1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
use super::method::MethodCallee;
use super::{DefIdOrName, Expectation, FnCtxt, TupleArgumentsFlag};
use crate::type_error_struct;

use rustc_errors::{struct_span_err, Applicability, Diagnostic};
use rustc_hir as hir;
use rustc_hir::def::{self, Namespace, Res};
use rustc_hir::def_id::DefId;
use rustc_infer::{
    infer,
    traits::{self, Obligation},
};
use rustc_infer::{
    infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind},
    traits::ObligationCause,
};
use rustc_middle::ty::adjustment::{
    Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability,
};
use rustc_middle::ty::subst::{Subst, SubstsRef};
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitable};
use rustc_span::def_id::LocalDefId;
use rustc_span::symbol::{sym, Ident};
use rustc_span::Span;
use rustc_target::spec::abi;
use rustc_trait_selection::autoderef::Autoderef;
use rustc_trait_selection::infer::InferCtxtExt as _;
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;

use std::iter;

/// Checks that it is legal to call methods of the trait corresponding
/// to `trait_id` (this only cares about the trait, not the specific
/// method that is called).
pub fn check_legal_trait_for_method_call(
    tcx: TyCtxt<'_>,
    span: Span,
    receiver: Option<Span>,
    expr_span: Span,
    trait_id: DefId,
) {
    if tcx.lang_items().drop_trait() == Some(trait_id) {
        let mut err = struct_span_err!(tcx.sess, span, E0040, "explicit use of destructor method");
        err.span_label(span, "explicit destructor calls not allowed");

        let (sp, suggestion) = receiver
            .and_then(|s| tcx.sess.source_map().span_to_snippet(s).ok())
            .filter(|snippet| !snippet.is_empty())
            .map(|snippet| (expr_span, format!("drop({snippet})")))
            .unwrap_or_else(|| (span, "drop".to_string()));

        err.span_suggestion(
            sp,
            "consider using `drop` function",
            suggestion,
            Applicability::MaybeIncorrect,
        );

        err.emit();
    }
}

enum CallStep<'tcx> {
    Builtin(Ty<'tcx>),
    DeferredClosure(LocalDefId, ty::FnSig<'tcx>),
    /// E.g., enum variant constructors.
    Overloaded(MethodCallee<'tcx>),
}

impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
    pub fn check_call(
        &self,
        call_expr: &'tcx hir::Expr<'tcx>,
        callee_expr: &'tcx hir::Expr<'tcx>,
        arg_exprs: &'tcx [hir::Expr<'tcx>],
        expected: Expectation<'tcx>,
    ) -> Ty<'tcx> {
        let original_callee_ty = match &callee_expr.kind {
            hir::ExprKind::Path(hir::QPath::Resolved(..) | hir::QPath::TypeRelative(..)) => self
                .check_expr_with_expectation_and_args(
                    callee_expr,
                    Expectation::NoExpectation,
                    arg_exprs,
                ),
            _ => self.check_expr(callee_expr),
        };

        let expr_ty = self.structurally_resolved_type(call_expr.span, original_callee_ty);

        let mut autoderef = self.autoderef(callee_expr.span, expr_ty);
        let mut result = None;
        while result.is_none() && autoderef.next().is_some() {
            result = self.try_overloaded_call_step(call_expr, callee_expr, arg_exprs, &autoderef);
        }
        self.register_predicates(autoderef.into_obligations());

        let output = match result {
            None => {
                // this will report an error since original_callee_ty is not a fn
                self.confirm_builtin_call(
                    call_expr,
                    callee_expr,
                    original_callee_ty,
                    arg_exprs,
                    expected,
                )
            }

            Some(CallStep::Builtin(callee_ty)) => {
                self.confirm_builtin_call(call_expr, callee_expr, callee_ty, arg_exprs, expected)
            }

            Some(CallStep::DeferredClosure(def_id, fn_sig)) => {
                self.confirm_deferred_closure_call(call_expr, arg_exprs, expected, def_id, fn_sig)
            }

            Some(CallStep::Overloaded(method_callee)) => {
                self.confirm_overloaded_call(call_expr, arg_exprs, expected, method_callee)
            }
        };

        // we must check that return type of called functions is WF:
        self.register_wf_obligation(output.into(), call_expr.span, traits::WellFormed(None));

        output
    }

    fn try_overloaded_call_step(
        &self,
        call_expr: &'tcx hir::Expr<'tcx>,
        callee_expr: &'tcx hir::Expr<'tcx>,
        arg_exprs: &'tcx [hir::Expr<'tcx>],
        autoderef: &Autoderef<'a, 'tcx>,
    ) -> Option<CallStep<'tcx>> {
        let adjusted_ty =
            self.structurally_resolved_type(autoderef.span(), autoderef.final_ty(false));
        debug!(
            "try_overloaded_call_step(call_expr={:?}, adjusted_ty={:?})",
            call_expr, adjusted_ty
        );

        // If the callee is a bare function or a closure, then we're all set.
        match *adjusted_ty.kind() {
            ty::FnDef(..) | ty::FnPtr(_) => {
                let adjustments = self.adjust_steps(autoderef);
                self.apply_adjustments(callee_expr, adjustments);
                return Some(CallStep::Builtin(adjusted_ty));
            }

            ty::Closure(def_id, substs) => {
                let def_id = def_id.expect_local();

                // Check whether this is a call to a closure where we
                // haven't yet decided on whether the closure is fn vs
                // fnmut vs fnonce. If so, we have to defer further processing.
                if self.closure_kind(substs).is_none() {
                    let closure_sig = substs.as_closure().sig();
                    let closure_sig = self.replace_bound_vars_with_fresh_vars(
                        call_expr.span,
                        infer::FnCall,
                        closure_sig,
                    );
                    let adjustments = self.adjust_steps(autoderef);
                    self.record_deferred_call_resolution(
                        def_id,
                        DeferredCallResolution {
                            call_expr,
                            callee_expr,
                            adjusted_ty,
                            adjustments,
                            fn_sig: closure_sig,
                            closure_substs: substs,
                        },
                    );
                    return Some(CallStep::DeferredClosure(def_id, closure_sig));
                }
            }

            // Hack: we know that there are traits implementing Fn for &F
            // where F:Fn and so forth. In the particular case of types
            // like `x: &mut FnMut()`, if there is a call `x()`, we would
            // normally translate to `FnMut::call_mut(&mut x, ())`, but
            // that winds up requiring `mut x: &mut FnMut()`. A little
            // over the top. The simplest fix by far is to just ignore
            // this case and deref again, so we wind up with
            // `FnMut::call_mut(&mut *x, ())`.
            ty::Ref(..) if autoderef.step_count() == 0 => {
                return None;
            }

            _ => {}
        }

        // Now, we look for the implementation of a Fn trait on the object's type.
        // We first do it with the explicit instruction to look for an impl of
        // `Fn<Tuple>`, with the tuple `Tuple` having an arity corresponding
        // to the number of call parameters.
        // If that fails (or_else branch), we try again without specifying the
        // shape of the tuple (hence the None). This allows to detect an Fn trait
        // is implemented, and use this information for diagnostic.
        self.try_overloaded_call_traits(call_expr, adjusted_ty, Some(arg_exprs))
            .or_else(|| self.try_overloaded_call_traits(call_expr, adjusted_ty, None))
            .map(|(autoref, method)| {
                let mut adjustments = self.adjust_steps(autoderef);
                adjustments.extend(autoref);
                self.apply_adjustments(callee_expr, adjustments);
                CallStep::Overloaded(method)
            })
    }

    fn try_overloaded_call_traits(
        &self,
        call_expr: &hir::Expr<'_>,
        adjusted_ty: Ty<'tcx>,
        opt_arg_exprs: Option<&'tcx [hir::Expr<'tcx>]>,
    ) -> Option<(Option<Adjustment<'tcx>>, MethodCallee<'tcx>)> {
        // Try the options that are least restrictive on the caller first.
        for (opt_trait_def_id, method_name, borrow) in [
            (self.tcx.lang_items().fn_trait(), Ident::with_dummy_span(sym::call), true),
            (self.tcx.lang_items().fn_mut_trait(), Ident::with_dummy_span(sym::call_mut), true),
            (self.tcx.lang_items().fn_once_trait(), Ident::with_dummy_span(sym::call_once), false),
        ] {
            let Some(trait_def_id) = opt_trait_def_id else { continue };

            let opt_input_types = opt_arg_exprs.map(|arg_exprs| {
                [self.tcx.mk_tup(arg_exprs.iter().map(|e| {
                    self.next_ty_var(TypeVariableOrigin {
                        kind: TypeVariableOriginKind::TypeInference,
                        span: e.span,
                    })
                }))]
            });
            let opt_input_types = opt_input_types.as_ref().map(AsRef::as_ref);

            if let Some(ok) = self.lookup_method_in_trait(
                call_expr.span,
                method_name,
                trait_def_id,
                adjusted_ty,
                opt_input_types,
            ) {
                let method = self.register_infer_ok_obligations(ok);
                let mut autoref = None;
                if borrow {
                    // Check for &self vs &mut self in the method signature. Since this is either
                    // the Fn or FnMut trait, it should be one of those.
                    let ty::Ref(region, _, mutbl) = method.sig.inputs()[0].kind() else {
                        // The `fn`/`fn_mut` lang item is ill-formed, which should have
                        // caused an error elsewhere.
                        self.tcx
                            .sess
                            .delay_span_bug(call_expr.span, "input to call/call_mut is not a ref?");
                        return None;
                    };

                    let mutbl = match mutbl {
                        hir::Mutability::Not => AutoBorrowMutability::Not,
                        hir::Mutability::Mut => AutoBorrowMutability::Mut {
                            // For initial two-phase borrow
                            // deployment, conservatively omit
                            // overloaded function call ops.
                            allow_two_phase_borrow: AllowTwoPhase::No,
                        },
                    };
                    autoref = Some(Adjustment {
                        kind: Adjust::Borrow(AutoBorrow::Ref(*region, mutbl)),
                        target: method.sig.inputs()[0],
                    });
                }
                return Some((autoref, method));
            }
        }

        None
    }

    /// Give appropriate suggestion when encountering `||{/* not callable */}()`, where the
    /// likely intention is to call the closure, suggest `(||{})()`. (#55851)
    fn identify_bad_closure_def_and_call(
        &self,
        err: &mut Diagnostic,
        hir_id: hir::HirId,
        callee_node: &hir::ExprKind<'_>,
        callee_span: Span,
    ) {
        let hir = self.tcx.hir();
        let parent_hir_id = hir.get_parent_node(hir_id);
        let parent_node = hir.get(parent_hir_id);
        if let (
            hir::Node::Expr(hir::Expr {
                kind: hir::ExprKind::Closure(&hir::Closure { fn_decl_span, body, .. }),
                ..
            }),
            hir::ExprKind::Block(..),
        ) = (parent_node, callee_node)
        {
            let fn_decl_span = if hir.body(body).generator_kind
                == Some(hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Closure))
            {
                // Actually need to unwrap a few more layers of HIR to get to
                // the _real_ closure...
                let async_closure = hir.get_parent_node(hir.get_parent_node(parent_hir_id));
                if let hir::Node::Expr(hir::Expr {
                    kind: hir::ExprKind::Closure(&hir::Closure { fn_decl_span, .. }),
                    ..
                }) = hir.get(async_closure)
                {
                    fn_decl_span
                } else {
                    return;
                }
            } else {
                fn_decl_span
            };

            let start = fn_decl_span.shrink_to_lo();
            let end = callee_span.shrink_to_hi();
            err.multipart_suggestion(
                "if you meant to create this closure and immediately call it, surround the \
                closure with parentheses",
                vec![(start, "(".to_string()), (end, ")".to_string())],
                Applicability::MaybeIncorrect,
            );
        }
    }

    /// Give appropriate suggestion when encountering `[("a", 0) ("b", 1)]`, where the
    /// likely intention is to create an array containing tuples.
    fn maybe_suggest_bad_array_definition(
        &self,
        err: &mut Diagnostic,
        call_expr: &'tcx hir::Expr<'tcx>,
        callee_expr: &'tcx hir::Expr<'tcx>,
    ) -> bool {
        let hir_id = self.tcx.hir().get_parent_node(call_expr.hir_id);
        let parent_node = self.tcx.hir().get(hir_id);
        if let (
            hir::Node::Expr(hir::Expr { kind: hir::ExprKind::Array(_), .. }),
            hir::ExprKind::Tup(exp),
            hir::ExprKind::Call(_, args),
        ) = (parent_node, &callee_expr.kind, &call_expr.kind)
            && args.len() == exp.len()
        {
            let start = callee_expr.span.shrink_to_hi();
            err.span_suggestion(
                start,
                "consider separating array elements with a comma",
                ",",
                Applicability::MaybeIncorrect,
            );
            return true;
        }
        false
    }

    fn confirm_builtin_call(
        &self,
        call_expr: &'tcx hir::Expr<'tcx>,
        callee_expr: &'tcx hir::Expr<'tcx>,
        callee_ty: Ty<'tcx>,
        arg_exprs: &'tcx [hir::Expr<'tcx>],
        expected: Expectation<'tcx>,
    ) -> Ty<'tcx> {
        let (fn_sig, def_id) = match *callee_ty.kind() {
            ty::FnDef(def_id, subst) => {
                let fn_sig = self.tcx.bound_fn_sig(def_id).subst(self.tcx, subst);

                // Unit testing: function items annotated with
                // `#[rustc_evaluate_where_clauses]` trigger special output
                // to let us test the trait evaluation system.
                if self.tcx.has_attr(def_id, sym::rustc_evaluate_where_clauses) {
                    let predicates = self.tcx.predicates_of(def_id);
                    let predicates = predicates.instantiate(self.tcx, subst);
                    for (predicate, predicate_span) in
                        predicates.predicates.iter().zip(&predicates.spans)
                    {
                        let obligation = Obligation::new(
                            ObligationCause::dummy_with_span(callee_expr.span),
                            self.param_env,
                            *predicate,
                        );
                        let result = self.evaluate_obligation(&obligation);
                        self.tcx
                            .sess
                            .struct_span_err(
                                callee_expr.span,
                                &format!("evaluate({:?}) = {:?}", predicate, result),
                            )
                            .span_label(*predicate_span, "predicate")
                            .emit();
                    }
                }
                (fn_sig, Some(def_id))
            }
            ty::FnPtr(sig) => (sig, None),
            _ => {
                let mut unit_variant = None;
                if let hir::ExprKind::Path(qpath) = &callee_expr.kind
                    && let Res::Def(def::DefKind::Ctor(kind, def::CtorKind::Const), _)
                        = self.typeck_results.borrow().qpath_res(qpath, callee_expr.hir_id)
                    // Only suggest removing parens if there are no arguments
                    && arg_exprs.is_empty()
                {
                    let descr = match kind {
                        def::CtorOf::Struct => "struct",
                        def::CtorOf::Variant => "enum variant",
                    };
                    let removal_span =
                        callee_expr.span.shrink_to_hi().to(call_expr.span.shrink_to_hi());
                    unit_variant =
                        Some((removal_span, descr, rustc_hir_pretty::qpath_to_string(qpath)));
                }

                let callee_ty = self.resolve_vars_if_possible(callee_ty);
                let mut err = type_error_struct!(
                    self.tcx.sess,
                    callee_expr.span,
                    callee_ty,
                    E0618,
                    "expected function, found {}",
                    match &unit_variant {
                        Some((_, kind, path)) => format!("{kind} `{path}`"),
                        None => format!("`{callee_ty}`"),
                    }
                );

                self.identify_bad_closure_def_and_call(
                    &mut err,
                    call_expr.hir_id,
                    &callee_expr.kind,
                    callee_expr.span,
                );

                if let Some((removal_span, kind, path)) = &unit_variant {
                    err.span_suggestion_verbose(
                        *removal_span,
                        &format!(
                            "`{path}` is a unit {kind}, and does not take parentheses to be constructed",
                        ),
                        "",
                        Applicability::MachineApplicable,
                    );
                }

                let mut inner_callee_path = None;
                let def = match callee_expr.kind {
                    hir::ExprKind::Path(ref qpath) => {
                        self.typeck_results.borrow().qpath_res(qpath, callee_expr.hir_id)
                    }
                    hir::ExprKind::Call(ref inner_callee, _) => {
                        // If the call spans more than one line and the callee kind is
                        // itself another `ExprCall`, that's a clue that we might just be
                        // missing a semicolon (Issue #51055)
                        let call_is_multiline =
                            self.tcx.sess.source_map().is_multiline(call_expr.span);
                        if call_is_multiline {
                            err.span_suggestion(
                                callee_expr.span.shrink_to_hi(),
                                "consider using a semicolon here",
                                ";",
                                Applicability::MaybeIncorrect,
                            );
                        }
                        if let hir::ExprKind::Path(ref inner_qpath) = inner_callee.kind {
                            inner_callee_path = Some(inner_qpath);
                            self.typeck_results.borrow().qpath_res(inner_qpath, inner_callee.hir_id)
                        } else {
                            Res::Err
                        }
                    }
                    _ => Res::Err,
                };

                if !self.maybe_suggest_bad_array_definition(&mut err, call_expr, callee_expr) {
                    if let Some((maybe_def, output_ty, _)) = self.extract_callable_info(callee_expr, callee_ty)
                        && !self.type_is_sized_modulo_regions(self.param_env, output_ty, callee_expr.span)
                    {
                        let descr = match maybe_def {
                            DefIdOrName::DefId(def_id) => self.tcx.def_kind(def_id).descr(def_id),
                            DefIdOrName::Name(name) => name,
                        };
                        err.span_label(
                            callee_expr.span,
                            format!("this {descr} returns an unsized value `{output_ty}`, so it cannot be called")
                        );
                        if let DefIdOrName::DefId(def_id) = maybe_def
                            && let Some(def_span) = self.tcx.hir().span_if_local(def_id)
                        {
                            err.span_label(def_span, "the callable type is defined here");
                        }
                    } else {
                        err.span_label(call_expr.span, "call expression requires function");
                    }
                }

                if let Some(span) = self.tcx.hir().res_span(def) {
                    let callee_ty = callee_ty.to_string();
                    let label = match (unit_variant, inner_callee_path) {
                        (Some((_, kind, path)), _) => Some(format!("{kind} `{path}` defined here")),
                        (_, Some(hir::QPath::Resolved(_, path))) => self
                            .tcx
                            .sess
                            .source_map()
                            .span_to_snippet(path.span)
                            .ok()
                            .map(|p| format!("`{p}` defined here returns `{callee_ty}`")),
                        _ => {
                            match def {
                                // Emit a different diagnostic for local variables, as they are not
                                // type definitions themselves, but rather variables *of* that type.
                                Res::Local(hir_id) => Some(format!(
                                    "`{}` has type `{}`",
                                    self.tcx.hir().name(hir_id),
                                    callee_ty
                                )),
                                Res::Def(kind, def_id) if kind.ns() == Some(Namespace::ValueNS) => {
                                    Some(format!(
                                        "`{}` defined here",
                                        self.tcx.def_path_str(def_id),
                                    ))
                                }
                                _ => Some(format!("`{callee_ty}` defined here")),
                            }
                        }
                    };
                    if let Some(label) = label {
                        err.span_label(span, label);
                    }
                }
                err.emit();

                // This is the "default" function signature, used in case of error.
                // In that case, we check each argument against "error" in order to
                // set up all the node type bindings.
                (
                    ty::Binder::dummy(self.tcx.mk_fn_sig(
                        self.err_args(arg_exprs.len()).into_iter(),
                        self.tcx.ty_error(),
                        false,
                        hir::Unsafety::Normal,
                        abi::Abi::Rust,
                    )),
                    None,
                )
            }
        };

        // Replace any late-bound regions that appear in the function
        // signature with region variables. We also have to
        // renormalize the associated types at this point, since they
        // previously appeared within a `Binder<>` and hence would not
        // have been normalized before.
        let fn_sig = self.replace_bound_vars_with_fresh_vars(call_expr.span, infer::FnCall, fn_sig);
        let fn_sig = self.normalize_associated_types_in(call_expr.span, fn_sig);

        // Call the generic checker.
        let expected_arg_tys = self.expected_inputs_for_expected_output(
            call_expr.span,
            expected,
            fn_sig.output(),
            fn_sig.inputs(),
        );
        self.check_argument_types(
            call_expr.span,
            call_expr,
            fn_sig.inputs(),
            expected_arg_tys,
            arg_exprs,
            fn_sig.c_variadic,
            TupleArgumentsFlag::DontTupleArguments,
            def_id,
        );

        fn_sig.output()
    }

    fn confirm_deferred_closure_call(
        &self,
        call_expr: &'tcx hir::Expr<'tcx>,
        arg_exprs: &'tcx [hir::Expr<'tcx>],
        expected: Expectation<'tcx>,
        closure_def_id: LocalDefId,
        fn_sig: ty::FnSig<'tcx>,
    ) -> Ty<'tcx> {
        // `fn_sig` is the *signature* of the closure being called. We
        // don't know the full details yet (`Fn` vs `FnMut` etc), but we
        // do know the types expected for each argument and the return
        // type.

        let expected_arg_tys = self.expected_inputs_for_expected_output(
            call_expr.span,
            expected,
            fn_sig.output(),
            fn_sig.inputs(),
        );

        self.check_argument_types(
            call_expr.span,
            call_expr,
            fn_sig.inputs(),
            expected_arg_tys,
            arg_exprs,
            fn_sig.c_variadic,
            TupleArgumentsFlag::TupleArguments,
            Some(closure_def_id.to_def_id()),
        );

        fn_sig.output()
    }

    fn confirm_overloaded_call(
        &self,
        call_expr: &'tcx hir::Expr<'tcx>,
        arg_exprs: &'tcx [hir::Expr<'tcx>],
        expected: Expectation<'tcx>,
        method_callee: MethodCallee<'tcx>,
    ) -> Ty<'tcx> {
        let output_type = self.check_method_argument_types(
            call_expr.span,
            call_expr,
            Ok(method_callee),
            arg_exprs,
            TupleArgumentsFlag::TupleArguments,
            expected,
        );

        self.write_method_call(call_expr.hir_id, method_callee);
        output_type
    }
}

#[derive(Debug)]
pub struct DeferredCallResolution<'tcx> {
    call_expr: &'tcx hir::Expr<'tcx>,
    callee_expr: &'tcx hir::Expr<'tcx>,
    adjusted_ty: Ty<'tcx>,
    adjustments: Vec<Adjustment<'tcx>>,
    fn_sig: ty::FnSig<'tcx>,
    closure_substs: SubstsRef<'tcx>,
}

impl<'a, 'tcx> DeferredCallResolution<'tcx> {
    pub fn resolve(self, fcx: &FnCtxt<'a, 'tcx>) {
        debug!("DeferredCallResolution::resolve() {:?}", self);

        // we should not be invoked until the closure kind has been
        // determined by upvar inference
        assert!(fcx.closure_kind(self.closure_substs).is_some());

        // We may now know enough to figure out fn vs fnmut etc.
        match fcx.try_overloaded_call_traits(self.call_expr, self.adjusted_ty, None) {
            Some((autoref, method_callee)) => {
                // One problem is that when we get here, we are going
                // to have a newly instantiated function signature
                // from the call trait. This has to be reconciled with
                // the older function signature we had before. In
                // principle we *should* be able to fn_sigs(), but we
                // can't because of the annoying need for a TypeTrace.
                // (This always bites me, should find a way to
                // refactor it.)
                let method_sig = method_callee.sig;

                debug!("attempt_resolution: method_callee={:?}", method_callee);

                for (method_arg_ty, self_arg_ty) in
                    iter::zip(method_sig.inputs().iter().skip(1), self.fn_sig.inputs())
                {
                    fcx.demand_eqtype(self.call_expr.span, *self_arg_ty, *method_arg_ty);
                }

                fcx.demand_eqtype(self.call_expr.span, method_sig.output(), self.fn_sig.output());

                let mut adjustments = self.adjustments;
                adjustments.extend(autoref);
                fcx.apply_adjustments(self.callee_expr, adjustments);

                fcx.write_method_call(self.call_expr.hir_id, method_callee);
            }
            None => {
                // This can happen if `#![no_core]` is used and the `fn/fn_mut/fn_once`
                // lang items are not defined (issue #86238).
                let mut err = fcx.inh.tcx.sess.struct_span_err(
                    self.call_expr.span,
                    "failed to find an overloaded call trait for closure call",
                );
                err.help(
                    "make sure the `fn`/`fn_mut`/`fn_once` lang items are defined \
                     and have associated `call`/`call_mut`/`call_once` functions",
                );
                err.emit();
            }
        }
    }
}