1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
pub use super::ffi::*;
use rustc_index::vec::IndexVec;
use rustc_middle::mir::coverage::{
CodeRegion, CounterValueReference, ExpressionOperandId, InjectedExpressionId,
InjectedExpressionIndex, MappedExpressionIndex, Op,
};
use rustc_middle::ty::Instance;
use rustc_middle::ty::TyCtxt;
#[derive(Clone, Debug, PartialEq)]
pub struct Expression {
lhs: ExpressionOperandId,
op: Op,
rhs: ExpressionOperandId,
region: Option<CodeRegion>,
}
/// Collects all of the coverage regions associated with (a) injected counters, (b) counter
/// expressions (additions or subtraction), and (c) unreachable regions (always counted as zero),
/// for a given Function. Counters and counter expressions have non-overlapping `id`s because they
/// can both be operands in an expression. This struct also stores the `function_source_hash`,
/// computed during instrumentation, and forwarded with counters.
///
/// Note, it may be important to understand LLVM's definitions of `unreachable` regions versus "gap
/// regions" (or "gap areas"). A gap region is a code region within a counted region (either counter
/// or expression), but the line or lines in the gap region are not executable (such as lines with
/// only whitespace or comments). According to LLVM Code Coverage Mapping documentation, "A count
/// for a gap area is only used as the line execution count if there are no other regions on a
/// line."
#[derive(Debug)]
pub struct FunctionCoverage<'tcx> {
instance: Instance<'tcx>,
source_hash: u64,
is_used: bool,
counters: IndexVec<CounterValueReference, Option<CodeRegion>>,
expressions: IndexVec<InjectedExpressionIndex, Option<Expression>>,
unreachable_regions: Vec<CodeRegion>,
}
impl<'tcx> FunctionCoverage<'tcx> {
/// Creates a new set of coverage data for a used (called) function.
pub fn new(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) -> Self {
Self::create(tcx, instance, true)
}
/// Creates a new set of coverage data for an unused (never called) function.
pub fn unused(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) -> Self {
Self::create(tcx, instance, false)
}
fn create(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>, is_used: bool) -> Self {
let coverageinfo = tcx.coverageinfo(instance.def);
debug!(
"FunctionCoverage::create(instance={:?}) has coverageinfo={:?}. is_used={}",
instance, coverageinfo, is_used
);
Self {
instance,
source_hash: 0, // will be set with the first `add_counter()`
is_used,
counters: IndexVec::from_elem_n(None, coverageinfo.num_counters as usize),
expressions: IndexVec::from_elem_n(None, coverageinfo.num_expressions as usize),
unreachable_regions: Vec::new(),
}
}
/// Returns true for a used (called) function, and false for an unused function.
pub fn is_used(&self) -> bool {
self.is_used
}
/// Sets the function source hash value. If called multiple times for the same function, all
/// calls should have the same hash value.
pub fn set_function_source_hash(&mut self, source_hash: u64) {
if self.source_hash == 0 {
self.source_hash = source_hash;
} else {
debug_assert_eq!(source_hash, self.source_hash);
}
}
/// Adds a code region to be counted by an injected counter intrinsic.
pub fn add_counter(&mut self, id: CounterValueReference, region: CodeRegion) {
if let Some(previous_region) = self.counters[id].replace(region.clone()) {
assert_eq!(previous_region, region, "add_counter: code region for id changed");
}
}
/// Both counters and "counter expressions" (or simply, "expressions") can be operands in other
/// expressions. Expression IDs start from `u32::MAX` and go down, so the range of expression
/// IDs will not overlap with the range of counter IDs. Counters and expressions can be added in
/// any order, and expressions can still be assigned contiguous (though descending) IDs, without
/// knowing what the last counter ID will be.
///
/// When storing the expression data in the `expressions` vector in the `FunctionCoverage`
/// struct, its vector index is computed, from the given expression ID, by subtracting from
/// `u32::MAX`.
///
/// Since the expression operands (`lhs` and `rhs`) can reference either counters or
/// expressions, an operand that references an expression also uses its original ID, descending
/// from `u32::MAX`. Theses operands are translated only during code generation, after all
/// counters and expressions have been added.
pub fn add_counter_expression(
&mut self,
expression_id: InjectedExpressionId,
lhs: ExpressionOperandId,
op: Op,
rhs: ExpressionOperandId,
region: Option<CodeRegion>,
) {
debug!(
"add_counter_expression({:?}, lhs={:?}, op={:?}, rhs={:?} at {:?}",
expression_id, lhs, op, rhs, region
);
let expression_index = self.expression_index(u32::from(expression_id));
debug_assert!(
expression_index.as_usize() < self.expressions.len(),
"expression_index {} is out of range for expressions.len() = {}
for {:?}",
expression_index.as_usize(),
self.expressions.len(),
self,
);
if let Some(previous_expression) = self.expressions[expression_index].replace(Expression {
lhs,
op,
rhs,
region: region.clone(),
}) {
assert_eq!(
previous_expression,
Expression { lhs, op, rhs, region },
"add_counter_expression: expression for id changed"
);
}
}
/// Add a region that will be marked as "unreachable", with a constant "zero counter".
pub fn add_unreachable_region(&mut self, region: CodeRegion) {
self.unreachable_regions.push(region)
}
/// Return the source hash, generated from the HIR node structure, and used to indicate whether
/// or not the source code structure changed between different compilations.
pub fn source_hash(&self) -> u64 {
self.source_hash
}
/// Generate an array of CounterExpressions, and an iterator over all `Counter`s and their
/// associated `Regions` (from which the LLVM-specific `CoverageMapGenerator` will create
/// `CounterMappingRegion`s.
pub fn get_expressions_and_counter_regions(
&self,
) -> (Vec<CounterExpression>, impl Iterator<Item = (Counter, &CodeRegion)>) {
assert!(
self.source_hash != 0 || !self.is_used,
"No counters provided the source_hash for used function: {:?}",
self.instance
);
let counter_regions = self.counter_regions();
let (counter_expressions, expression_regions) = self.expressions_with_regions();
let unreachable_regions = self.unreachable_regions();
let counter_regions =
counter_regions.chain(expression_regions.into_iter().chain(unreachable_regions));
(counter_expressions, counter_regions)
}
fn counter_regions(&self) -> impl Iterator<Item = (Counter, &CodeRegion)> {
self.counters.iter_enumerated().filter_map(|(index, entry)| {
// Option::map() will return None to filter out missing counters. This may happen
// if, for example, a MIR-instrumented counter is removed during an optimization.
entry.as_ref().map(|region| (Counter::counter_value_reference(index), region))
})
}
fn expressions_with_regions(
&self,
) -> (Vec<CounterExpression>, impl Iterator<Item = (Counter, &CodeRegion)>) {
let mut counter_expressions = Vec::with_capacity(self.expressions.len());
let mut expression_regions = Vec::with_capacity(self.expressions.len());
let mut new_indexes = IndexVec::from_elem_n(None, self.expressions.len());
// This closure converts any `Expression` operand (`lhs` or `rhs` of the `Op::Add` or
// `Op::Subtract` operation) into its native `llvm::coverage::Counter::CounterKind` type
// and value. Operand ID value `0` maps to `CounterKind::Zero`; values in the known range
// of injected LLVM counters map to `CounterKind::CounterValueReference` (and the value
// matches the injected counter index); and any other value is converted into a
// `CounterKind::Expression` with the expression's `new_index`.
//
// Expressions will be returned from this function in a sequential vector (array) of
// `CounterExpression`, so the expression IDs must be mapped from their original,
// potentially sparse set of indexes, originally in reverse order from `u32::MAX`.
//
// An `Expression` as an operand will have already been encountered as an `Expression` with
// operands, so its new_index will already have been generated (as a 1-up index value).
// (If an `Expression` as an operand does not have a corresponding new_index, it was
// probably optimized out, after the expression was injected into the MIR, so it will
// get a `CounterKind::Zero` instead.)
//
// In other words, an `Expression`s at any given index can include other expressions as
// operands, but expression operands can only come from the subset of expressions having
// `expression_index`s lower than the referencing `Expression`. Therefore, it is
// reasonable to look up the new index of an expression operand while the `new_indexes`
// vector is only complete up to the current `ExpressionIndex`.
let id_to_counter = |new_indexes: &IndexVec<
InjectedExpressionIndex,
Option<MappedExpressionIndex>,
>,
id: ExpressionOperandId| {
if id == ExpressionOperandId::ZERO {
Some(Counter::zero())
} else if id.index() < self.counters.len() {
debug_assert!(
id.index() > 0,
"ExpressionOperandId indexes for counters are 1-based, but this id={}",
id.index()
);
// Note: Some codegen-injected Counters may be only referenced by `Expression`s,
// and may not have their own `CodeRegion`s,
let index = CounterValueReference::from(id.index());
// Note, the conversion to LLVM `Counter` adjusts the index to be zero-based.
Some(Counter::counter_value_reference(index))
} else {
let index = self.expression_index(u32::from(id));
self.expressions
.get(index)
.expect("expression id is out of range")
.as_ref()
// If an expression was optimized out, assume it would have produced a count
// of zero. This ensures that expressions dependent on optimized-out
// expressions are still valid.
.map_or(Some(Counter::zero()), |_| new_indexes[index].map(Counter::expression))
}
};
for (original_index, expression) in
self.expressions.iter_enumerated().filter_map(|(original_index, entry)| {
// Option::map() will return None to filter out missing expressions. This may happen
// if, for example, a MIR-instrumented expression is removed during an optimization.
entry.as_ref().map(|expression| (original_index, expression))
})
{
let optional_region = &expression.region;
let Expression { lhs, op, rhs, .. } = *expression;
if let Some(Some((lhs_counter, mut rhs_counter))) = id_to_counter(&new_indexes, lhs)
.map(|lhs_counter| {
id_to_counter(&new_indexes, rhs).map(|rhs_counter| (lhs_counter, rhs_counter))
})
{
if lhs_counter.is_zero() && op.is_subtract() {
// The left side of a subtraction was probably optimized out. As an example,
// a branch condition might be evaluated as a constant expression, and the
// branch could be removed, dropping unused counters in the process.
//
// Since counters are unsigned, we must assume the result of the expression
// can be no more and no less than zero. An expression known to evaluate to zero
// does not need to be added to the coverage map.
//
// Coverage test `loops_branches.rs` includes multiple variations of branches
// based on constant conditional (literal `true` or `false`), and demonstrates
// that the expected counts are still correct.
debug!(
"Expression subtracts from zero (assume unreachable): \
original_index={:?}, lhs={:?}, op={:?}, rhs={:?}, region={:?}",
original_index, lhs, op, rhs, optional_region,
);
rhs_counter = Counter::zero();
}
debug_assert!(
lhs_counter.is_zero()
// Note: with `as usize` the ID _could_ overflow/wrap if `usize = u16`
|| ((lhs_counter.zero_based_id() as usize)
<= usize::max(self.counters.len(), self.expressions.len())),
"lhs id={} > both counters.len()={} and expressions.len()={}
({:?} {:?} {:?})",
lhs_counter.zero_based_id(),
self.counters.len(),
self.expressions.len(),
lhs_counter,
op,
rhs_counter,
);
debug_assert!(
rhs_counter.is_zero()
// Note: with `as usize` the ID _could_ overflow/wrap if `usize = u16`
|| ((rhs_counter.zero_based_id() as usize)
<= usize::max(self.counters.len(), self.expressions.len())),
"rhs id={} > both counters.len()={} and expressions.len()={}
({:?} {:?} {:?})",
rhs_counter.zero_based_id(),
self.counters.len(),
self.expressions.len(),
lhs_counter,
op,
rhs_counter,
);
// Both operands exist. `Expression` operands exist in `self.expressions` and have
// been assigned a `new_index`.
let mapped_expression_index =
MappedExpressionIndex::from(counter_expressions.len());
let expression = CounterExpression::new(
lhs_counter,
match op {
Op::Add => ExprKind::Add,
Op::Subtract => ExprKind::Subtract,
},
rhs_counter,
);
debug!(
"Adding expression {:?} = {:?}, region: {:?}",
mapped_expression_index, expression, optional_region
);
counter_expressions.push(expression);
new_indexes[original_index] = Some(mapped_expression_index);
if let Some(region) = optional_region {
expression_regions.push((Counter::expression(mapped_expression_index), region));
}
} else {
bug!(
"expression has one or more missing operands \
original_index={:?}, lhs={:?}, op={:?}, rhs={:?}, region={:?}",
original_index,
lhs,
op,
rhs,
optional_region,
);
}
}
(counter_expressions, expression_regions.into_iter())
}
fn unreachable_regions(&self) -> impl Iterator<Item = (Counter, &CodeRegion)> {
self.unreachable_regions.iter().map(|region| (Counter::zero(), region))
}
fn expression_index(&self, id_descending_from_max: u32) -> InjectedExpressionIndex {
debug_assert!(id_descending_from_max >= self.counters.len() as u32);
InjectedExpressionIndex::from(u32::MAX - id_descending_from_max)
}
}