1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
use crate::diagnostics::error::{span_err, throw_span_err, DiagnosticDeriveError};
use proc_macro::Span;
use proc_macro2::TokenStream;
use quote::{format_ident, quote, ToTokens};
use std::collections::{BTreeSet, HashMap};
use std::str::FromStr;
use syn::{spanned::Spanned, Attribute, Meta, Type, TypeTuple};
use synstructure::{BindingInfo, Structure};

/// Checks whether the type name of `ty` matches `name`.
///
/// Given some struct at `a::b::c::Foo`, this will return true for `c::Foo`, `b::c::Foo`, or
/// `a::b::c::Foo`. This reasonably allows qualified names to be used in the macro.
pub(crate) fn type_matches_path(ty: &Type, name: &[&str]) -> bool {
    if let Type::Path(ty) = ty {
        ty.path
            .segments
            .iter()
            .map(|s| s.ident.to_string())
            .rev()
            .zip(name.iter().rev())
            .all(|(x, y)| &x.as_str() == y)
    } else {
        false
    }
}

/// Checks whether the type `ty` is `()`.
pub(crate) fn type_is_unit(ty: &Type) -> bool {
    if let Type::Tuple(TypeTuple { elems, .. }) = ty { elems.is_empty() } else { false }
}

/// Reports a type error for field with `attr`.
pub(crate) fn report_type_error(
    attr: &Attribute,
    ty_name: &str,
) -> Result<!, DiagnosticDeriveError> {
    let name = attr.path.segments.last().unwrap().ident.to_string();
    let meta = attr.parse_meta()?;

    throw_span_err!(
        attr.span().unwrap(),
        &format!(
            "the `#[{}{}]` attribute can only be applied to fields of type {}",
            name,
            match meta {
                Meta::Path(_) => "",
                Meta::NameValue(_) => " = ...",
                Meta::List(_) => "(...)",
            },
            ty_name
        )
    );
}

/// Reports an error if the field's type does not match `path`.
fn report_error_if_not_applied_to_ty(
    attr: &Attribute,
    info: &FieldInfo<'_>,
    path: &[&str],
    ty_name: &str,
) -> Result<(), DiagnosticDeriveError> {
    if !type_matches_path(&info.ty, path) {
        report_type_error(attr, ty_name)?;
    }

    Ok(())
}

/// Reports an error if the field's type is not `Applicability`.
pub(crate) fn report_error_if_not_applied_to_applicability(
    attr: &Attribute,
    info: &FieldInfo<'_>,
) -> Result<(), DiagnosticDeriveError> {
    report_error_if_not_applied_to_ty(
        attr,
        info,
        &["rustc_errors", "Applicability"],
        "`Applicability`",
    )
}

/// Reports an error if the field's type is not `Span`.
pub(crate) fn report_error_if_not_applied_to_span(
    attr: &Attribute,
    info: &FieldInfo<'_>,
) -> Result<(), DiagnosticDeriveError> {
    if !type_matches_path(&info.ty, &["rustc_span", "Span"])
        && !type_matches_path(&info.ty, &["rustc_errors", "MultiSpan"])
    {
        report_type_error(attr, "`Span` or `MultiSpan`")?;
    }

    Ok(())
}

/// Inner type of a field and type of wrapper.
pub(crate) enum FieldInnerTy<'ty> {
    /// Field is wrapped in a `Option<$inner>`.
    Option(&'ty Type),
    /// Field is wrapped in a `Vec<$inner>`.
    Vec(&'ty Type),
    /// Field isn't wrapped in an outer type.
    None,
}

impl<'ty> FieldInnerTy<'ty> {
    /// Returns inner type for a field, if there is one.
    ///
    /// - If `ty` is an `Option`, returns `FieldInnerTy::Option { inner: (inner type) }`.
    /// - If `ty` is a `Vec`, returns `FieldInnerTy::Vec { inner: (inner type) }`.
    /// - Otherwise returns `None`.
    pub(crate) fn from_type(ty: &'ty Type) -> Self {
        let variant: &dyn Fn(&'ty Type) -> FieldInnerTy<'ty> =
            if type_matches_path(ty, &["std", "option", "Option"]) {
                &FieldInnerTy::Option
            } else if type_matches_path(ty, &["std", "vec", "Vec"]) {
                &FieldInnerTy::Vec
            } else {
                return FieldInnerTy::None;
            };

        if let Type::Path(ty_path) = ty {
            let path = &ty_path.path;
            let ty = path.segments.iter().last().unwrap();
            if let syn::PathArguments::AngleBracketed(bracketed) = &ty.arguments {
                if bracketed.args.len() == 1 {
                    if let syn::GenericArgument::Type(ty) = &bracketed.args[0] {
                        return variant(ty);
                    }
                }
            }
        }

        unreachable!();
    }

    /// Returns `Option` containing inner type if there is one.
    pub(crate) fn inner_type(&self) -> Option<&'ty Type> {
        match self {
            FieldInnerTy::Option(inner) | FieldInnerTy::Vec(inner) => Some(inner),
            FieldInnerTy::None => None,
        }
    }

    /// Surrounds `inner` with destructured wrapper type, exposing inner type as `binding`.
    pub(crate) fn with(&self, binding: impl ToTokens, inner: impl ToTokens) -> TokenStream {
        match self {
            FieldInnerTy::Option(..) => quote! {
                if let Some(#binding) = #binding {
                    #inner
                }
            },
            FieldInnerTy::Vec(..) => quote! {
                for #binding in #binding {
                    #inner
                }
            },
            FieldInnerTy::None => quote! { #inner },
        }
    }
}

/// Field information passed to the builder. Deliberately omits attrs to discourage the
/// `generate_*` methods from walking the attributes themselves.
pub(crate) struct FieldInfo<'a> {
    pub(crate) binding: &'a BindingInfo<'a>,
    pub(crate) ty: &'a Type,
    pub(crate) span: &'a proc_macro2::Span,
}

/// Small helper trait for abstracting over `Option` fields that contain a value and a `Span`
/// for error reporting if they are set more than once.
pub(crate) trait SetOnce<T> {
    fn set_once(&mut self, _: (T, Span));

    fn value(self) -> Option<T>;
}

impl<T> SetOnce<T> for Option<(T, Span)> {
    fn set_once(&mut self, (value, span): (T, Span)) {
        match self {
            None => {
                *self = Some((value, span));
            }
            Some((_, prev_span)) => {
                span_err(span, "specified multiple times")
                    .span_note(*prev_span, "previously specified here")
                    .emit();
            }
        }
    }

    fn value(self) -> Option<T> {
        self.map(|(v, _)| v)
    }
}

pub(crate) trait HasFieldMap {
    /// Returns the binding for the field with the given name, if it exists on the type.
    fn get_field_binding(&self, field: &String) -> Option<&TokenStream>;

    /// In the strings in the attributes supplied to this macro, we want callers to be able to
    /// reference fields in the format string. For example:
    ///
    /// ```ignore (not-usage-example)
    /// /// Suggest `==` when users wrote `===`.
    /// #[suggestion(slug = "parser-not-javascript-eq", code = "{lhs} == {rhs}")]
    /// struct NotJavaScriptEq {
    ///     #[primary_span]
    ///     span: Span,
    ///     lhs: Ident,
    ///     rhs: Ident,
    /// }
    /// ```
    ///
    /// We want to automatically pick up that `{lhs}` refers `self.lhs` and `{rhs}` refers to
    /// `self.rhs`, then generate this call to `format!`:
    ///
    /// ```ignore (not-usage-example)
    /// format!("{lhs} == {rhs}", lhs = self.lhs, rhs = self.rhs)
    /// ```
    ///
    /// This function builds the entire call to `format!`.
    fn build_format(&self, input: &str, span: proc_macro2::Span) -> TokenStream {
        // This set is used later to generate the final format string. To keep builds reproducible,
        // the iteration order needs to be deterministic, hence why we use a `BTreeSet` here
        // instead of a `HashSet`.
        let mut referenced_fields: BTreeSet<String> = BTreeSet::new();

        // At this point, we can start parsing the format string.
        let mut it = input.chars().peekable();

        // Once the start of a format string has been found, process the format string and spit out
        // the referenced fields. Leaves `it` sitting on the closing brace of the format string, so
        // the next call to `it.next()` retrieves the next character.
        while let Some(c) = it.next() {
            if c != '{' {
                continue;
            }
            if *it.peek().unwrap_or(&'\0') == '{' {
                assert_eq!(it.next().unwrap(), '{');
                continue;
            }
            let mut eat_argument = || -> Option<String> {
                let mut result = String::new();
                // Format specifiers look like:
                //
                //   format   := '{' [ argument ] [ ':' format_spec ] '}' .
                //
                // Therefore, we only need to eat until ':' or '}' to find the argument.
                while let Some(c) = it.next() {
                    result.push(c);
                    let next = *it.peek().unwrap_or(&'\0');
                    if next == '}' {
                        break;
                    } else if next == ':' {
                        // Eat the ':' character.
                        assert_eq!(it.next().unwrap(), ':');
                        break;
                    }
                }
                // Eat until (and including) the matching '}'
                while it.next()? != '}' {
                    continue;
                }
                Some(result)
            };

            if let Some(referenced_field) = eat_argument() {
                referenced_fields.insert(referenced_field);
            }
        }

        // At this point, `referenced_fields` contains a set of the unique fields that were
        // referenced in the format string. Generate the corresponding "x = self.x" format
        // string parameters:
        let args = referenced_fields.into_iter().map(|field: String| {
            let field_ident = format_ident!("{}", field);
            let value = match self.get_field_binding(&field) {
                Some(value) => value.clone(),
                // This field doesn't exist. Emit a diagnostic.
                None => {
                    span_err(
                        span.unwrap(),
                        &format!("`{}` doesn't refer to a field on this type", field),
                    )
                    .emit();
                    quote! {
                        "{#field}"
                    }
                }
            };
            quote! {
                #field_ident = #value
            }
        });
        quote! {
            format!(#input #(,#args)*)
        }
    }
}

/// `Applicability` of a suggestion - mirrors `rustc_errors::Applicability` - and used to represent
/// the user's selection of applicability if specified in an attribute.
pub(crate) enum Applicability {
    MachineApplicable,
    MaybeIncorrect,
    HasPlaceholders,
    Unspecified,
}

impl FromStr for Applicability {
    type Err = ();

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        match s {
            "machine-applicable" => Ok(Applicability::MachineApplicable),
            "maybe-incorrect" => Ok(Applicability::MaybeIncorrect),
            "has-placeholders" => Ok(Applicability::HasPlaceholders),
            "unspecified" => Ok(Applicability::Unspecified),
            _ => Err(()),
        }
    }
}

impl quote::ToTokens for Applicability {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        tokens.extend(match self {
            Applicability::MachineApplicable => {
                quote! { rustc_errors::Applicability::MachineApplicable }
            }
            Applicability::MaybeIncorrect => {
                quote! { rustc_errors::Applicability::MaybeIncorrect }
            }
            Applicability::HasPlaceholders => {
                quote! { rustc_errors::Applicability::HasPlaceholders }
            }
            Applicability::Unspecified => {
                quote! { rustc_errors::Applicability::Unspecified }
            }
        });
    }
}

/// Build the mapping of field names to fields. This allows attributes to peek values from
/// other fields.
pub(crate) fn build_field_mapping<'a>(structure: &Structure<'a>) -> HashMap<String, TokenStream> {
    let mut fields_map = HashMap::new();

    let ast = structure.ast();
    if let syn::Data::Struct(syn::DataStruct { fields, .. }) = &ast.data {
        for field in fields.iter() {
            if let Some(ident) = &field.ident {
                fields_map.insert(ident.to_string(), quote! { &self.#ident });
            }
        }
    }

    fields_map
}