1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
//! Functions concerning immediate values and operands, and reading from operands.
//! All high-level functions to read from memory work on operands as sources.

use rustc_hir::def::Namespace;
use rustc_middle::ty::layout::{LayoutOf, PrimitiveExt, TyAndLayout};
use rustc_middle::ty::print::{FmtPrinter, PrettyPrinter};
use rustc_middle::ty::{ConstInt, DelaySpanBugEmitted, Ty};
use rustc_middle::{mir, ty};
use rustc_target::abi::{self, Abi, Align, HasDataLayout, Size, TagEncoding};
use rustc_target::abi::{VariantIdx, Variants};

use super::{
    alloc_range, from_known_layout, mir_assign_valid_types, AllocId, ConstValue, Frame, GlobalId,
    InterpCx, InterpResult, MPlaceTy, Machine, MemPlace, MemPlaceMeta, Place, PlaceTy, Pointer,
    Provenance, Scalar,
};

/// An `Immediate` represents a single immediate self-contained Rust value.
///
/// For optimization of a few very common cases, there is also a representation for a pair of
/// primitive values (`ScalarPair`). It allows Miri to avoid making allocations for checked binary
/// operations and wide pointers. This idea was taken from rustc's codegen.
/// In particular, thanks to `ScalarPair`, arithmetic operations and casts can be entirely
/// defined on `Immediate`, and do not have to work with a `Place`.
#[derive(Copy, Clone, Debug)]
pub enum Immediate<Prov: Provenance = AllocId> {
    /// A single scalar value (must have *initialized* `Scalar` ABI).
    Scalar(Scalar<Prov>),
    /// A pair of two scalar value (must have `ScalarPair` ABI where both fields are
    /// `Scalar::Initialized`).
    ScalarPair(Scalar<Prov>, Scalar<Prov>),
    /// A value of fully uninitialized memory. Can have and size and layout.
    Uninit,
}

impl<Prov: Provenance> From<Scalar<Prov>> for Immediate<Prov> {
    #[inline(always)]
    fn from(val: Scalar<Prov>) -> Self {
        Immediate::Scalar(val.into())
    }
}

impl<Prov: Provenance> Immediate<Prov> {
    pub fn from_pointer(p: Pointer<Prov>, cx: &impl HasDataLayout) -> Self {
        Immediate::Scalar(Scalar::from_pointer(p, cx))
    }

    pub fn from_maybe_pointer(p: Pointer<Option<Prov>>, cx: &impl HasDataLayout) -> Self {
        Immediate::Scalar(Scalar::from_maybe_pointer(p, cx))
    }

    pub fn new_slice(val: Scalar<Prov>, len: u64, cx: &impl HasDataLayout) -> Self {
        Immediate::ScalarPair(val.into(), Scalar::from_machine_usize(len, cx).into())
    }

    pub fn new_dyn_trait(
        val: Scalar<Prov>,
        vtable: Pointer<Option<Prov>>,
        cx: &impl HasDataLayout,
    ) -> Self {
        Immediate::ScalarPair(val.into(), Scalar::from_maybe_pointer(vtable, cx))
    }

    #[inline]
    #[cfg_attr(debug_assertions, track_caller)] // only in debug builds due to perf (see #98980)
    pub fn to_scalar(self) -> Scalar<Prov> {
        match self {
            Immediate::Scalar(val) => val,
            Immediate::ScalarPair(..) => bug!("Got a scalar pair where a scalar was expected"),
            Immediate::Uninit => bug!("Got uninit where a scalar was expected"),
        }
    }

    #[inline]
    #[cfg_attr(debug_assertions, track_caller)] // only in debug builds due to perf (see #98980)
    pub fn to_scalar_pair(self) -> (Scalar<Prov>, Scalar<Prov>) {
        match self {
            Immediate::ScalarPair(val1, val2) => (val1, val2),
            Immediate::Scalar(..) => bug!("Got a scalar where a scalar pair was expected"),
            Immediate::Uninit => bug!("Got uninit where a scalar pair was expected"),
        }
    }
}

// ScalarPair needs a type to interpret, so we often have an immediate and a type together
// as input for binary and cast operations.
#[derive(Clone, Debug)]
pub struct ImmTy<'tcx, Prov: Provenance = AllocId> {
    imm: Immediate<Prov>,
    pub layout: TyAndLayout<'tcx>,
}

impl<Prov: Provenance> std::fmt::Display for ImmTy<'_, Prov> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        /// Helper function for printing a scalar to a FmtPrinter
        fn p<'a, 'tcx, Prov: Provenance>(
            cx: FmtPrinter<'a, 'tcx>,
            s: Scalar<Prov>,
            ty: Ty<'tcx>,
        ) -> Result<FmtPrinter<'a, 'tcx>, std::fmt::Error> {
            match s {
                Scalar::Int(int) => cx.pretty_print_const_scalar_int(int, ty, true),
                Scalar::Ptr(ptr, _sz) => {
                    // Just print the ptr value. `pretty_print_const_scalar_ptr` would also try to
                    // print what is points to, which would fail since it has no access to the local
                    // memory.
                    cx.pretty_print_const_pointer(ptr, ty, true)
                }
            }
        }
        ty::tls::with(|tcx| {
            match self.imm {
                Immediate::Scalar(s) => {
                    if let Some(ty) = tcx.lift(self.layout.ty) {
                        let cx = FmtPrinter::new(tcx, Namespace::ValueNS);
                        f.write_str(&p(cx, s, ty)?.into_buffer())?;
                        return Ok(());
                    }
                    write!(f, "{:x}: {}", s, self.layout.ty)
                }
                Immediate::ScalarPair(a, b) => {
                    // FIXME(oli-obk): at least print tuples and slices nicely
                    write!(f, "({:x}, {:x}): {}", a, b, self.layout.ty)
                }
                Immediate::Uninit => {
                    write!(f, "uninit: {}", self.layout.ty)
                }
            }
        })
    }
}

impl<'tcx, Prov: Provenance> std::ops::Deref for ImmTy<'tcx, Prov> {
    type Target = Immediate<Prov>;
    #[inline(always)]
    fn deref(&self) -> &Immediate<Prov> {
        &self.imm
    }
}

/// An `Operand` is the result of computing a `mir::Operand`. It can be immediate,
/// or still in memory. The latter is an optimization, to delay reading that chunk of
/// memory and to avoid having to store arbitrary-sized data here.
#[derive(Copy, Clone, Debug)]
pub enum Operand<Prov: Provenance = AllocId> {
    Immediate(Immediate<Prov>),
    Indirect(MemPlace<Prov>),
}

#[derive(Clone, Debug)]
pub struct OpTy<'tcx, Prov: Provenance = AllocId> {
    op: Operand<Prov>, // Keep this private; it helps enforce invariants.
    pub layout: TyAndLayout<'tcx>,
    /// rustc does not have a proper way to represent the type of a field of a `repr(packed)` struct:
    /// it needs to have a different alignment than the field type would usually have.
    /// So we represent this here with a separate field that "overwrites" `layout.align`.
    /// This means `layout.align` should never be used for an `OpTy`!
    /// `None` means "alignment does not matter since this is a by-value operand"
    /// (`Operand::Immediate`); this field is only relevant for `Operand::Indirect`.
    /// Also CTFE ignores alignment anyway, so this is for Miri only.
    pub align: Option<Align>,
}

impl<'tcx, Prov: Provenance> std::ops::Deref for OpTy<'tcx, Prov> {
    type Target = Operand<Prov>;
    #[inline(always)]
    fn deref(&self) -> &Operand<Prov> {
        &self.op
    }
}

impl<'tcx, Prov: Provenance> From<MPlaceTy<'tcx, Prov>> for OpTy<'tcx, Prov> {
    #[inline(always)]
    fn from(mplace: MPlaceTy<'tcx, Prov>) -> Self {
        OpTy { op: Operand::Indirect(*mplace), layout: mplace.layout, align: Some(mplace.align) }
    }
}

impl<'tcx, Prov: Provenance> From<&'_ MPlaceTy<'tcx, Prov>> for OpTy<'tcx, Prov> {
    #[inline(always)]
    fn from(mplace: &MPlaceTy<'tcx, Prov>) -> Self {
        OpTy { op: Operand::Indirect(**mplace), layout: mplace.layout, align: Some(mplace.align) }
    }
}

impl<'tcx, Prov: Provenance> From<&'_ mut MPlaceTy<'tcx, Prov>> for OpTy<'tcx, Prov> {
    #[inline(always)]
    fn from(mplace: &mut MPlaceTy<'tcx, Prov>) -> Self {
        OpTy { op: Operand::Indirect(**mplace), layout: mplace.layout, align: Some(mplace.align) }
    }
}

impl<'tcx, Prov: Provenance> From<ImmTy<'tcx, Prov>> for OpTy<'tcx, Prov> {
    #[inline(always)]
    fn from(val: ImmTy<'tcx, Prov>) -> Self {
        OpTy { op: Operand::Immediate(val.imm), layout: val.layout, align: None }
    }
}

impl<'tcx, Prov: Provenance> ImmTy<'tcx, Prov> {
    #[inline]
    pub fn from_scalar(val: Scalar<Prov>, layout: TyAndLayout<'tcx>) -> Self {
        ImmTy { imm: val.into(), layout }
    }

    #[inline]
    pub fn from_immediate(imm: Immediate<Prov>, layout: TyAndLayout<'tcx>) -> Self {
        ImmTy { imm, layout }
    }

    #[inline]
    pub fn uninit(layout: TyAndLayout<'tcx>) -> Self {
        ImmTy { imm: Immediate::Uninit, layout }
    }

    #[inline]
    pub fn try_from_uint(i: impl Into<u128>, layout: TyAndLayout<'tcx>) -> Option<Self> {
        Some(Self::from_scalar(Scalar::try_from_uint(i, layout.size)?, layout))
    }
    #[inline]
    pub fn from_uint(i: impl Into<u128>, layout: TyAndLayout<'tcx>) -> Self {
        Self::from_scalar(Scalar::from_uint(i, layout.size), layout)
    }

    #[inline]
    pub fn try_from_int(i: impl Into<i128>, layout: TyAndLayout<'tcx>) -> Option<Self> {
        Some(Self::from_scalar(Scalar::try_from_int(i, layout.size)?, layout))
    }

    #[inline]
    pub fn from_int(i: impl Into<i128>, layout: TyAndLayout<'tcx>) -> Self {
        Self::from_scalar(Scalar::from_int(i, layout.size), layout)
    }

    #[inline]
    pub fn to_const_int(self) -> ConstInt {
        assert!(self.layout.ty.is_integral());
        let int = self.to_scalar().assert_int();
        ConstInt::new(int, self.layout.ty.is_signed(), self.layout.ty.is_ptr_sized_integral())
    }
}

impl<'tcx, Prov: Provenance> OpTy<'tcx, Prov> {
    pub fn len(&self, cx: &impl HasDataLayout) -> InterpResult<'tcx, u64> {
        if self.layout.is_unsized() {
            // There are no unsized immediates.
            self.assert_mem_place().len(cx)
        } else {
            match self.layout.fields {
                abi::FieldsShape::Array { count, .. } => Ok(count),
                _ => bug!("len not supported on sized type {:?}", self.layout.ty),
            }
        }
    }

    pub fn offset_with_meta(
        &self,
        offset: Size,
        meta: MemPlaceMeta<Prov>,
        layout: TyAndLayout<'tcx>,
        cx: &impl HasDataLayout,
    ) -> InterpResult<'tcx, Self> {
        match self.try_as_mplace() {
            Ok(mplace) => Ok(mplace.offset_with_meta(offset, meta, layout, cx)?.into()),
            Err(imm) => {
                assert!(
                    matches!(*imm, Immediate::Uninit),
                    "Scalar/ScalarPair cannot be offset into"
                );
                assert!(!meta.has_meta()); // no place to store metadata here
                // Every part of an uninit is uninit.
                Ok(ImmTy::uninit(layout).into())
            }
        }
    }

    pub fn offset(
        &self,
        offset: Size,
        layout: TyAndLayout<'tcx>,
        cx: &impl HasDataLayout,
    ) -> InterpResult<'tcx, Self> {
        assert!(!layout.is_unsized());
        self.offset_with_meta(offset, MemPlaceMeta::None, layout, cx)
    }
}

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
    /// Try reading an immediate in memory; this is interesting particularly for `ScalarPair`.
    /// Returns `None` if the layout does not permit loading this as a value.
    ///
    /// This is an internal function; call `read_immediate` instead.
    fn read_immediate_from_mplace_raw(
        &self,
        mplace: &MPlaceTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx, Option<ImmTy<'tcx, M::Provenance>>> {
        if mplace.layout.is_unsized() {
            // Don't touch unsized
            return Ok(None);
        }

        let Some(alloc) = self.get_place_alloc(mplace)? else {
            // zero-sized type can be left uninit
            return Ok(Some(ImmTy::uninit(mplace.layout)));
        };

        // It may seem like all types with `Scalar` or `ScalarPair` ABI are fair game at this point.
        // However, `MaybeUninit<u64>` is considered a `Scalar` as far as its layout is concerned --
        // and yet cannot be represented by an interpreter `Scalar`, since we have to handle the
        // case where some of the bytes are initialized and others are not. So, we need an extra
        // check that walks over the type of `mplace` to make sure it is truly correct to treat this
        // like a `Scalar` (or `ScalarPair`).
        Ok(match mplace.layout.abi {
            Abi::Scalar(abi::Scalar::Initialized { value: s, .. }) => {
                let size = s.size(self);
                assert_eq!(size, mplace.layout.size, "abi::Scalar size does not match layout size");
                let scalar = alloc.read_scalar(
                    alloc_range(Size::ZERO, size),
                    /*read_provenance*/ s.is_ptr(),
                )?;
                Some(ImmTy { imm: scalar.into(), layout: mplace.layout })
            }
            Abi::ScalarPair(
                abi::Scalar::Initialized { value: a, .. },
                abi::Scalar::Initialized { value: b, .. },
            ) => {
                // We checked `ptr_align` above, so all fields will have the alignment they need.
                // We would anyway check against `ptr_align.restrict_for_offset(b_offset)`,
                // which `ptr.offset(b_offset)` cannot possibly fail to satisfy.
                let (a_size, b_size) = (a.size(self), b.size(self));
                let b_offset = a_size.align_to(b.align(self).abi);
                assert!(b_offset.bytes() > 0); // in `operand_field` we use the offset to tell apart the fields
                let a_val = alloc.read_scalar(
                    alloc_range(Size::ZERO, a_size),
                    /*read_provenance*/ a.is_ptr(),
                )?;
                let b_val = alloc.read_scalar(
                    alloc_range(b_offset, b_size),
                    /*read_provenance*/ b.is_ptr(),
                )?;
                Some(ImmTy {
                    imm: Immediate::ScalarPair(a_val.into(), b_val.into()),
                    layout: mplace.layout,
                })
            }
            _ => {
                // Neither a scalar nor scalar pair.
                None
            }
        })
    }

    /// Try returning an immediate for the operand. If the layout does not permit loading this as an
    /// immediate, return where in memory we can find the data.
    /// Note that for a given layout, this operation will either always fail or always
    /// succeed!  Whether it succeeds depends on whether the layout can be represented
    /// in an `Immediate`, not on which data is stored there currently.
    ///
    /// This is an internal function that should not usually be used; call `read_immediate` instead.
    /// ConstProp needs it, though.
    pub fn read_immediate_raw(
        &self,
        src: &OpTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx, Result<ImmTy<'tcx, M::Provenance>, MPlaceTy<'tcx, M::Provenance>>> {
        Ok(match src.try_as_mplace() {
            Ok(ref mplace) => {
                if let Some(val) = self.read_immediate_from_mplace_raw(mplace)? {
                    Ok(val)
                } else {
                    Err(*mplace)
                }
            }
            Err(val) => Ok(val),
        })
    }

    /// Read an immediate from a place, asserting that that is possible with the given layout.
    ///
    /// If this suceeds, the `ImmTy` is never `Uninit`.
    #[inline(always)]
    pub fn read_immediate(
        &self,
        op: &OpTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
        if !matches!(
            op.layout.abi,
            Abi::Scalar(abi::Scalar::Initialized { .. })
                | Abi::ScalarPair(abi::Scalar::Initialized { .. }, abi::Scalar::Initialized { .. })
        ) {
            span_bug!(self.cur_span(), "primitive read not possible for type: {:?}", op.layout.ty);
        }
        let imm = self.read_immediate_raw(op)?.unwrap();
        if matches!(*imm, Immediate::Uninit) {
            throw_ub!(InvalidUninitBytes(None));
        }
        Ok(imm)
    }

    /// Read a scalar from a place
    pub fn read_scalar(
        &self,
        op: &OpTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx, Scalar<M::Provenance>> {
        Ok(self.read_immediate(op)?.to_scalar())
    }

    /// Read a pointer from a place.
    pub fn read_pointer(
        &self,
        op: &OpTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx, Pointer<Option<M::Provenance>>> {
        self.read_scalar(op)?.to_pointer(self)
    }

    /// Turn the wide MPlace into a string (must already be dereferenced!)
    pub fn read_str(&self, mplace: &MPlaceTy<'tcx, M::Provenance>) -> InterpResult<'tcx, &str> {
        let len = mplace.len(self)?;
        let bytes = self.read_bytes_ptr_strip_provenance(mplace.ptr, Size::from_bytes(len))?;
        let str = std::str::from_utf8(bytes).map_err(|err| err_ub!(InvalidStr(err)))?;
        Ok(str)
    }

    /// Converts a repr(simd) operand into an operand where `place_index` accesses the SIMD elements.
    /// Also returns the number of elements.
    ///
    /// Can (but does not always) trigger UB if `op` is uninitialized.
    pub fn operand_to_simd(
        &self,
        op: &OpTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::Provenance>, u64)> {
        // Basically we just transmute this place into an array following simd_size_and_type.
        // This only works in memory, but repr(simd) types should never be immediates anyway.
        assert!(op.layout.ty.is_simd());
        match op.try_as_mplace() {
            Ok(mplace) => self.mplace_to_simd(&mplace),
            Err(imm) => match *imm {
                Immediate::Uninit => {
                    throw_ub!(InvalidUninitBytes(None))
                }
                Immediate::Scalar(..) | Immediate::ScalarPair(..) => {
                    bug!("arrays/slices can never have Scalar/ScalarPair layout")
                }
            },
        }
    }

    /// Read from a local.
    /// Will not access memory, instead an indirect `Operand` is returned.
    ///
    /// This is public because it is used by [priroda](https://github.com/oli-obk/priroda) to get an
    /// OpTy from a local.
    pub fn local_to_op(
        &self,
        frame: &Frame<'mir, 'tcx, M::Provenance, M::FrameExtra>,
        local: mir::Local,
        layout: Option<TyAndLayout<'tcx>>,
    ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
        let layout = self.layout_of_local(frame, local, layout)?;
        let op = *frame.locals[local].access()?;
        Ok(OpTy { op, layout, align: Some(layout.align.abi) })
    }

    /// Every place can be read from, so we can turn them into an operand.
    /// This will definitely return `Indirect` if the place is a `Ptr`, i.e., this
    /// will never actually read from memory.
    #[inline(always)]
    pub fn place_to_op(
        &self,
        place: &PlaceTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
        let op = match **place {
            Place::Ptr(mplace) => Operand::Indirect(mplace),
            Place::Local { frame, local } => {
                *self.local_to_op(&self.stack()[frame], local, None)?
            }
        };
        Ok(OpTy { op, layout: place.layout, align: Some(place.align) })
    }

    /// Evaluate a place with the goal of reading from it.  This lets us sometimes
    /// avoid allocations.
    pub fn eval_place_to_op(
        &self,
        mir_place: mir::Place<'tcx>,
        layout: Option<TyAndLayout<'tcx>>,
    ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
        // Do not use the layout passed in as argument if the base we are looking at
        // here is not the entire place.
        let layout = if mir_place.projection.is_empty() { layout } else { None };

        let mut op = self.local_to_op(self.frame(), mir_place.local, layout)?;
        // Using `try_fold` turned out to be bad for performance, hence the loop.
        for elem in mir_place.projection.iter() {
            op = self.operand_projection(&op, elem)?
        }

        trace!("eval_place_to_op: got {:?}", *op);
        // Sanity-check the type we ended up with.
        debug_assert!(
            mir_assign_valid_types(
                *self.tcx,
                self.param_env,
                self.layout_of(self.subst_from_current_frame_and_normalize_erasing_regions(
                    mir_place.ty(&self.frame().body.local_decls, *self.tcx).ty
                )?)?,
                op.layout,
            ),
            "eval_place of a MIR place with type {:?} produced an interpreter operand with type {:?}",
            mir_place.ty(&self.frame().body.local_decls, *self.tcx).ty,
            op.layout.ty,
        );
        Ok(op)
    }

    /// Evaluate the operand, returning a place where you can then find the data.
    /// If you already know the layout, you can save two table lookups
    /// by passing it in here.
    #[inline]
    pub fn eval_operand(
        &self,
        mir_op: &mir::Operand<'tcx>,
        layout: Option<TyAndLayout<'tcx>>,
    ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
        use rustc_middle::mir::Operand::*;
        let op = match *mir_op {
            // FIXME: do some more logic on `move` to invalidate the old location
            Copy(place) | Move(place) => self.eval_place_to_op(place, layout)?,

            Constant(ref constant) => {
                let val =
                    self.subst_from_current_frame_and_normalize_erasing_regions(constant.literal)?;

                // This can still fail:
                // * During ConstProp, with `TooGeneric` or since the `required_consts` were not all
                //   checked yet.
                // * During CTFE, since promoteds in `const`/`static` initializer bodies can fail.
                self.mir_const_to_op(&val, layout)?
            }
        };
        trace!("{:?}: {:?}", mir_op, *op);
        Ok(op)
    }

    /// Evaluate a bunch of operands at once
    pub(super) fn eval_operands(
        &self,
        ops: &[mir::Operand<'tcx>],
    ) -> InterpResult<'tcx, Vec<OpTy<'tcx, M::Provenance>>> {
        ops.iter().map(|op| self.eval_operand(op, None)).collect()
    }

    // Used when the miri-engine runs into a constant and for extracting information from constants
    // in patterns via the `const_eval` module
    /// The `val` and `layout` are assumed to already be in our interpreter
    /// "universe" (param_env).
    pub fn const_to_op(
        &self,
        c: ty::Const<'tcx>,
        layout: Option<TyAndLayout<'tcx>>,
    ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
        match c.kind() {
            ty::ConstKind::Param(_) | ty::ConstKind::Placeholder(..) => throw_inval!(TooGeneric),
            ty::ConstKind::Error(DelaySpanBugEmitted { reported, .. }) => {
                throw_inval!(AlreadyReported(reported))
            }
            ty::ConstKind::Unevaluated(uv) => {
                // NOTE: We evaluate to a `ValTree` here as a check to ensure
                // we're working with valid constants, even though we never need it.
                let instance = self.resolve(uv.def, uv.substs)?;
                let cid = GlobalId { instance, promoted: None };
                let _valtree = self
                    .tcx
                    .eval_to_valtree(self.param_env.and(cid))?
                    .unwrap_or_else(|| bug!("unable to create ValTree for {:?}", uv));

                Ok(self.eval_to_allocation(cid)?.into())
            }
            ty::ConstKind::Bound(..) | ty::ConstKind::Infer(..) => {
                span_bug!(self.cur_span(), "const_to_op: Unexpected ConstKind {:?}", c)
            }
            ty::ConstKind::Value(valtree) => {
                let ty = c.ty();
                let const_val = self.tcx.valtree_to_const_val((ty, valtree));
                self.const_val_to_op(const_val, ty, layout)
            }
        }
    }

    pub fn mir_const_to_op(
        &self,
        val: &mir::ConstantKind<'tcx>,
        layout: Option<TyAndLayout<'tcx>>,
    ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
        match val {
            mir::ConstantKind::Ty(ct) => self.const_to_op(*ct, layout),
            mir::ConstantKind::Val(val, ty) => self.const_val_to_op(*val, *ty, layout),
            mir::ConstantKind::Unevaluated(uv, _) => {
                let instance = self.resolve(uv.def, uv.substs)?;
                Ok(self.eval_to_allocation(GlobalId { instance, promoted: uv.promoted })?.into())
            }
        }
    }

    pub(crate) fn const_val_to_op(
        &self,
        val_val: ConstValue<'tcx>,
        ty: Ty<'tcx>,
        layout: Option<TyAndLayout<'tcx>>,
    ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
        // Other cases need layout.
        let adjust_scalar = |scalar| -> InterpResult<'tcx, _> {
            Ok(match scalar {
                Scalar::Ptr(ptr, size) => Scalar::Ptr(self.global_base_pointer(ptr)?, size),
                Scalar::Int(int) => Scalar::Int(int),
            })
        };
        let layout = from_known_layout(self.tcx, self.param_env, layout, || self.layout_of(ty))?;
        let op = match val_val {
            ConstValue::ByRef { alloc, offset } => {
                let id = self.tcx.create_memory_alloc(alloc);
                // We rely on mutability being set correctly in that allocation to prevent writes
                // where none should happen.
                let ptr = self.global_base_pointer(Pointer::new(id, offset))?;
                Operand::Indirect(MemPlace::from_ptr(ptr.into()))
            }
            ConstValue::Scalar(x) => Operand::Immediate(adjust_scalar(x)?.into()),
            ConstValue::ZeroSized => Operand::Immediate(Immediate::Uninit),
            ConstValue::Slice { data, start, end } => {
                // We rely on mutability being set correctly in `data` to prevent writes
                // where none should happen.
                let ptr = Pointer::new(
                    self.tcx.create_memory_alloc(data),
                    Size::from_bytes(start), // offset: `start`
                );
                Operand::Immediate(Immediate::new_slice(
                    Scalar::from_pointer(self.global_base_pointer(ptr)?, &*self.tcx),
                    u64::try_from(end.checked_sub(start).unwrap()).unwrap(), // len: `end - start`
                    self,
                ))
            }
        };
        Ok(OpTy { op, layout, align: Some(layout.align.abi) })
    }

    /// Read discriminant, return the runtime value as well as the variant index.
    /// Can also legally be called on non-enums (e.g. through the discriminant_value intrinsic)!
    pub fn read_discriminant(
        &self,
        op: &OpTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx, (Scalar<M::Provenance>, VariantIdx)> {
        trace!("read_discriminant_value {:#?}", op.layout);
        // Get type and layout of the discriminant.
        let discr_layout = self.layout_of(op.layout.ty.discriminant_ty(*self.tcx))?;
        trace!("discriminant type: {:?}", discr_layout.ty);

        // We use "discriminant" to refer to the value associated with a particular enum variant.
        // This is not to be confused with its "variant index", which is just determining its position in the
        // declared list of variants -- they can differ with explicitly assigned discriminants.
        // We use "tag" to refer to how the discriminant is encoded in memory, which can be either
        // straight-forward (`TagEncoding::Direct`) or with a niche (`TagEncoding::Niche`).
        let (tag_scalar_layout, tag_encoding, tag_field) = match op.layout.variants {
            Variants::Single { index } => {
                let discr = match op.layout.ty.discriminant_for_variant(*self.tcx, index) {
                    Some(discr) => {
                        // This type actually has discriminants.
                        assert_eq!(discr.ty, discr_layout.ty);
                        Scalar::from_uint(discr.val, discr_layout.size)
                    }
                    None => {
                        // On a type without actual discriminants, variant is 0.
                        assert_eq!(index.as_u32(), 0);
                        Scalar::from_uint(index.as_u32(), discr_layout.size)
                    }
                };
                return Ok((discr, index));
            }
            Variants::Multiple { tag, ref tag_encoding, tag_field, .. } => {
                (tag, tag_encoding, tag_field)
            }
        };

        // There are *three* layouts that come into play here:
        // - The discriminant has a type for typechecking. This is `discr_layout`, and is used for
        //   the `Scalar` we return.
        // - The tag (encoded discriminant) has layout `tag_layout`. This is always an integer type,
        //   and used to interpret the value we read from the tag field.
        //   For the return value, a cast to `discr_layout` is performed.
        // - The field storing the tag has a layout, which is very similar to `tag_layout` but
        //   may be a pointer. This is `tag_val.layout`; we just use it for sanity checks.

        // Get layout for tag.
        let tag_layout = self.layout_of(tag_scalar_layout.primitive().to_int_ty(*self.tcx))?;

        // Read tag and sanity-check `tag_layout`.
        let tag_val = self.read_immediate(&self.operand_field(op, tag_field)?)?;
        assert_eq!(tag_layout.size, tag_val.layout.size);
        assert_eq!(tag_layout.abi.is_signed(), tag_val.layout.abi.is_signed());
        trace!("tag value: {}", tag_val);

        // Figure out which discriminant and variant this corresponds to.
        Ok(match *tag_encoding {
            TagEncoding::Direct => {
                let scalar = tag_val.to_scalar();
                // Generate a specific error if `tag_val` is not an integer.
                // (`tag_bits` itself is only used for error messages below.)
                let tag_bits = scalar
                    .try_to_int()
                    .map_err(|dbg_val| err_ub!(InvalidTag(dbg_val)))?
                    .assert_bits(tag_layout.size);
                // Cast bits from tag layout to discriminant layout.
                // After the checks we did above, this cannot fail, as
                // discriminants are int-like.
                let discr_val =
                    self.cast_from_int_like(scalar, tag_val.layout, discr_layout.ty).unwrap();
                let discr_bits = discr_val.assert_bits(discr_layout.size);
                // Convert discriminant to variant index, and catch invalid discriminants.
                let index = match *op.layout.ty.kind() {
                    ty::Adt(adt, _) => {
                        adt.discriminants(*self.tcx).find(|(_, var)| var.val == discr_bits)
                    }
                    ty::Generator(def_id, substs, _) => {
                        let substs = substs.as_generator();
                        substs
                            .discriminants(def_id, *self.tcx)
                            .find(|(_, var)| var.val == discr_bits)
                    }
                    _ => span_bug!(self.cur_span(), "tagged layout for non-adt non-generator"),
                }
                .ok_or_else(|| err_ub!(InvalidTag(Scalar::from_uint(tag_bits, tag_layout.size))))?;
                // Return the cast value, and the index.
                (discr_val, index.0)
            }
            TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start } => {
                let tag_val = tag_val.to_scalar();
                // Compute the variant this niche value/"tag" corresponds to. With niche layout,
                // discriminant (encoded in niche/tag) and variant index are the same.
                let variants_start = niche_variants.start().as_u32();
                let variants_end = niche_variants.end().as_u32();
                let variant = match tag_val.try_to_int() {
                    Err(dbg_val) => {
                        // So this is a pointer then, and casting to an int failed.
                        // Can only happen during CTFE.
                        // The niche must be just 0, and the ptr not null, then we know this is
                        // okay. Everything else, we conservatively reject.
                        let ptr_valid = niche_start == 0
                            && variants_start == variants_end
                            && !self.scalar_may_be_null(tag_val)?;
                        if !ptr_valid {
                            throw_ub!(InvalidTag(dbg_val))
                        }
                        untagged_variant
                    }
                    Ok(tag_bits) => {
                        let tag_bits = tag_bits.assert_bits(tag_layout.size);
                        // We need to use machine arithmetic to get the relative variant idx:
                        // variant_index_relative = tag_val - niche_start_val
                        let tag_val = ImmTy::from_uint(tag_bits, tag_layout);
                        let niche_start_val = ImmTy::from_uint(niche_start, tag_layout);
                        let variant_index_relative_val =
                            self.binary_op(mir::BinOp::Sub, &tag_val, &niche_start_val)?;
                        let variant_index_relative =
                            variant_index_relative_val.to_scalar().assert_bits(tag_val.layout.size);
                        // Check if this is in the range that indicates an actual discriminant.
                        if variant_index_relative <= u128::from(variants_end - variants_start) {
                            let variant_index_relative = u32::try_from(variant_index_relative)
                                .expect("we checked that this fits into a u32");
                            // Then computing the absolute variant idx should not overflow any more.
                            let variant_index = variants_start
                                .checked_add(variant_index_relative)
                                .expect("overflow computing absolute variant idx");
                            let variants_len = op
                                .layout
                                .ty
                                .ty_adt_def()
                                .expect("tagged layout for non adt")
                                .variants()
                                .len();
                            assert!(usize::try_from(variant_index).unwrap() < variants_len);
                            VariantIdx::from_u32(variant_index)
                        } else {
                            untagged_variant
                        }
                    }
                };
                // Compute the size of the scalar we need to return.
                // No need to cast, because the variant index directly serves as discriminant and is
                // encoded in the tag.
                (Scalar::from_uint(variant.as_u32(), discr_layout.size), variant)
            }
        })
    }
}

// Some nodes are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64", not(bootstrap)))]
mod size_asserts {
    use super::*;
    use rustc_data_structures::static_assert_size;
    // These are in alphabetical order, which is easy to maintain.
    static_assert_size!(Immediate, 48);
    static_assert_size!(ImmTy<'_>, 64);
    static_assert_size!(Operand, 56);
    static_assert_size!(OpTy<'_>, 80);
}