: DefId,
    start_from_impl: DefId,
) -> Result<Ancestors<'tcx>, ErrorGuaranteed> {
    let specialization_graph = tcx.specialization_graph_of(trait_def_id);

    if let Some(reported) = specialization_graph.has_errored {
        Err(reported)
    } else if let Some(reported) = tcx.type_of(start_from_impl).error_reported() {
        Err(reported)
    } else {
        Ok(Ancestors {
            trait_def_id,
            specialization_graph,
            current_source: Some(Node::Impl(start_from_impl)),
        })
    }
}