1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// FIXME(@lcnr): Move this module out of `rustc_typeck`.
//
// We don't do any drop checking during hir typeck.
use crate::hir::def_id::{DefId, LocalDefId};
use rustc_errors::{struct_span_err, ErrorGuaranteed};
use rustc_middle::ty::error::TypeError;
use rustc_middle::ty::relate::{Relate, RelateResult, TypeRelation};
use rustc_middle::ty::subst::SubstsRef;
use rustc_middle::ty::util::IgnoreRegions;
use rustc_middle::ty::{self, Predicate, Ty, TyCtxt};

/// This function confirms that the `Drop` implementation identified by
/// `drop_impl_did` is not any more specialized than the type it is
/// attached to (Issue #8142).
///
/// This means:
///
/// 1. The self type must be nominal (this is already checked during
///    coherence),
///
/// 2. The generic region/type parameters of the impl's self type must
///    all be parameters of the Drop impl itself (i.e., no
///    specialization like `impl Drop for Foo<i32>`), and,
///
/// 3. Any bounds on the generic parameters must be reflected in the
///    struct/enum definition for the nominal type itself (i.e.
///    cannot do `struct S<T>; impl<T:Clone> Drop for S<T> { ... }`).
///
pub fn check_drop_impl(tcx: TyCtxt<'_>, drop_impl_did: DefId) -> Result<(), ErrorGuaranteed> {
    let dtor_self_type = tcx.type_of(drop_impl_did);
    let dtor_predicates = tcx.predicates_of(drop_impl_did);
    match dtor_self_type.kind() {
        ty::Adt(adt_def, self_to_impl_substs) => {
            ensure_drop_params_and_item_params_correspond(
                tcx,
                drop_impl_did.expect_local(),
                adt_def.did(),
                self_to_impl_substs,
            )?;

            ensure_drop_predicates_are_implied_by_item_defn(
                tcx,
                dtor_predicates,
                adt_def.did().expect_local(),
                self_to_impl_substs,
            )
        }
        _ => {
            // Destructors only work on nominal types.  This was
            // already checked by coherence, but compilation may
            // not have been terminated.
            let span = tcx.def_span(drop_impl_did);
            let reported = tcx.sess.delay_span_bug(
                span,
                &format!("should have been rejected by coherence check: {dtor_self_type}"),
            );
            Err(reported)
        }
    }
}

fn ensure_drop_params_and_item_params_correspond<'tcx>(
    tcx: TyCtxt<'tcx>,
    drop_impl_did: LocalDefId,
    self_type_did: DefId,
    drop_impl_substs: SubstsRef<'tcx>,
) -> Result<(), ErrorGuaranteed> {
    let Err(arg) = tcx.uses_unique_generic_params(drop_impl_substs, IgnoreRegions::No) else {
        return Ok(())
    };

    let drop_impl_span = tcx.def_span(drop_impl_did);
    let item_span = tcx.def_span(self_type_did);
    let self_descr = tcx.def_kind(self_type_did).descr(self_type_did);
    let mut err =
        struct_span_err!(tcx.sess, drop_impl_span, E0366, "`Drop` impls cannot be specialized");
    match arg {
        ty::util::NotUniqueParam::DuplicateParam(arg) => {
            err.note(&format!("`{arg}` is mentioned multiple times"))
        }
        ty::util::NotUniqueParam::NotParam(arg) => {
            err.note(&format!("`{arg}` is not a generic parameter"))
        }
    };
    err.span_note(
        item_span,
        &format!(
            "use the same sequence of generic lifetime, type and const parameters \
                     as the {self_descr} definition",
        ),
    );
    Err(err.emit())
}

/// Confirms that every predicate imposed by dtor_predicates is
/// implied by assuming the predicates attached to self_type_did.
fn ensure_drop_predicates_are_implied_by_item_defn<'tcx>(
    tcx: TyCtxt<'tcx>,
    dtor_predicates: ty::GenericPredicates<'tcx>,
    self_type_did: LocalDefId,
    self_to_impl_substs: SubstsRef<'tcx>,
) -> Result<(), ErrorGuaranteed> {
    let mut result = Ok(());

    // Here is an example, analogous to that from
    // `compare_impl_method`.
    //
    // Consider a struct type:
    //
    //     struct Type<'c, 'b:'c, 'a> {
    //         x: &'a Contents            // (contents are irrelevant;
    //         y: &'c Cell<&'b Contents>, //  only the bounds matter for our purposes.)
    //     }
    //
    // and a Drop impl:
    //
    //     impl<'z, 'y:'z, 'x:'y> Drop for P<'z, 'y, 'x> {
    //         fn drop(&mut self) { self.y.set(self.x); } // (only legal if 'x: 'y)
    //     }
    //
    // We start out with self_to_impl_substs, that maps the generic
    // parameters of Type to that of the Drop impl.
    //
    //     self_to_impl_substs = {'c => 'z, 'b => 'y, 'a => 'x}
    //
    // Applying this to the predicates (i.e., assumptions) provided by the item
    // definition yields the instantiated assumptions:
    //
    //     ['y : 'z]
    //
    // We then check all of the predicates of the Drop impl:
    //
    //     ['y:'z, 'x:'y]
    //
    // and ensure each is in the list of instantiated
    // assumptions. Here, `'y:'z` is present, but `'x:'y` is
    // absent. So we report an error that the Drop impl injected a
    // predicate that is not present on the struct definition.

    // We can assume the predicates attached to struct/enum definition
    // hold.
    let generic_assumptions = tcx.predicates_of(self_type_did);

    let assumptions_in_impl_context = generic_assumptions.instantiate(tcx, &self_to_impl_substs);
    let assumptions_in_impl_context = assumptions_in_impl_context.predicates;

    debug!(?assumptions_in_impl_context, ?dtor_predicates.predicates);

    let self_param_env = tcx.param_env(self_type_did);

    // An earlier version of this code attempted to do this checking
    // via the traits::fulfill machinery. However, it ran into trouble
    // since the fulfill machinery merely turns outlives-predicates
    // 'a:'b and T:'b into region inference constraints. It is simpler
    // just to look for all the predicates directly.

    assert_eq!(dtor_predicates.parent, None);
    for &(predicate, predicate_sp) in dtor_predicates.predicates {
        // (We do not need to worry about deep analysis of type
        // expressions etc because the Drop impls are already forced
        // to take on a structure that is roughly an alpha-renaming of
        // the generic parameters of the item definition.)

        // This path now just checks *all* predicates via an instantiation of
        // the `SimpleEqRelation`, which simply forwards to the `relate` machinery
        // after taking care of anonymizing late bound regions.
        //
        // However, it may be more efficient in the future to batch
        // the analysis together via the fulfill (see comment above regarding
        // the usage of the fulfill machinery), rather than the
        // repeated `.iter().any(..)` calls.

        // This closure is a more robust way to check `Predicate` equality
        // than simple `==` checks (which were the previous implementation).
        // It relies on `ty::relate` for `TraitPredicate`, `ProjectionPredicate`,
        // `ConstEvaluatable` and `TypeOutlives` (which implement the Relate trait),
        // while delegating on simple equality for the other `Predicate`.
        // This implementation solves (Issue #59497) and (Issue #58311).
        // It is unclear to me at the moment whether the approach based on `relate`
        // could be extended easily also to the other `Predicate`.
        let predicate_matches_closure = |p: Predicate<'tcx>| {
            let mut relator: SimpleEqRelation<'tcx> = SimpleEqRelation::new(tcx, self_param_env);
            let predicate = predicate.kind();
            let p = p.kind();
            match (predicate.skip_binder(), p.skip_binder()) {
                (ty::PredicateKind::Trait(a), ty::PredicateKind::Trait(b)) => {
                    // Since struct predicates cannot have ~const, project the impl predicate
                    // onto one that ignores the constness. This is equivalent to saying that
                    // we match a `Trait` bound on the struct with a `Trait` or `~const Trait`
                    // in the impl.
                    let non_const_a =
                        ty::TraitPredicate { constness: ty::BoundConstness::NotConst, ..a };
                    relator.relate(predicate.rebind(non_const_a), p.rebind(b)).is_ok()
                }
                (ty::PredicateKind::Projection(a), ty::PredicateKind::Projection(b)) => {
                    relator.relate(predicate.rebind(a), p.rebind(b)).is_ok()
                }
                (
                    ty::PredicateKind::ConstEvaluatable(a),
                    ty::PredicateKind::ConstEvaluatable(b),
                ) => tcx.try_unify_abstract_consts(self_param_env.and((a, b))),
                (
                    ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty_a, lt_a)),
                    ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty_b, lt_b)),
                ) => {
                    relator.relate(predicate.rebind(ty_a), p.rebind(ty_b)).is_ok()
                        && relator.relate(predicate.rebind(lt_a), p.rebind(lt_b)).is_ok()
                }
                (ty::PredicateKind::WellFormed(arg_a), ty::PredicateKind::WellFormed(arg_b)) => {
                    relator.relate(predicate.rebind(arg_a), p.rebind(arg_b)).is_ok()
                }
                _ => predicate == p,
            }
        };

        if !assumptions_in_impl_context.iter().copied().any(predicate_matches_closure) {
            let item_span = tcx.def_span(self_type_did);
            let self_descr = tcx.def_kind(self_type_did).descr(self_type_did.to_def_id());
            let reported = struct_span_err!(
                tcx.sess,
                predicate_sp,
                E0367,
                "`Drop` impl requires `{predicate}` but the {self_descr} it is implemented for does not",
            )
            .span_note(item_span, "the implementor must specify the same requirement")
            .emit();
            result = Err(reported);
        }
    }

    result
}

// This is an implementation of the TypeRelation trait with the
// aim of simply comparing for equality (without side-effects).
// It is not intended to be used anywhere else other than here.
pub(crate) struct SimpleEqRelation<'tcx> {
    tcx: TyCtxt<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
}

impl<'tcx> SimpleEqRelation<'tcx> {
    fn new(tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> SimpleEqRelation<'tcx> {
        SimpleEqRelation { tcx, param_env }
    }
}

impl<'tcx> TypeRelation<'tcx> for SimpleEqRelation<'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn param_env(&self) -> ty::ParamEnv<'tcx> {
        self.param_env
    }

    fn tag(&self) -> &'static str {
        "dropck::SimpleEqRelation"
    }

    fn a_is_expected(&self) -> bool {
        true
    }

    fn relate_with_variance<T: Relate<'tcx>>(
        &mut self,
        _: ty::Variance,
        _info: ty::VarianceDiagInfo<'tcx>,
        a: T,
        b: T,
    ) -> RelateResult<'tcx, T> {
        // Here we ignore variance because we require drop impl's types
        // to be *exactly* the same as to the ones in the struct definition.
        self.relate(a, b)
    }

    fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
        debug!("SimpleEqRelation::tys(a={:?}, b={:?})", a, b);
        ty::relate::super_relate_tys(self, a, b)
    }

    fn regions(
        &mut self,
        a: ty::Region<'tcx>,
        b: ty::Region<'tcx>,
    ) -> RelateResult<'tcx, ty::Region<'tcx>> {
        debug!("SimpleEqRelation::regions(a={:?}, b={:?})", a, b);

        // We can just equate the regions because LBRs have been
        // already anonymized.
        if a == b {
            Ok(a)
        } else {
            // I'm not sure is this `TypeError` is the right one, but
            // it should not matter as it won't be checked (the dropck
            // will emit its own, more informative and higher-level errors
            // in case anything goes wrong).
            Err(TypeError::RegionsPlaceholderMismatch)
        }
    }

    fn consts(
        &mut self,
        a: ty::Const<'tcx>,
        b: ty::Const<'tcx>,
    ) -> RelateResult<'tcx, ty::Const<'tcx>> {
        debug!("SimpleEqRelation::consts(a={:?}, b={:?})", a, b);
        ty::relate::super_relate_consts(self, a, b)
    }

    fn binders<T>(
        &mut self,
        a: ty::Binder<'tcx, T>,
        b: ty::Binder<'tcx, T>,
    ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
    where
        T: Relate<'tcx>,
    {
        debug!("SimpleEqRelation::binders({:?}: {:?}", a, b);

        // Anonymizing the LBRs is necessary to solve (Issue #59497).
        // After we do so, it should be totally fine to skip the binders.
        let anon_a = self.tcx.anonymize_bound_vars(a);
        let anon_b = self.tcx.anonymize_bound_vars(b);
        self.relate(anon_a.skip_binder(), anon_b.skip_binder())?;

        Ok(a)
    }
}