1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
//! A bunch of methods and structures more or less related to resolving macros and
//! interface provided by `Resolver` to macro expander.

use crate::imports::ImportResolver;
use crate::Namespace::*;
use crate::{BuiltinMacroState, Determinacy};
use crate::{DeriveData, Finalize, ParentScope, ResolutionError, Resolver, ScopeSet};
use crate::{ModuleKind, ModuleOrUniformRoot, NameBinding, PathResult, Segment};
use rustc_ast::{self as ast, Inline, ItemKind, ModKind, NodeId};
use rustc_ast_pretty::pprust;
use rustc_attr::StabilityLevel;
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::intern::Interned;
use rustc_data_structures::sync::Lrc;
use rustc_errors::struct_span_err;
use rustc_expand::base::{Annotatable, DeriveResolutions, Indeterminate, ResolverExpand};
use rustc_expand::base::{SyntaxExtension, SyntaxExtensionKind};
use rustc_expand::compile_declarative_macro;
use rustc_expand::expand::{AstFragment, Invocation, InvocationKind, SupportsMacroExpansion};
use rustc_hir::def::{self, DefKind, NonMacroAttrKind};
use rustc_hir::def_id::{CrateNum, LocalDefId};
use rustc_middle::middle::stability;
use rustc_middle::ty::RegisteredTools;
use rustc_session::lint::builtin::{LEGACY_DERIVE_HELPERS, SOFT_UNSTABLE};
use rustc_session::lint::builtin::{UNUSED_MACROS, UNUSED_MACRO_RULES};
use rustc_session::lint::BuiltinLintDiagnostics;
use rustc_session::parse::feature_err;
use rustc_session::Session;
use rustc_span::edition::Edition;
use rustc_span::hygiene::{self, ExpnData, ExpnKind, LocalExpnId};
use rustc_span::hygiene::{AstPass, MacroKind};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{Span, DUMMY_SP};
use std::cell::Cell;
use std::mem;

type Res = def::Res<NodeId>;

/// Binding produced by a `macro_rules` item.
/// Not modularized, can shadow previous `macro_rules` bindings, etc.
#[derive(Debug)]
pub struct MacroRulesBinding<'a> {
    pub(crate) binding: &'a NameBinding<'a>,
    /// `macro_rules` scope into which the `macro_rules` item was planted.
    pub(crate) parent_macro_rules_scope: MacroRulesScopeRef<'a>,
    pub(crate) ident: Ident,
}

/// The scope introduced by a `macro_rules!` macro.
/// This starts at the macro's definition and ends at the end of the macro's parent
/// module (named or unnamed), or even further if it escapes with `#[macro_use]`.
/// Some macro invocations need to introduce `macro_rules` scopes too because they
/// can potentially expand into macro definitions.
#[derive(Copy, Clone, Debug)]
pub enum MacroRulesScope<'a> {
    /// Empty "root" scope at the crate start containing no names.
    Empty,
    /// The scope introduced by a `macro_rules!` macro definition.
    Binding(&'a MacroRulesBinding<'a>),
    /// The scope introduced by a macro invocation that can potentially
    /// create a `macro_rules!` macro definition.
    Invocation(LocalExpnId),
}

/// `macro_rules!` scopes are always kept by reference and inside a cell.
/// The reason is that we update scopes with value `MacroRulesScope::Invocation(invoc_id)`
/// in-place after `invoc_id` gets expanded.
/// This helps to avoid uncontrollable growth of `macro_rules!` scope chains,
/// which usually grow linearly with the number of macro invocations
/// in a module (including derives) and hurt performance.
pub(crate) type MacroRulesScopeRef<'a> = Interned<'a, Cell<MacroRulesScope<'a>>>;

/// Macro namespace is separated into two sub-namespaces, one for bang macros and
/// one for attribute-like macros (attributes, derives).
/// We ignore resolutions from one sub-namespace when searching names in scope for another.
pub(crate) fn sub_namespace_match(
    candidate: Option<MacroKind>,
    requirement: Option<MacroKind>,
) -> bool {
    #[derive(PartialEq)]
    enum SubNS {
        Bang,
        AttrLike,
    }
    let sub_ns = |kind| match kind {
        MacroKind::Bang => SubNS::Bang,
        MacroKind::Attr | MacroKind::Derive => SubNS::AttrLike,
    };
    let candidate = candidate.map(sub_ns);
    let requirement = requirement.map(sub_ns);
    // "No specific sub-namespace" means "matches anything" for both requirements and candidates.
    candidate.is_none() || requirement.is_none() || candidate == requirement
}

// We don't want to format a path using pretty-printing,
// `format!("{}", path)`, because that tries to insert
// line-breaks and is slow.
fn fast_print_path(path: &ast::Path) -> Symbol {
    if path.segments.len() == 1 {
        path.segments[0].ident.name
    } else {
        let mut path_str = String::with_capacity(64);
        for (i, segment) in path.segments.iter().enumerate() {
            if i != 0 {
                path_str.push_str("::");
            }
            if segment.ident.name != kw::PathRoot {
                path_str.push_str(segment.ident.as_str())
            }
        }
        Symbol::intern(&path_str)
    }
}

pub(crate) fn registered_tools(sess: &Session, attrs: &[ast::Attribute]) -> FxHashSet<Ident> {
    let mut registered_tools = FxHashSet::default();
    for attr in sess.filter_by_name(attrs, sym::register_tool) {
        for nested_meta in attr.meta_item_list().unwrap_or_default() {
            match nested_meta.ident() {
                Some(ident) => {
                    if let Some(old_ident) = registered_tools.replace(ident) {
                        let msg = format!("{} `{}` was already registered", "tool", ident);
                        sess.struct_span_err(ident.span, &msg)
                            .span_label(old_ident.span, "already registered here")
                            .emit();
                    }
                }
                None => {
                    let msg = format!("`{}` only accepts identifiers", sym::register_tool);
                    let span = nested_meta.span();
                    sess.struct_span_err(span, &msg).span_label(span, "not an identifier").emit();
                }
            }
        }
    }
    // We implicitly add `rustfmt` and `clippy` to known tools,
    // but it's not an error to register them explicitly.
    let predefined_tools = [sym::clippy, sym::rustfmt];
    registered_tools.extend(predefined_tools.iter().cloned().map(Ident::with_dummy_span));
    registered_tools
}

// Some feature gates for inner attributes are reported as lints for backward compatibility.
fn soft_custom_inner_attributes_gate(path: &ast::Path, invoc: &Invocation) -> bool {
    match &path.segments[..] {
        // `#![test]`
        [seg] if seg.ident.name == sym::test => return true,
        // `#![rustfmt::skip]` on out-of-line modules
        [seg1, seg2] if seg1.ident.name == sym::rustfmt && seg2.ident.name == sym::skip => {
            if let InvocationKind::Attr { item, .. } = &invoc.kind {
                if let Annotatable::Item(item) = item {
                    if let ItemKind::Mod(_, ModKind::Loaded(_, Inline::No, _)) = item.kind {
                        return true;
                    }
                }
            }
        }
        _ => {}
    }
    false
}

impl<'a> ResolverExpand for Resolver<'a> {
    fn next_node_id(&mut self) -> NodeId {
        self.next_node_id()
    }

    fn invocation_parent(&self, id: LocalExpnId) -> LocalDefId {
        self.invocation_parents[&id].0
    }

    fn resolve_dollar_crates(&mut self) {
        hygiene::update_dollar_crate_names(|ctxt| {
            let ident = Ident::new(kw::DollarCrate, DUMMY_SP.with_ctxt(ctxt));
            match self.resolve_crate_root(ident).kind {
                ModuleKind::Def(.., name) if name != kw::Empty => name,
                _ => kw::Crate,
            }
        });
    }

    fn visit_ast_fragment_with_placeholders(
        &mut self,
        expansion: LocalExpnId,
        fragment: &AstFragment,
    ) {
        // Integrate the new AST fragment into all the definition and module structures.
        // We are inside the `expansion` now, but other parent scope components are still the same.
        let parent_scope = ParentScope { expansion, ..self.invocation_parent_scopes[&expansion] };
        let output_macro_rules_scope = self.build_reduced_graph(fragment, parent_scope);
        self.output_macro_rules_scopes.insert(expansion, output_macro_rules_scope);

        parent_scope.module.unexpanded_invocations.borrow_mut().remove(&expansion);
    }

    fn register_builtin_macro(&mut self, name: Symbol, ext: SyntaxExtensionKind) {
        if self.builtin_macros.insert(name, BuiltinMacroState::NotYetSeen(ext)).is_some() {
            self.session
                .diagnostic()
                .bug(&format!("built-in macro `{}` was already registered", name));
        }
    }

    // Create a new Expansion with a definition site of the provided module, or
    // a fake empty `#[no_implicit_prelude]` module if no module is provided.
    fn expansion_for_ast_pass(
        &mut self,
        call_site: Span,
        pass: AstPass,
        features: &[Symbol],
        parent_module_id: Option<NodeId>,
    ) -> LocalExpnId {
        let parent_module =
            parent_module_id.map(|module_id| self.local_def_id(module_id).to_def_id());
        let expn_id = LocalExpnId::fresh(
            ExpnData::allow_unstable(
                ExpnKind::AstPass(pass),
                call_site,
                self.session.edition(),
                features.into(),
                None,
                parent_module,
            ),
            self.create_stable_hashing_context(),
        );

        let parent_scope =
            parent_module.map_or(self.empty_module, |def_id| self.expect_module(def_id));
        self.ast_transform_scopes.insert(expn_id, parent_scope);

        expn_id
    }

    fn resolve_imports(&mut self) {
        ImportResolver { r: self }.resolve_imports()
    }

    fn resolve_macro_invocation(
        &mut self,
        invoc: &Invocation,
        eager_expansion_root: LocalExpnId,
        force: bool,
    ) -> Result<Lrc<SyntaxExtension>, Indeterminate> {
        let invoc_id = invoc.expansion_data.id;
        let parent_scope = match self.invocation_parent_scopes.get(&invoc_id) {
            Some(parent_scope) => *parent_scope,
            None => {
                // If there's no entry in the table, then we are resolving an eagerly expanded
                // macro, which should inherit its parent scope from its eager expansion root -
                // the macro that requested this eager expansion.
                let parent_scope = *self
                    .invocation_parent_scopes
                    .get(&eager_expansion_root)
                    .expect("non-eager expansion without a parent scope");
                self.invocation_parent_scopes.insert(invoc_id, parent_scope);
                parent_scope
            }
        };

        let (path, kind, inner_attr, derives) = match invoc.kind {
            InvocationKind::Attr { ref attr, ref derives, .. } => (
                &attr.get_normal_item().path,
                MacroKind::Attr,
                attr.style == ast::AttrStyle::Inner,
                self.arenas.alloc_ast_paths(derives),
            ),
            InvocationKind::Bang { ref mac, .. } => (&mac.path, MacroKind::Bang, false, &[][..]),
            InvocationKind::Derive { ref path, .. } => (path, MacroKind::Derive, false, &[][..]),
        };

        // Derives are not included when `invocations` are collected, so we have to add them here.
        let parent_scope = &ParentScope { derives, ..parent_scope };
        let supports_macro_expansion = invoc.fragment_kind.supports_macro_expansion();
        let node_id = invoc.expansion_data.lint_node_id;
        let (ext, res) = self.smart_resolve_macro_path(
            path,
            kind,
            supports_macro_expansion,
            inner_attr,
            parent_scope,
            node_id,
            force,
            soft_custom_inner_attributes_gate(path, invoc),
        )?;

        let span = invoc.span();
        let def_id = res.opt_def_id();
        invoc_id.set_expn_data(
            ext.expn_data(
                parent_scope.expansion,
                span,
                fast_print_path(path),
                def_id,
                def_id.map(|def_id| self.macro_def_scope(def_id).nearest_parent_mod()),
            ),
            self.create_stable_hashing_context(),
        );

        Ok(ext)
    }

    fn record_macro_rule_usage(&mut self, id: NodeId, rule_i: usize) {
        let did = self.local_def_id(id);
        self.unused_macro_rules.remove(&(did, rule_i));
    }

    fn check_unused_macros(&mut self) {
        for (_, &(node_id, ident)) in self.unused_macros.iter() {
            self.lint_buffer.buffer_lint(
                UNUSED_MACROS,
                node_id,
                ident.span,
                &format!("unused macro definition: `{}`", ident.name),
            );
        }
        for (&(def_id, arm_i), &(ident, rule_span)) in self.unused_macro_rules.iter() {
            if self.unused_macros.contains_key(&def_id) {
                // We already lint the entire macro as unused
                continue;
            }
            let node_id = self.def_id_to_node_id[def_id];
            self.lint_buffer.buffer_lint(
                UNUSED_MACRO_RULES,
                node_id,
                rule_span,
                &format!(
                    "{} rule of macro `{}` is never used",
                    crate::diagnostics::ordinalize(arm_i + 1),
                    ident.name
                ),
            );
        }
    }

    fn has_derive_copy(&self, expn_id: LocalExpnId) -> bool {
        self.containers_deriving_copy.contains(&expn_id)
    }

    fn resolve_derives(
        &mut self,
        expn_id: LocalExpnId,
        force: bool,
        derive_paths: &dyn Fn() -> DeriveResolutions,
    ) -> Result<(), Indeterminate> {
        // Block expansion of the container until we resolve all derives in it.
        // This is required for two reasons:
        // - Derive helper attributes are in scope for the item to which the `#[derive]`
        //   is applied, so they have to be produced by the container's expansion rather
        //   than by individual derives.
        // - Derives in the container need to know whether one of them is a built-in `Copy`.
        // Temporarily take the data to avoid borrow checker conflicts.
        let mut derive_data = mem::take(&mut self.derive_data);
        let entry = derive_data.entry(expn_id).or_insert_with(|| DeriveData {
            resolutions: derive_paths(),
            helper_attrs: Vec::new(),
            has_derive_copy: false,
        });
        let parent_scope = self.invocation_parent_scopes[&expn_id];
        for (i, (path, _, opt_ext)) in entry.resolutions.iter_mut().enumerate() {
            if opt_ext.is_none() {
                *opt_ext = Some(
                    match self.resolve_macro_path(
                        &path,
                        Some(MacroKind::Derive),
                        &parent_scope,
                        true,
                        force,
                    ) {
                        Ok((Some(ext), _)) => {
                            if !ext.helper_attrs.is_empty() {
                                let last_seg = path.segments.last().unwrap();
                                let span = last_seg.ident.span.normalize_to_macros_2_0();
                                entry.helper_attrs.extend(
                                    ext.helper_attrs
                                        .iter()
                                        .map(|name| (i, Ident::new(*name, span))),
                                );
                            }
                            entry.has_derive_copy |= ext.builtin_name == Some(sym::Copy);
                            ext
                        }
                        Ok(_) | Err(Determinacy::Determined) => self.dummy_ext(MacroKind::Derive),
                        Err(Determinacy::Undetermined) => {
                            assert!(self.derive_data.is_empty());
                            self.derive_data = derive_data;
                            return Err(Indeterminate);
                        }
                    },
                );
            }
        }
        // Sort helpers in a stable way independent from the derive resolution order.
        entry.helper_attrs.sort_by_key(|(i, _)| *i);
        self.helper_attrs
            .insert(expn_id, entry.helper_attrs.iter().map(|(_, ident)| *ident).collect());
        // Mark this derive as having `Copy` either if it has `Copy` itself or if its parent derive
        // has `Copy`, to support cases like `#[derive(Clone, Copy)] #[derive(Debug)]`.
        if entry.has_derive_copy || self.has_derive_copy(parent_scope.expansion) {
            self.containers_deriving_copy.insert(expn_id);
        }
        assert!(self.derive_data.is_empty());
        self.derive_data = derive_data;
        Ok(())
    }

    fn take_derive_resolutions(&mut self, expn_id: LocalExpnId) -> Option<DeriveResolutions> {
        self.derive_data.remove(&expn_id).map(|data| data.resolutions)
    }

    // The function that implements the resolution logic of `#[cfg_accessible(path)]`.
    // Returns true if the path can certainly be resolved in one of three namespaces,
    // returns false if the path certainly cannot be resolved in any of the three namespaces.
    // Returns `Indeterminate` if we cannot give a certain answer yet.
    fn cfg_accessible(
        &mut self,
        expn_id: LocalExpnId,
        path: &ast::Path,
    ) -> Result<bool, Indeterminate> {
        let span = path.span;
        let path = &Segment::from_path(path);
        let parent_scope = self.invocation_parent_scopes[&expn_id];

        let mut indeterminate = false;
        for ns in [TypeNS, ValueNS, MacroNS].iter().copied() {
            match self.maybe_resolve_path(path, Some(ns), &parent_scope) {
                PathResult::Module(ModuleOrUniformRoot::Module(_)) => return Ok(true),
                PathResult::NonModule(partial_res) if partial_res.unresolved_segments() == 0 => {
                    return Ok(true);
                }
                PathResult::NonModule(..) |
                // HACK(Urgau): This shouldn't be necessary
                PathResult::Failed { is_error_from_last_segment: false, .. } => {
                    self.session
                        .struct_span_err(span, "not sure whether the path is accessible or not")
                        .note("the type may have associated items, but we are currently not checking them")
                        .emit();

                    // If we get a partially resolved NonModule in one namespace, we should get the
                    // same result in any other namespaces, so we can return early.
                    return Ok(false);
                }
                PathResult::Indeterminate => indeterminate = true,
                // We can only be sure that a path doesn't exist after having tested all the
                // possibilities, only at that time we can return false.
                PathResult::Failed { .. } => {}
                PathResult::Module(_) => panic!("unexpected path resolution"),
            }
        }

        if indeterminate {
            return Err(Indeterminate);
        }

        Ok(false)
    }

    fn get_proc_macro_quoted_span(&self, krate: CrateNum, id: usize) -> Span {
        self.crate_loader.cstore().get_proc_macro_quoted_span_untracked(krate, id, self.session)
    }

    fn declare_proc_macro(&mut self, id: NodeId) {
        self.proc_macros.push(id)
    }

    fn registered_tools(&self) -> &RegisteredTools {
        &self.registered_tools
    }
}

impl<'a> Resolver<'a> {
    /// Resolve macro path with error reporting and recovery.
    /// Uses dummy syntax extensions for unresolved macros or macros with unexpected resolutions
    /// for better error recovery.
    fn smart_resolve_macro_path(
        &mut self,
        path: &ast::Path,
        kind: MacroKind,
        supports_macro_expansion: SupportsMacroExpansion,
        inner_attr: bool,
        parent_scope: &ParentScope<'a>,
        node_id: NodeId,
        force: bool,
        soft_custom_inner_attributes_gate: bool,
    ) -> Result<(Lrc<SyntaxExtension>, Res), Indeterminate> {
        let (ext, res) = match self.resolve_macro_path(path, Some(kind), parent_scope, true, force)
        {
            Ok((Some(ext), res)) => (ext, res),
            Ok((None, res)) => (self.dummy_ext(kind), res),
            Err(Determinacy::Determined) => (self.dummy_ext(kind), Res::Err),
            Err(Determinacy::Undetermined) => return Err(Indeterminate),
        };

        // Report errors for the resolved macro.
        for segment in &path.segments {
            if let Some(args) = &segment.args {
                self.session.span_err(args.span(), "generic arguments in macro path");
            }
            if kind == MacroKind::Attr && segment.ident.as_str().starts_with("rustc") {
                self.session.span_err(
                    segment.ident.span,
                    "attributes starting with `rustc` are reserved for use by the `rustc` compiler",
                );
            }
        }

        match res {
            Res::Def(DefKind::Macro(_), def_id) => {
                if let Some(def_id) = def_id.as_local() {
                    self.unused_macros.remove(&def_id);
                    if self.proc_macro_stubs.contains(&def_id) {
                        self.session.span_err(
                            path.span,
                            "can't use a procedural macro from the same crate that defines it",
                        );
                    }
                }
            }
            Res::NonMacroAttr(..) | Res::Err => {}
            _ => panic!("expected `DefKind::Macro` or `Res::NonMacroAttr`"),
        };

        self.check_stability_and_deprecation(&ext, path, node_id);

        let unexpected_res = if ext.macro_kind() != kind {
            Some((kind.article(), kind.descr_expected()))
        } else if matches!(res, Res::Def(..)) {
            match supports_macro_expansion {
                SupportsMacroExpansion::No => Some(("a", "non-macro attribute")),
                SupportsMacroExpansion::Yes { supports_inner_attrs } => {
                    if inner_attr && !supports_inner_attrs {
                        Some(("a", "non-macro inner attribute"))
                    } else {
                        None
                    }
                }
            }
        } else {
            None
        };
        if let Some((article, expected)) = unexpected_res {
            let path_str = pprust::path_to_string(path);
            let msg = format!("expected {}, found {} `{}`", expected, res.descr(), path_str);
            self.session
                .struct_span_err(path.span, &msg)
                .span_label(path.span, format!("not {} {}", article, expected))
                .emit();
            return Ok((self.dummy_ext(kind), Res::Err));
        }

        // We are trying to avoid reporting this error if other related errors were reported.
        if res != Res::Err
            && inner_attr
            && !self.session.features_untracked().custom_inner_attributes
        {
            let msg = match res {
                Res::Def(..) => "inner macro attributes are unstable",
                Res::NonMacroAttr(..) => "custom inner attributes are unstable",
                _ => unreachable!(),
            };
            if soft_custom_inner_attributes_gate {
                self.session.parse_sess.buffer_lint(SOFT_UNSTABLE, path.span, node_id, msg);
            } else {
                feature_err(&self.session.parse_sess, sym::custom_inner_attributes, path.span, msg)
                    .emit();
            }
        }

        Ok((ext, res))
    }

    pub fn resolve_macro_path(
        &mut self,
        path: &ast::Path,
        kind: Option<MacroKind>,
        parent_scope: &ParentScope<'a>,
        trace: bool,
        force: bool,
    ) -> Result<(Option<Lrc<SyntaxExtension>>, Res), Determinacy> {
        let path_span = path.span;
        let mut path = Segment::from_path(path);

        // Possibly apply the macro helper hack
        if kind == Some(MacroKind::Bang)
            && path.len() == 1
            && path[0].ident.span.ctxt().outer_expn_data().local_inner_macros
        {
            let root = Ident::new(kw::DollarCrate, path[0].ident.span);
            path.insert(0, Segment::from_ident(root));
        }

        let res = if path.len() > 1 {
            let res = match self.maybe_resolve_path(&path, Some(MacroNS), parent_scope) {
                PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 => {
                    Ok(path_res.base_res())
                }
                PathResult::Indeterminate if !force => return Err(Determinacy::Undetermined),
                PathResult::NonModule(..)
                | PathResult::Indeterminate
                | PathResult::Failed { .. } => Err(Determinacy::Determined),
                PathResult::Module(..) => unreachable!(),
            };

            if trace {
                let kind = kind.expect("macro kind must be specified if tracing is enabled");
                self.multi_segment_macro_resolutions.push((
                    path,
                    path_span,
                    kind,
                    *parent_scope,
                    res.ok(),
                ));
            }

            self.prohibit_imported_non_macro_attrs(None, res.ok(), path_span);
            res
        } else {
            let scope_set = kind.map_or(ScopeSet::All(MacroNS, false), ScopeSet::Macro);
            let binding = self.early_resolve_ident_in_lexical_scope(
                path[0].ident,
                scope_set,
                parent_scope,
                None,
                force,
                None,
            );
            if let Err(Determinacy::Undetermined) = binding {
                return Err(Determinacy::Undetermined);
            }

            if trace {
                let kind = kind.expect("macro kind must be specified if tracing is enabled");
                self.single_segment_macro_resolutions.push((
                    path[0].ident,
                    kind,
                    *parent_scope,
                    binding.ok(),
                ));
            }

            let res = binding.map(|binding| binding.res());
            self.prohibit_imported_non_macro_attrs(binding.ok(), res.ok(), path_span);
            res
        };

        res.map(|res| (self.get_macro(res).map(|macro_data| macro_data.ext), res))
    }

    pub(crate) fn finalize_macro_resolutions(&mut self) {
        let check_consistency = |this: &mut Self,
                                 path: &[Segment],
                                 span,
                                 kind: MacroKind,
                                 initial_res: Option<Res>,
                                 res: Res| {
            if let Some(initial_res) = initial_res {
                if res != initial_res {
                    // Make sure compilation does not succeed if preferred macro resolution
                    // has changed after the macro had been expanded. In theory all such
                    // situations should be reported as errors, so this is a bug.
                    this.session.delay_span_bug(span, "inconsistent resolution for a macro");
                }
            } else {
                // It's possible that the macro was unresolved (indeterminate) and silently
                // expanded into a dummy fragment for recovery during expansion.
                // Now, post-expansion, the resolution may succeed, but we can't change the
                // past and need to report an error.
                // However, non-speculative `resolve_path` can successfully return private items
                // even if speculative `resolve_path` returned nothing previously, so we skip this
                // less informative error if the privacy error is reported elsewhere.
                if this.privacy_errors.is_empty() {
                    let msg = format!(
                        "cannot determine resolution for the {} `{}`",
                        kind.descr(),
                        Segment::names_to_string(path)
                    );
                    let msg_note = "import resolution is stuck, try simplifying macro imports";
                    this.session.struct_span_err(span, &msg).note(msg_note).emit();
                }
            }
        };

        let macro_resolutions = mem::take(&mut self.multi_segment_macro_resolutions);
        for (mut path, path_span, kind, parent_scope, initial_res) in macro_resolutions {
            // FIXME: Path resolution will ICE if segment IDs present.
            for seg in &mut path {
                seg.id = None;
            }
            match self.resolve_path(
                &path,
                Some(MacroNS),
                &parent_scope,
                Some(Finalize::new(ast::CRATE_NODE_ID, path_span)),
                None,
            ) {
                PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 => {
                    let res = path_res.base_res();
                    check_consistency(self, &path, path_span, kind, initial_res, res);
                }
                path_res @ PathResult::NonModule(..) | path_res @ PathResult::Failed { .. } => {
                    let (span, label) = if let PathResult::Failed { span, label, .. } = path_res {
                        (span, label)
                    } else {
                        (
                            path_span,
                            format!(
                                "partially resolved path in {} {}",
                                kind.article(),
                                kind.descr()
                            ),
                        )
                    };
                    self.report_error(
                        span,
                        ResolutionError::FailedToResolve { label, suggestion: None },
                    );
                }
                PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
            }
        }

        let macro_resolutions = mem::take(&mut self.single_segment_macro_resolutions);
        for (ident, kind, parent_scope, initial_binding) in macro_resolutions {
            match self.early_resolve_ident_in_lexical_scope(
                ident,
                ScopeSet::Macro(kind),
                &parent_scope,
                Some(Finalize::new(ast::CRATE_NODE_ID, ident.span)),
                true,
                None,
            ) {
                Ok(binding) => {
                    let initial_res = initial_binding.map(|initial_binding| {
                        self.record_use(ident, initial_binding, false);
                        initial_binding.res()
                    });
                    let res = binding.res();
                    let seg = Segment::from_ident(ident);
                    check_consistency(self, &[seg], ident.span, kind, initial_res, res);
                    if res == Res::NonMacroAttr(NonMacroAttrKind::DeriveHelperCompat) {
                        let node_id = self
                            .invocation_parents
                            .get(&parent_scope.expansion)
                            .map_or(ast::CRATE_NODE_ID, |id| self.def_id_to_node_id[id.0]);
                        self.lint_buffer.buffer_lint_with_diagnostic(
                            LEGACY_DERIVE_HELPERS,
                            node_id,
                            ident.span,
                            "derive helper attribute is used before it is introduced",
                            BuiltinLintDiagnostics::LegacyDeriveHelpers(binding.span),
                        );
                    }
                }
                Err(..) => {
                    let expected = kind.descr_expected();
                    let msg = format!("cannot find {} `{}` in this scope", expected, ident);
                    let mut err = self.session.struct_span_err(ident.span, &msg);
                    self.unresolved_macro_suggestions(&mut err, kind, &parent_scope, ident);
                    err.emit();
                }
            }
        }

        let builtin_attrs = mem::take(&mut self.builtin_attrs);
        for (ident, parent_scope) in builtin_attrs {
            let _ = self.early_resolve_ident_in_lexical_scope(
                ident,
                ScopeSet::Macro(MacroKind::Attr),
                &parent_scope,
                Some(Finalize::new(ast::CRATE_NODE_ID, ident.span)),
                true,
                None,
            );
        }
    }

    fn check_stability_and_deprecation(
        &mut self,
        ext: &SyntaxExtension,
        path: &ast::Path,
        node_id: NodeId,
    ) {
        let span = path.span;
        if let Some(stability) = &ext.stability {
            if let StabilityLevel::Unstable { reason, issue, is_soft, implied_by } = stability.level
            {
                let feature = stability.feature;

                let is_allowed = |feature| {
                    self.active_features.contains(&feature) || span.allows_unstable(feature)
                };
                let allowed_by_implication =
                    implied_by.map(|feature| is_allowed(feature)).unwrap_or(false);
                if !is_allowed(feature) && !allowed_by_implication {
                    let lint_buffer = &mut self.lint_buffer;
                    let soft_handler =
                        |lint, span, msg: &_| lint_buffer.buffer_lint(lint, node_id, span, msg);
                    stability::report_unstable(
                        self.session,
                        feature,
                        reason.to_opt_reason(),
                        issue,
                        None,
                        is_soft,
                        span,
                        soft_handler,
                    );
                }
            }
        }
        if let Some(depr) = &ext.deprecation {
            let path = pprust::path_to_string(&path);
            let (message, lint) = stability::deprecation_message_and_lint(depr, "macro", &path);
            stability::early_report_deprecation(
                &mut self.lint_buffer,
                &message,
                depr.suggestion,
                lint,
                span,
                node_id,
            );
        }
    }

    fn prohibit_imported_non_macro_attrs(
        &self,
        binding: Option<&'a NameBinding<'a>>,
        res: Option<Res>,
        span: Span,
    ) {
        if let Some(Res::NonMacroAttr(kind)) = res {
            if kind != NonMacroAttrKind::Tool && binding.map_or(true, |b| b.is_import()) {
                let msg =
                    format!("cannot use {} {} through an import", kind.article(), kind.descr());
                let mut err = self.session.struct_span_err(span, &msg);
                if let Some(binding) = binding {
                    err.span_note(binding.span, &format!("the {} imported here", kind.descr()));
                }
                err.emit();
            }
        }
    }

    pub(crate) fn check_reserved_macro_name(&mut self, ident: Ident, res: Res) {
        // Reserve some names that are not quite covered by the general check
        // performed on `Resolver::builtin_attrs`.
        if ident.name == sym::cfg || ident.name == sym::cfg_attr {
            let macro_kind = self.get_macro(res).map(|macro_data| macro_data.ext.macro_kind());
            if macro_kind.is_some() && sub_namespace_match(macro_kind, Some(MacroKind::Attr)) {
                self.session.span_err(
                    ident.span,
                    &format!("name `{}` is reserved in attribute namespace", ident),
                );
            }
        }
    }

    /// Compile the macro into a `SyntaxExtension` and its rule spans.
    ///
    /// Possibly replace its expander to a pre-defined one for built-in macros.
    pub(crate) fn compile_macro(
        &mut self,
        item: &ast::Item,
        edition: Edition,
    ) -> (SyntaxExtension, Vec<(usize, Span)>) {
        let (mut result, mut rule_spans) = compile_declarative_macro(
            &self.session,
            self.session.features_untracked(),
            item,
            edition,
        );

        if let Some(builtin_name) = result.builtin_name {
            // The macro was marked with `#[rustc_builtin_macro]`.
            if let Some(builtin_macro) = self.builtin_macros.get_mut(&builtin_name) {
                // The macro is a built-in, replace its expander function
                // while still taking everything else from the source code.
                // If we already loaded this builtin macro, give a better error message than 'no such builtin macro'.
                match mem::replace(builtin_macro, BuiltinMacroState::AlreadySeen(item.span)) {
                    BuiltinMacroState::NotYetSeen(ext) => {
                        result.kind = ext;
                        rule_spans = Vec::new();
                        if item.id != ast::DUMMY_NODE_ID {
                            self.builtin_macro_kinds
                                .insert(self.local_def_id(item.id), result.macro_kind());
                        }
                    }
                    BuiltinMacroState::AlreadySeen(span) => {
                        struct_span_err!(
                            self.session,
                            item.span,
                            E0773,
                            "attempted to define built-in macro more than once"
                        )
                        .span_note(span, "previously defined here")
                        .emit();
                    }
                }
            } else {
                let msg = format!("cannot find a built-in macro with name `{}`", item.ident);
                self.session.span_err(item.span, &msg);
            }
        }

        (result, rule_spans)
    }
}