1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
//! Validates the MIR to ensure that invariants are upheld.

use rustc_data_structures::fx::FxHashSet;
use rustc_index::bit_set::BitSet;
use rustc_infer::infer::TyCtxtInferExt;
use rustc_middle::mir::interpret::Scalar;
use rustc_middle::mir::visit::NonUseContext::VarDebugInfo;
use rustc_middle::mir::visit::{PlaceContext, Visitor};
use rustc_middle::mir::{
    traversal, AggregateKind, BasicBlock, BinOp, Body, BorrowKind, CastKind, CopyNonOverlapping,
    Local, Location, MirPass, MirPhase, NonDivergingIntrinsic, Operand, Place, PlaceElem, PlaceRef,
    ProjectionElem, RuntimePhase, Rvalue, SourceScope, Statement, StatementKind, Terminator,
    TerminatorKind, UnOp, START_BLOCK,
};
use rustc_middle::ty::fold::BottomUpFolder;
use rustc_middle::ty::subst::Subst;
use rustc_middle::ty::{self, InstanceDef, ParamEnv, Ty, TyCtxt, TypeFoldable, TypeVisitable};
use rustc_mir_dataflow::impls::MaybeStorageLive;
use rustc_mir_dataflow::storage::always_storage_live_locals;
use rustc_mir_dataflow::{Analysis, ResultsCursor};
use rustc_target::abi::{Size, VariantIdx};

#[derive(Copy, Clone, Debug)]
enum EdgeKind {
    Unwind,
    Normal,
}

pub struct Validator {
    /// Describes at which point in the pipeline this validation is happening.
    pub when: String,
    /// The phase for which we are upholding the dialect. If the given phase forbids a specific
    /// element, this validator will now emit errors if that specific element is encountered.
    /// Note that phases that change the dialect cause all *following* phases to check the
    /// invariants of the new dialect. A phase that changes dialects never checks the new invariants
    /// itself.
    pub mir_phase: MirPhase,
}

impl<'tcx> MirPass<'tcx> for Validator {
    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
        // FIXME(JakobDegen): These bodies never instantiated in codegend anyway, so it's not
        // terribly important that they pass the validator. However, I think other passes might
        // still see them, in which case they might be surprised. It would probably be better if we
        // didn't put this through the MIR pipeline at all.
        if matches!(body.source.instance, InstanceDef::Intrinsic(..) | InstanceDef::Virtual(..)) {
            return;
        }
        let def_id = body.source.def_id();
        let param_env = tcx.param_env(def_id);
        let mir_phase = self.mir_phase;

        let always_live_locals = always_storage_live_locals(body);
        let storage_liveness = MaybeStorageLive::new(always_live_locals)
            .into_engine(tcx, body)
            .iterate_to_fixpoint()
            .into_results_cursor(body);

        TypeChecker {
            when: &self.when,
            body,
            tcx,
            param_env,
            mir_phase,
            reachable_blocks: traversal::reachable_as_bitset(body),
            storage_liveness,
            place_cache: Vec::new(),
            value_cache: Vec::new(),
        }
        .visit_body(body);
    }
}

/// Returns whether the two types are equal up to lifetimes.
/// All lifetimes, including higher-ranked ones, get ignored for this comparison.
/// (This is unlike the `erasing_regions` methods, which keep higher-ranked lifetimes for soundness reasons.)
///
/// The point of this function is to approximate "equal up to subtyping".  However,
/// the approximation is incorrect as variance is ignored.
pub fn equal_up_to_regions<'tcx>(
    tcx: TyCtxt<'tcx>,
    param_env: ParamEnv<'tcx>,
    src: Ty<'tcx>,
    dest: Ty<'tcx>,
) -> bool {
    // Fast path.
    if src == dest {
        return true;
    }

    // Normalize lifetimes away on both sides, then compare.
    let normalize = |ty: Ty<'tcx>| {
        tcx.try_normalize_erasing_regions(param_env, ty).unwrap_or(ty).fold_with(
            &mut BottomUpFolder {
                tcx,
                // FIXME: We erase all late-bound lifetimes, but this is not fully correct.
                // If you have a type like `<for<'a> fn(&'a u32) as SomeTrait>::Assoc`,
                // this is not necessarily equivalent to `<fn(&'static u32) as SomeTrait>::Assoc`,
                // since one may have an `impl SomeTrait for fn(&32)` and
                // `impl SomeTrait for fn(&'static u32)` at the same time which
                // specify distinct values for Assoc. (See also #56105)
                lt_op: |_| tcx.lifetimes.re_erased,
                // Leave consts and types unchanged.
                ct_op: |ct| ct,
                ty_op: |ty| ty,
            },
        )
    };
    tcx.infer_ctxt().enter(|infcx| infcx.can_eq(param_env, normalize(src), normalize(dest)).is_ok())
}

struct TypeChecker<'a, 'tcx> {
    when: &'a str,
    body: &'a Body<'tcx>,
    tcx: TyCtxt<'tcx>,
    param_env: ParamEnv<'tcx>,
    mir_phase: MirPhase,
    reachable_blocks: BitSet<BasicBlock>,
    storage_liveness: ResultsCursor<'a, 'tcx, MaybeStorageLive>,
    place_cache: Vec<PlaceRef<'tcx>>,
    value_cache: Vec<u128>,
}

impl<'a, 'tcx> TypeChecker<'a, 'tcx> {
    fn fail(&self, location: Location, msg: impl AsRef<str>) {
        let span = self.body.source_info(location).span;
        // We use `delay_span_bug` as we might see broken MIR when other errors have already
        // occurred.
        self.tcx.sess.diagnostic().delay_span_bug(
            span,
            &format!(
                "broken MIR in {:?} ({}) at {:?}:\n{}",
                self.body.source.instance,
                self.when,
                location,
                msg.as_ref()
            ),
        );
    }

    fn check_edge(&self, location: Location, bb: BasicBlock, edge_kind: EdgeKind) {
        if bb == START_BLOCK {
            self.fail(location, "start block must not have predecessors")
        }
        if let Some(bb) = self.body.basic_blocks.get(bb) {
            let src = self.body.basic_blocks.get(location.block).unwrap();
            match (src.is_cleanup, bb.is_cleanup, edge_kind) {
                // Non-cleanup blocks can jump to non-cleanup blocks along non-unwind edges
                (false, false, EdgeKind::Normal)
                // Non-cleanup blocks can jump to cleanup blocks along unwind edges
                | (false, true, EdgeKind::Unwind)
                // Cleanup blocks can jump to cleanup blocks along non-unwind edges
                | (true, true, EdgeKind::Normal) => {}
                // All other jumps are invalid
                _ => {
                    self.fail(
                        location,
                        format!(
                            "{:?} edge to {:?} violates unwind invariants (cleanup {:?} -> {:?})",
                            edge_kind,
                            bb,
                            src.is_cleanup,
                            bb.is_cleanup,
                        )
                    )
                }
            }
        } else {
            self.fail(location, format!("encountered jump to invalid basic block {:?}", bb))
        }
    }

    /// Check if src can be assigned into dest.
    /// This is not precise, it will accept some incorrect assignments.
    fn mir_assign_valid_types(&self, src: Ty<'tcx>, dest: Ty<'tcx>) -> bool {
        // Fast path before we normalize.
        if src == dest {
            // Equal types, all is good.
            return true;
        }
        // Normalization reveals opaque types, but we may be validating MIR while computing
        // said opaque types, causing cycles.
        if (src, dest).has_opaque_types() {
            return true;
        }

        // Normalize projections and things like that.
        // Type-changing assignments can happen when subtyping is used. While
        // all normal lifetimes are erased, higher-ranked types with their
        // late-bound lifetimes are still around and can lead to type
        // differences. So we compare ignoring lifetimes.

        // First, try with reveal_all. This might not work in some cases, as the predicates
        // can be cleared in reveal_all mode. We try the reveal first anyways as it is used
        // by some other passes like inlining as well.
        let param_env = self.param_env.with_reveal_all_normalized(self.tcx);
        if equal_up_to_regions(self.tcx, param_env, src, dest) {
            return true;
        }

        // If this fails, we can try it without the reveal.
        equal_up_to_regions(self.tcx, self.param_env, src, dest)
    }
}

impl<'a, 'tcx> Visitor<'tcx> for TypeChecker<'a, 'tcx> {
    fn visit_local(&mut self, local: Local, context: PlaceContext, location: Location) {
        if self.body.local_decls.get(local).is_none() {
            self.fail(
                location,
                format!("local {:?} has no corresponding declaration in `body.local_decls`", local),
            );
        }

        if self.reachable_blocks.contains(location.block) && context.is_use() {
            // We check that the local is live whenever it is used. Technically, violating this
            // restriction is only UB and not actually indicative of not well-formed MIR. This means
            // that an optimization which turns MIR that already has UB into MIR that fails this
            // check is not necessarily wrong. However, we have no such optimizations at the moment,
            // and so we include this check anyway to help us catch bugs. If you happen to write an
            // optimization that might cause this to incorrectly fire, feel free to remove this
            // check.
            self.storage_liveness.seek_after_primary_effect(location);
            let locals_with_storage = self.storage_liveness.get();
            if !locals_with_storage.contains(local) {
                self.fail(location, format!("use of local {:?}, which has no storage here", local));
            }
        }
    }

    fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
        // This check is somewhat expensive, so only run it when -Zvalidate-mir is passed.
        if self.tcx.sess.opts.unstable_opts.validate_mir
            && self.mir_phase < MirPhase::Runtime(RuntimePhase::Initial)
        {
            // `Operand::Copy` is only supposed to be used with `Copy` types.
            if let Operand::Copy(place) = operand {
                let ty = place.ty(&self.body.local_decls, self.tcx).ty;
                let span = self.body.source_info(location).span;

                if !ty.is_copy_modulo_regions(self.tcx.at(span), self.param_env) {
                    self.fail(location, format!("`Operand::Copy` with non-`Copy` type {}", ty));
                }
            }
        }

        self.super_operand(operand, location);
    }

    fn visit_projection_elem(
        &mut self,
        local: Local,
        proj_base: &[PlaceElem<'tcx>],
        elem: PlaceElem<'tcx>,
        context: PlaceContext,
        location: Location,
    ) {
        match elem {
            ProjectionElem::Index(index) => {
                let index_ty = self.body.local_decls[index].ty;
                if index_ty != self.tcx.types.usize {
                    self.fail(location, format!("bad index ({:?} != usize)", index_ty))
                }
            }
            ProjectionElem::Deref
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::PostCleanup) =>
            {
                let base_ty = Place::ty_from(local, proj_base, &self.body.local_decls, self.tcx).ty;

                if base_ty.is_box() {
                    self.fail(
                        location,
                        format!("{:?} dereferenced after ElaborateBoxDerefs", base_ty),
                    )
                }
            }
            ProjectionElem::Field(f, ty) => {
                let parent = Place { local, projection: self.tcx.intern_place_elems(proj_base) };
                let parent_ty = parent.ty(&self.body.local_decls, self.tcx);
                let fail_out_of_bounds = |this: &Self, location| {
                    this.fail(location, format!("Out of bounds field {:?} for {:?}", f, parent_ty));
                };
                let check_equal = |this: &Self, location, f_ty| {
                    if !this.mir_assign_valid_types(ty, f_ty) {
                        this.fail(
                        location,
                        format!(
                            "Field projection `{:?}.{:?}` specified type `{:?}`, but actual type is {:?}",
                            parent, f, ty, f_ty
                        )
                    )
                    }
                };

                let kind = match parent_ty.ty.kind() {
                    &ty::Opaque(def_id, substs) => {
                        self.tcx.bound_type_of(def_id).subst(self.tcx, substs).kind()
                    }
                    kind => kind,
                };

                match kind {
                    ty::Tuple(fields) => {
                        let Some(f_ty) = fields.get(f.as_usize()) else {
                            fail_out_of_bounds(self, location);
                            return;
                        };
                        check_equal(self, location, *f_ty);
                    }
                    ty::Adt(adt_def, substs) => {
                        let var = parent_ty.variant_index.unwrap_or(VariantIdx::from_u32(0));
                        let Some(field) = adt_def.variant(var).fields.get(f.as_usize()) else {
                            fail_out_of_bounds(self, location);
                            return;
                        };
                        check_equal(self, location, field.ty(self.tcx, substs));
                    }
                    ty::Closure(_, substs) => {
                        let substs = substs.as_closure();
                        let Some(f_ty) = substs.upvar_tys().nth(f.as_usize()) else {
                            fail_out_of_bounds(self, location);
                            return;
                        };
                        check_equal(self, location, f_ty);
                    }
                    &ty::Generator(def_id, substs, _) => {
                        let f_ty = if let Some(var) = parent_ty.variant_index {
                            let gen_body = if def_id == self.body.source.def_id() {
                                self.body
                            } else {
                                self.tcx.optimized_mir(def_id)
                            };

                            let Some(layout) = gen_body.generator_layout() else {
                                self.fail(location, format!("No generator layout for {:?}", parent_ty));
                                return;
                            };

                            let Some(&local) = layout.variant_fields[var].get(f) else {
                                fail_out_of_bounds(self, location);
                                return;
                            };

                            let Some(&f_ty) = layout.field_tys.get(local) else {
                                self.fail(location, format!("Out of bounds local {:?} for {:?}", local, parent_ty));
                                return;
                            };

                            f_ty
                        } else {
                            let Some(f_ty) = substs.as_generator().prefix_tys().nth(f.index()) else {
                                fail_out_of_bounds(self, location);
                                return;
                            };

                            f_ty
                        };

                        check_equal(self, location, f_ty);
                    }
                    _ => {
                        self.fail(location, format!("{:?} does not have fields", parent_ty.ty));
                    }
                }
            }
            _ => {}
        }
        self.super_projection_elem(local, proj_base, elem, context, location);
    }

    fn visit_place(&mut self, place: &Place<'tcx>, cntxt: PlaceContext, location: Location) {
        // Set off any `bug!`s in the type computation code
        let _ = place.ty(&self.body.local_decls, self.tcx);

        if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial)
            && place.projection.len() > 1
            && cntxt != PlaceContext::NonUse(VarDebugInfo)
            && place.projection[1..].contains(&ProjectionElem::Deref)
        {
            self.fail(location, format!("{:?}, has deref at the wrong place", place));
        }

        self.super_place(place, cntxt, location);
    }

    fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) {
        macro_rules! check_kinds {
            ($t:expr, $text:literal, $($patterns:tt)*) => {
                if !matches!(($t).kind(), $($patterns)*) {
                    self.fail(location, format!($text, $t));
                }
            };
        }
        match rvalue {
            Rvalue::Use(_) | Rvalue::CopyForDeref(_) => {}
            Rvalue::Aggregate(agg_kind, _) => {
                let disallowed = match **agg_kind {
                    AggregateKind::Array(..) => false,
                    _ => self.mir_phase >= MirPhase::Runtime(RuntimePhase::PostCleanup),
                };
                if disallowed {
                    self.fail(
                        location,
                        format!("{:?} have been lowered to field assignments", rvalue),
                    )
                }
            }
            Rvalue::Ref(_, BorrowKind::Shallow, _) => {
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(
                        location,
                        "`Assign` statement with a `Shallow` borrow should have been removed in runtime MIR",
                    );
                }
            }
            Rvalue::Ref(..) => {}
            Rvalue::Len(p) => {
                let pty = p.ty(&self.body.local_decls, self.tcx).ty;
                check_kinds!(
                    pty,
                    "Cannot compute length of non-array type {:?}",
                    ty::Array(..) | ty::Slice(..)
                );
            }
            Rvalue::BinaryOp(op, vals) => {
                use BinOp::*;
                let a = vals.0.ty(&self.body.local_decls, self.tcx);
                let b = vals.1.ty(&self.body.local_decls, self.tcx);
                match op {
                    Offset => {
                        check_kinds!(a, "Cannot offset non-pointer type {:?}", ty::RawPtr(..));
                        if b != self.tcx.types.isize && b != self.tcx.types.usize {
                            self.fail(location, format!("Cannot offset by non-isize type {:?}", b));
                        }
                    }
                    Eq | Lt | Le | Ne | Ge | Gt => {
                        for x in [a, b] {
                            check_kinds!(
                                x,
                                "Cannot compare type {:?}",
                                ty::Bool
                                    | ty::Char
                                    | ty::Int(..)
                                    | ty::Uint(..)
                                    | ty::Float(..)
                                    | ty::RawPtr(..)
                                    | ty::FnPtr(..)
                            )
                        }
                        // The function pointer types can have lifetimes
                        if !self.mir_assign_valid_types(a, b) {
                            self.fail(
                                location,
                                format!("Cannot compare unequal types {:?} and {:?}", a, b),
                            );
                        }
                    }
                    Shl | Shr => {
                        for x in [a, b] {
                            check_kinds!(
                                x,
                                "Cannot shift non-integer type {:?}",
                                ty::Uint(..) | ty::Int(..)
                            )
                        }
                    }
                    BitAnd | BitOr | BitXor => {
                        for x in [a, b] {
                            check_kinds!(
                                x,
                                "Cannot perform bitwise op on type {:?}",
                                ty::Uint(..) | ty::Int(..) | ty::Bool
                            )
                        }
                        if a != b {
                            self.fail(
                                location,
                                format!(
                                    "Cannot perform bitwise op on unequal types {:?} and {:?}",
                                    a, b
                                ),
                            );
                        }
                    }
                    Add | Sub | Mul | Div | Rem => {
                        for x in [a, b] {
                            check_kinds!(
                                x,
                                "Cannot perform arithmetic on type {:?}",
                                ty::Uint(..) | ty::Int(..) | ty::Float(..)
                            )
                        }
                        if a != b {
                            self.fail(
                                location,
                                format!(
                                    "Cannot perform arithmetic on unequal types {:?} and {:?}",
                                    a, b
                                ),
                            );
                        }
                    }
                }
            }
            Rvalue::CheckedBinaryOp(op, vals) => {
                use BinOp::*;
                let a = vals.0.ty(&self.body.local_decls, self.tcx);
                let b = vals.1.ty(&self.body.local_decls, self.tcx);
                match op {
                    Add | Sub | Mul => {
                        for x in [a, b] {
                            check_kinds!(
                                x,
                                "Cannot perform checked arithmetic on type {:?}",
                                ty::Uint(..) | ty::Int(..)
                            )
                        }
                        if a != b {
                            self.fail(
                                location,
                                format!(
                                    "Cannot perform checked arithmetic on unequal types {:?} and {:?}",
                                    a, b
                                ),
                            );
                        }
                    }
                    Shl | Shr => {
                        for x in [a, b] {
                            check_kinds!(
                                x,
                                "Cannot perform checked shift on non-integer type {:?}",
                                ty::Uint(..) | ty::Int(..)
                            )
                        }
                    }
                    _ => self.fail(location, format!("There is no checked version of {:?}", op)),
                }
            }
            Rvalue::UnaryOp(op, operand) => {
                let a = operand.ty(&self.body.local_decls, self.tcx);
                match op {
                    UnOp::Neg => {
                        check_kinds!(a, "Cannot negate type {:?}", ty::Int(..) | ty::Float(..))
                    }
                    UnOp::Not => {
                        check_kinds!(
                            a,
                            "Cannot binary not type {:?}",
                            ty::Int(..) | ty::Uint(..) | ty::Bool
                        );
                    }
                }
            }
            Rvalue::ShallowInitBox(operand, _) => {
                let a = operand.ty(&self.body.local_decls, self.tcx);
                check_kinds!(a, "Cannot shallow init type {:?}", ty::RawPtr(..));
            }
            Rvalue::Cast(kind, operand, target_type) => {
                match kind {
                    CastKind::Misc => {
                        let op_ty = operand.ty(self.body, self.tcx);
                        if op_ty.is_enum() {
                            self.fail(
                                location,
                                format!(
                                    "enum -> int casts should go through `Rvalue::Discriminant`: {operand:?}:{op_ty} as {target_type}",
                                ),
                            );
                        }
                    }
                    CastKind::DynStar => {
                        // FIXME(dyn-star): make sure nothing needs to be done here.
                    }
                    // Nothing to check here
                    CastKind::PointerFromExposedAddress
                    | CastKind::PointerExposeAddress
                    | CastKind::Pointer(_) => {}
                }
            }
            Rvalue::Repeat(_, _)
            | Rvalue::ThreadLocalRef(_)
            | Rvalue::AddressOf(_, _)
            | Rvalue::NullaryOp(_, _)
            | Rvalue::Discriminant(_) => {}
        }
        self.super_rvalue(rvalue, location);
    }

    fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
        match &statement.kind {
            StatementKind::Assign(box (dest, rvalue)) => {
                // LHS and RHS of the assignment must have the same type.
                let left_ty = dest.ty(&self.body.local_decls, self.tcx).ty;
                let right_ty = rvalue.ty(&self.body.local_decls, self.tcx);
                if !self.mir_assign_valid_types(right_ty, left_ty) {
                    self.fail(
                        location,
                        format!(
                            "encountered `{:?}` with incompatible types:\n\
                            left-hand side has type: {}\n\
                            right-hand side has type: {}",
                            statement.kind, left_ty, right_ty,
                        ),
                    );
                }
                if let Rvalue::CopyForDeref(place) = rvalue {
                    if !place.ty(&self.body.local_decls, self.tcx).ty.builtin_deref(true).is_some()
                    {
                        self.fail(
                            location,
                            "`CopyForDeref` should only be used for dereferenceable types",
                        )
                    }
                }
                // FIXME(JakobDegen): Check this for all rvalues, not just this one.
                if let Rvalue::Use(Operand::Copy(src) | Operand::Move(src)) = rvalue {
                    // The sides of an assignment must not alias. Currently this just checks whether
                    // the places are identical.
                    if dest == src {
                        self.fail(
                            location,
                            "encountered `Assign` statement with overlapping memory",
                        );
                    }
                }
            }
            StatementKind::AscribeUserType(..) => {
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(
                        location,
                        "`AscribeUserType` should have been removed after drop lowering phase",
                    );
                }
            }
            StatementKind::FakeRead(..) => {
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(
                        location,
                        "`FakeRead` should have been removed after drop lowering phase",
                    );
                }
            }
            StatementKind::Intrinsic(box NonDivergingIntrinsic::Assume(op)) => {
                let ty = op.ty(&self.body.local_decls, self.tcx);
                if !ty.is_bool() {
                    self.fail(
                        location,
                        format!("`assume` argument must be `bool`, but got: `{}`", ty),
                    );
                }
            }
            StatementKind::Intrinsic(box NonDivergingIntrinsic::CopyNonOverlapping(
                CopyNonOverlapping { src, dst, count },
            )) => {
                let src_ty = src.ty(&self.body.local_decls, self.tcx);
                let op_src_ty = if let Some(src_deref) = src_ty.builtin_deref(true) {
                    src_deref.ty
                } else {
                    self.fail(
                        location,
                        format!("Expected src to be ptr in copy_nonoverlapping, got: {}", src_ty),
                    );
                    return;
                };
                let dst_ty = dst.ty(&self.body.local_decls, self.tcx);
                let op_dst_ty = if let Some(dst_deref) = dst_ty.builtin_deref(true) {
                    dst_deref.ty
                } else {
                    self.fail(
                        location,
                        format!("Expected dst to be ptr in copy_nonoverlapping, got: {}", dst_ty),
                    );
                    return;
                };
                // since CopyNonOverlapping is parametrized by 1 type,
                // we only need to check that they are equal and not keep an extra parameter.
                if !self.mir_assign_valid_types(op_src_ty, op_dst_ty) {
                    self.fail(location, format!("bad arg ({:?} != {:?})", op_src_ty, op_dst_ty));
                }

                let op_cnt_ty = count.ty(&self.body.local_decls, self.tcx);
                if op_cnt_ty != self.tcx.types.usize {
                    self.fail(location, format!("bad arg ({:?} != usize)", op_cnt_ty))
                }
            }
            StatementKind::SetDiscriminant { place, .. } => {
                if self.mir_phase < MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(location, "`SetDiscriminant`is not allowed until deaggregation");
                }
                let pty = place.ty(&self.body.local_decls, self.tcx).ty.kind();
                if !matches!(pty, ty::Adt(..) | ty::Generator(..) | ty::Opaque(..)) {
                    self.fail(
                        location,
                        format!(
                            "`SetDiscriminant` is only allowed on ADTs and generators, not {:?}",
                            pty
                        ),
                    );
                }
            }
            StatementKind::Deinit(..) => {
                if self.mir_phase < MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(location, "`Deinit`is not allowed until deaggregation");
                }
            }
            StatementKind::Retag(_, _) => {
                // FIXME(JakobDegen) The validator should check that `self.mir_phase <
                // DropsLowered`. However, this causes ICEs with generation of drop shims, which
                // seem to fail to set their `MirPhase` correctly.
            }
            StatementKind::StorageLive(..)
            | StatementKind::StorageDead(..)
            | StatementKind::Coverage(_)
            | StatementKind::Nop => {}
        }

        self.super_statement(statement, location);
    }

    fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
        match &terminator.kind {
            TerminatorKind::Goto { target } => {
                self.check_edge(location, *target, EdgeKind::Normal);
            }
            TerminatorKind::SwitchInt { targets, switch_ty, discr } => {
                let ty = discr.ty(&self.body.local_decls, self.tcx);
                if ty != *switch_ty {
                    self.fail(
                        location,
                        format!(
                            "encountered `SwitchInt` terminator with type mismatch: {:?} != {:?}",
                            ty, switch_ty,
                        ),
                    );
                }

                let target_width = self.tcx.sess.target.pointer_width;

                let size = Size::from_bits(match switch_ty.kind() {
                    ty::Uint(uint) => uint.normalize(target_width).bit_width().unwrap(),
                    ty::Int(int) => int.normalize(target_width).bit_width().unwrap(),
                    ty::Char => 32,
                    ty::Bool => 1,
                    other => bug!("unhandled type: {:?}", other),
                });

                for (value, target) in targets.iter() {
                    if Scalar::<()>::try_from_uint(value, size).is_none() {
                        self.fail(
                            location,
                            format!("the value {:#x} is not a proper {:?}", value, switch_ty),
                        )
                    }

                    self.check_edge(location, target, EdgeKind::Normal);
                }
                self.check_edge(location, targets.otherwise(), EdgeKind::Normal);

                self.value_cache.clear();
                self.value_cache.extend(targets.iter().map(|(value, _)| value));
                let all_len = self.value_cache.len();
                self.value_cache.sort_unstable();
                self.value_cache.dedup();
                let has_duplicates = all_len != self.value_cache.len();
                if has_duplicates {
                    self.fail(
                        location,
                        format!(
                            "duplicated values in `SwitchInt` terminator: {:?}",
                            terminator.kind,
                        ),
                    );
                }
            }
            TerminatorKind::Drop { target, unwind, .. } => {
                self.check_edge(location, *target, EdgeKind::Normal);
                if let Some(unwind) = unwind {
                    self.check_edge(location, *unwind, EdgeKind::Unwind);
                }
            }
            TerminatorKind::DropAndReplace { target, unwind, .. } => {
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(
                        location,
                        "`DropAndReplace` should have been removed during drop elaboration",
                    );
                }
                self.check_edge(location, *target, EdgeKind::Normal);
                if let Some(unwind) = unwind {
                    self.check_edge(location, *unwind, EdgeKind::Unwind);
                }
            }
            TerminatorKind::Call { func, args, destination, target, cleanup, .. } => {
                let func_ty = func.ty(&self.body.local_decls, self.tcx);
                match func_ty.kind() {
                    ty::FnPtr(..) | ty::FnDef(..) => {}
                    _ => self.fail(
                        location,
                        format!("encountered non-callable type {} in `Call` terminator", func_ty),
                    ),
                }
                if let Some(target) = target {
                    self.check_edge(location, *target, EdgeKind::Normal);
                }
                if let Some(cleanup) = cleanup {
                    self.check_edge(location, *cleanup, EdgeKind::Unwind);
                }

                // The call destination place and Operand::Move place used as an argument might be
                // passed by a reference to the callee. Consequently they must be non-overlapping.
                // Currently this simply checks for duplicate places.
                self.place_cache.clear();
                self.place_cache.push(destination.as_ref());
                for arg in args {
                    if let Operand::Move(place) = arg {
                        self.place_cache.push(place.as_ref());
                    }
                }
                let all_len = self.place_cache.len();
                let mut dedup = FxHashSet::default();
                self.place_cache.retain(|p| dedup.insert(*p));
                let has_duplicates = all_len != self.place_cache.len();
                if has_duplicates {
                    self.fail(
                        location,
                        format!(
                            "encountered overlapping memory in `Call` terminator: {:?}",
                            terminator.kind,
                        ),
                    );
                }
            }
            TerminatorKind::Assert { cond, target, cleanup, .. } => {
                let cond_ty = cond.ty(&self.body.local_decls, self.tcx);
                if cond_ty != self.tcx.types.bool {
                    self.fail(
                        location,
                        format!(
                            "encountered non-boolean condition of type {} in `Assert` terminator",
                            cond_ty
                        ),
                    );
                }
                self.check_edge(location, *target, EdgeKind::Normal);
                if let Some(cleanup) = cleanup {
                    self.check_edge(location, *cleanup, EdgeKind::Unwind);
                }
            }
            TerminatorKind::Yield { resume, drop, .. } => {
                if self.body.generator.is_none() {
                    self.fail(location, "`Yield` cannot appear outside generator bodies");
                }
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(location, "`Yield` should have been replaced by generator lowering");
                }
                self.check_edge(location, *resume, EdgeKind::Normal);
                if let Some(drop) = drop {
                    self.check_edge(location, *drop, EdgeKind::Normal);
                }
            }
            TerminatorKind::FalseEdge { real_target, imaginary_target } => {
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(
                        location,
                        "`FalseEdge` should have been removed after drop elaboration",
                    );
                }
                self.check_edge(location, *real_target, EdgeKind::Normal);
                self.check_edge(location, *imaginary_target, EdgeKind::Normal);
            }
            TerminatorKind::FalseUnwind { real_target, unwind } => {
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(
                        location,
                        "`FalseUnwind` should have been removed after drop elaboration",
                    );
                }
                self.check_edge(location, *real_target, EdgeKind::Normal);
                if let Some(unwind) = unwind {
                    self.check_edge(location, *unwind, EdgeKind::Unwind);
                }
            }
            TerminatorKind::InlineAsm { destination, cleanup, .. } => {
                if let Some(destination) = destination {
                    self.check_edge(location, *destination, EdgeKind::Normal);
                }
                if let Some(cleanup) = cleanup {
                    self.check_edge(location, *cleanup, EdgeKind::Unwind);
                }
            }
            TerminatorKind::GeneratorDrop => {
                if self.body.generator.is_none() {
                    self.fail(location, "`GeneratorDrop` cannot appear outside generator bodies");
                }
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(
                        location,
                        "`GeneratorDrop` should have been replaced by generator lowering",
                    );
                }
            }
            TerminatorKind::Resume | TerminatorKind::Abort => {
                let bb = location.block;
                if !self.body.basic_blocks[bb].is_cleanup {
                    self.fail(location, "Cannot `Resume` or `Abort` from non-cleanup basic block")
                }
            }
            TerminatorKind::Return => {
                let bb = location.block;
                if self.body.basic_blocks[bb].is_cleanup {
                    self.fail(location, "Cannot `Return` from cleanup basic block")
                }
            }
            TerminatorKind::Unreachable => {}
        }

        self.super_terminator(terminator, location);
    }

    fn visit_source_scope(&mut self, scope: SourceScope) {
        if self.body.source_scopes.get(scope).is_none() {
            self.tcx.sess.diagnostic().delay_span_bug(
                self.body.span,
                &format!(
                    "broken MIR in {:?} ({}):\ninvalid source scope {:?}",
                    self.body.source.instance, self.when, scope,
                ),
            );
        }
    }
}