1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
//! Checking that constant values used in types can be successfully evaluated.
//!
//! For concrete constants, this is fairly simple as we can just try and evaluate it.
//!
//! When dealing with polymorphic constants, for example `std::mem::size_of::<T>() - 1`,
//! this is not as easy.
//!
//! In this case we try to build an abstract representation of this constant using
//! `thir_abstract_const` which can then be checked for structural equality with other
//! generic constants mentioned in the `caller_bounds` of the current environment.
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def::DefKind;
use rustc_infer::infer::InferCtxt;
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::ty::abstract_const::{
    walk_abstract_const, AbstractConst, FailureKind, Node, NotConstEvaluatable,
};
use rustc_middle::ty::{self, TyCtxt, TypeVisitable};
use rustc_session::lint;
use rustc_span::Span;

use std::iter;
use std::ops::ControlFlow;

pub struct ConstUnifyCtxt<'tcx> {
    pub tcx: TyCtxt<'tcx>,
    pub param_env: ty::ParamEnv<'tcx>,
}

impl<'tcx> ConstUnifyCtxt<'tcx> {
    // Substitutes generics repeatedly to allow AbstractConsts to unify where a
    // ConstKind::Unevaluated could be turned into an AbstractConst that would unify e.g.
    // Param(N) should unify with Param(T), substs: [Unevaluated("T2", [Unevaluated("T3", [Param(N)])])]
    #[inline]
    #[instrument(skip(self), level = "debug")]
    fn try_replace_substs_in_root(
        &self,
        mut abstr_const: AbstractConst<'tcx>,
    ) -> Option<AbstractConst<'tcx>> {
        while let Node::Leaf(ct) = abstr_const.root(self.tcx) {
            match AbstractConst::from_const(self.tcx, ct) {
                Ok(Some(act)) => abstr_const = act,
                Ok(None) => break,
                Err(_) => return None,
            }
        }

        Some(abstr_const)
    }

    /// Tries to unify two abstract constants using structural equality.
    #[instrument(skip(self), level = "debug")]
    pub fn try_unify(&self, a: AbstractConst<'tcx>, b: AbstractConst<'tcx>) -> bool {
        let a = if let Some(a) = self.try_replace_substs_in_root(a) {
            a
        } else {
            return true;
        };

        let b = if let Some(b) = self.try_replace_substs_in_root(b) {
            b
        } else {
            return true;
        };

        let a_root = a.root(self.tcx);
        let b_root = b.root(self.tcx);
        debug!(?a_root, ?b_root);

        match (a_root, b_root) {
            (Node::Leaf(a_ct), Node::Leaf(b_ct)) => {
                let a_ct = a_ct.eval(self.tcx, self.param_env);
                debug!("a_ct evaluated: {:?}", a_ct);
                let b_ct = b_ct.eval(self.tcx, self.param_env);
                debug!("b_ct evaluated: {:?}", b_ct);

                if a_ct.ty() != b_ct.ty() {
                    return false;
                }

                match (a_ct.kind(), b_ct.kind()) {
                    // We can just unify errors with everything to reduce the amount of
                    // emitted errors here.
                    (ty::ConstKind::Error(_), _) | (_, ty::ConstKind::Error(_)) => true,
                    (ty::ConstKind::Param(a_param), ty::ConstKind::Param(b_param)) => {
                        a_param == b_param
                    }
                    (ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => a_val == b_val,
                    // If we have `fn a<const N: usize>() -> [u8; N + 1]` and `fn b<const M: usize>() -> [u8; 1 + M]`
                    // we do not want to use `assert_eq!(a(), b())` to infer that `N` and `M` have to be `1`. This
                    // means that we only allow inference variables if they are equal.
                    (ty::ConstKind::Infer(a_val), ty::ConstKind::Infer(b_val)) => a_val == b_val,
                    // We expand generic anonymous constants at the start of this function, so this
                    // branch should only be taking when dealing with associated constants, at
                    // which point directly comparing them seems like the desired behavior.
                    //
                    // FIXME(generic_const_exprs): This isn't actually the case.
                    // We also take this branch for concrete anonymous constants and
                    // expand generic anonymous constants with concrete substs.
                    (ty::ConstKind::Unevaluated(a_uv), ty::ConstKind::Unevaluated(b_uv)) => {
                        a_uv == b_uv
                    }
                    // FIXME(generic_const_exprs): We may want to either actually try
                    // to evaluate `a_ct` and `b_ct` if they are are fully concrete or something like
                    // this, for now we just return false here.
                    _ => false,
                }
            }
            (Node::Binop(a_op, al, ar), Node::Binop(b_op, bl, br)) if a_op == b_op => {
                self.try_unify(a.subtree(al), b.subtree(bl))
                    && self.try_unify(a.subtree(ar), b.subtree(br))
            }
            (Node::UnaryOp(a_op, av), Node::UnaryOp(b_op, bv)) if a_op == b_op => {
                self.try_unify(a.subtree(av), b.subtree(bv))
            }
            (Node::FunctionCall(a_f, a_args), Node::FunctionCall(b_f, b_args))
                if a_args.len() == b_args.len() =>
            {
                self.try_unify(a.subtree(a_f), b.subtree(b_f))
                    && iter::zip(a_args, b_args)
                        .all(|(&an, &bn)| self.try_unify(a.subtree(an), b.subtree(bn)))
            }
            (Node::Cast(a_kind, a_operand, a_ty), Node::Cast(b_kind, b_operand, b_ty))
                if (a_ty == b_ty) && (a_kind == b_kind) =>
            {
                self.try_unify(a.subtree(a_operand), b.subtree(b_operand))
            }
            // use this over `_ => false` to make adding variants to `Node` less error prone
            (Node::Cast(..), _)
            | (Node::FunctionCall(..), _)
            | (Node::UnaryOp(..), _)
            | (Node::Binop(..), _)
            | (Node::Leaf(..), _) => false,
        }
    }
}

#[instrument(skip(tcx), level = "debug")]
pub fn try_unify_abstract_consts<'tcx>(
    tcx: TyCtxt<'tcx>,
    (a, b): (ty::Unevaluated<'tcx, ()>, ty::Unevaluated<'tcx, ()>),
    param_env: ty::ParamEnv<'tcx>,
) -> bool {
    (|| {
        if let Some(a) = AbstractConst::new(tcx, a)? {
            if let Some(b) = AbstractConst::new(tcx, b)? {
                let const_unify_ctxt = ConstUnifyCtxt { tcx, param_env };
                return Ok(const_unify_ctxt.try_unify(a, b));
            }
        }

        Ok(false)
    })()
    .unwrap_or_else(|_: ErrorGuaranteed| true)
    // FIXME(generic_const_exprs): We should instead have this
    // method return the resulting `ty::Const` and return `ConstKind::Error`
    // on `ErrorGuaranteed`.
}

/// Check if a given constant can be evaluated.
#[instrument(skip(infcx), level = "debug")]
pub fn is_const_evaluatable<'cx, 'tcx>(
    infcx: &InferCtxt<'cx, 'tcx>,
    uv: ty::Unevaluated<'tcx, ()>,
    param_env: ty::ParamEnv<'tcx>,
    span: Span,
) -> Result<(), NotConstEvaluatable> {
    let tcx = infcx.tcx;

    if tcx.features().generic_const_exprs {
        if let Some(ct) = AbstractConst::new(tcx, uv)? {
            if satisfied_from_param_env(tcx, ct, param_env)? {
                return Ok(());
            }
            match ct.unify_failure_kind(tcx) {
                FailureKind::MentionsInfer => {
                    return Err(NotConstEvaluatable::MentionsInfer);
                }
                FailureKind::MentionsParam => {
                    return Err(NotConstEvaluatable::MentionsParam);
                }
                // returned below
                FailureKind::Concrete => {}
            }
        }
        let concrete = infcx.const_eval_resolve(param_env, uv, Some(span));
        match concrete {
            Err(ErrorHandled::TooGeneric) => {
                Err(NotConstEvaluatable::Error(infcx.tcx.sess.delay_span_bug(
                    span,
                    format!("Missing value for constant, but no error reported?"),
                )))
            }
            Err(ErrorHandled::Linted) => {
                let reported = infcx
                    .tcx
                    .sess
                    .delay_span_bug(span, "constant in type had error reported as lint");
                Err(NotConstEvaluatable::Error(reported))
            }
            Err(ErrorHandled::Reported(e)) => Err(NotConstEvaluatable::Error(e)),
            Ok(_) => Ok(()),
        }
    } else {
        // FIXME: We should only try to evaluate a given constant here if it is fully concrete
        // as we don't want to allow things like `[u8; std::mem::size_of::<*mut T>()]`.
        //
        // We previously did not check this, so we only emit a future compat warning if
        // const evaluation succeeds and the given constant is still polymorphic for now
        // and hopefully soon change this to an error.
        //
        // See #74595 for more details about this.
        let concrete = infcx.const_eval_resolve(param_env, uv, Some(span));

        match concrete {
          // If we're evaluating a foreign constant, under a nightly compiler without generic
          // const exprs, AND it would've passed if that expression had been evaluated with
          // generic const exprs, then suggest using generic const exprs.
          Err(_) if tcx.sess.is_nightly_build()
            && let Ok(Some(ct)) = AbstractConst::new(tcx, uv)
            && satisfied_from_param_env(tcx, ct, param_env) == Ok(true) => {
              tcx.sess
                  .struct_span_fatal(
                      // Slightly better span than just using `span` alone
                      if span == rustc_span::DUMMY_SP { tcx.def_span(uv.def.did) } else { span },
                      "failed to evaluate generic const expression",
                  )
                  .note("the crate this constant originates from uses `#![feature(generic_const_exprs)]`")
                  .span_suggestion_verbose(
                      rustc_span::DUMMY_SP,
                      "consider enabling this feature",
                      "#![feature(generic_const_exprs)]\n",
                      rustc_errors::Applicability::MaybeIncorrect,
                  )
                  .emit()
            }

            Err(ErrorHandled::TooGeneric) => Err(if uv.has_infer_types_or_consts() {
                NotConstEvaluatable::MentionsInfer
                } else if uv.has_param_types_or_consts() {
                NotConstEvaluatable::MentionsParam
            } else {
                let guar = infcx.tcx.sess.delay_span_bug(span, format!("Missing value for constant, but no error reported?"));
                NotConstEvaluatable::Error(guar)
            }),
            Err(ErrorHandled::Linted) => {
                let reported =
                    infcx.tcx.sess.delay_span_bug(span, "constant in type had error reported as lint");
                Err(NotConstEvaluatable::Error(reported))
            }
            Err(ErrorHandled::Reported(e)) => Err(NotConstEvaluatable::Error(e)),
            Ok(_) => {
              if uv.substs.has_param_types_or_consts() {
                  assert!(matches!(infcx.tcx.def_kind(uv.def.did), DefKind::AnonConst));
                  let mir_body = infcx.tcx.mir_for_ctfe_opt_const_arg(uv.def);

                  if mir_body.is_polymorphic {
                      let Some(local_def_id) = uv.def.did.as_local() else { return Ok(()) };
                      tcx.struct_span_lint_hir(
                          lint::builtin::CONST_EVALUATABLE_UNCHECKED,
                          tcx.hir().local_def_id_to_hir_id(local_def_id),
                          span,
                          |err| {
                              err.build("cannot use constants which depend on generic parameters in types").emit();
                        })
                  }
              }

              Ok(())
            },
        }
    }
}

#[instrument(skip(tcx), level = "debug")]
fn satisfied_from_param_env<'tcx>(
    tcx: TyCtxt<'tcx>,
    ct: AbstractConst<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
) -> Result<bool, NotConstEvaluatable> {
    for pred in param_env.caller_bounds() {
        match pred.kind().skip_binder() {
            ty::PredicateKind::ConstEvaluatable(uv) => {
                if let Some(b_ct) = AbstractConst::new(tcx, uv)? {
                    let const_unify_ctxt = ConstUnifyCtxt { tcx, param_env };

                    // Try to unify with each subtree in the AbstractConst to allow for
                    // `N + 1` being const evaluatable even if theres only a `ConstEvaluatable`
                    // predicate for `(N + 1) * 2`
                    let result = walk_abstract_const(tcx, b_ct, |b_ct| {
                        match const_unify_ctxt.try_unify(ct, b_ct) {
                            true => ControlFlow::BREAK,
                            false => ControlFlow::CONTINUE,
                        }
                    });

                    if let ControlFlow::Break(()) = result {
                        debug!("is_const_evaluatable: abstract_const ~~> ok");
                        return Ok(true);
                    }
                }
            }
            _ => {} // don't care
        }
    }

    Ok(false)
}