rustc_mir_transform/
dataflow_const_prop.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
//! A constant propagation optimization pass based on dataflow analysis.
//!
//! Currently, this pass only propagates scalar values.

use rustc_const_eval::const_eval::{DummyMachine, throw_machine_stop_str};
use rustc_const_eval::interpret::{
    ImmTy, Immediate, InterpCx, OpTy, PlaceTy, Projectable, interp_ok,
};
use rustc_data_structures::fx::FxHashMap;
use rustc_hir::def::DefKind;
use rustc_middle::bug;
use rustc_middle::mir::interpret::{InterpResult, Scalar};
use rustc_middle::mir::visit::{MutVisitor, PlaceContext, Visitor};
use rustc_middle::mir::*;
use rustc_middle::ty::layout::{HasParamEnv, LayoutOf};
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_mir_dataflow::lattice::FlatSet;
use rustc_mir_dataflow::value_analysis::{
    Map, PlaceIndex, State, TrackElem, ValueAnalysis, ValueAnalysisWrapper, ValueOrPlace,
};
use rustc_mir_dataflow::{Analysis, Results, ResultsVisitor};
use rustc_span::DUMMY_SP;
use rustc_target::abi::{Abi, FIRST_VARIANT, FieldIdx, Size, VariantIdx};
use tracing::{debug, debug_span, instrument};

// These constants are somewhat random guesses and have not been optimized.
// If `tcx.sess.mir_opt_level() >= 4`, we ignore the limits (this can become very expensive).
const BLOCK_LIMIT: usize = 100;
const PLACE_LIMIT: usize = 100;

pub(super) struct DataflowConstProp;

impl<'tcx> crate::MirPass<'tcx> for DataflowConstProp {
    fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
        sess.mir_opt_level() >= 3
    }

    #[instrument(skip_all level = "debug")]
    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
        debug!(def_id = ?body.source.def_id());
        if tcx.sess.mir_opt_level() < 4 && body.basic_blocks.len() > BLOCK_LIMIT {
            debug!("aborted dataflow const prop due too many basic blocks");
            return;
        }

        // We want to have a somewhat linear runtime w.r.t. the number of statements/terminators.
        // Let's call this number `n`. Dataflow analysis has `O(h*n)` transfer function
        // applications, where `h` is the height of the lattice. Because the height of our lattice
        // is linear w.r.t. the number of tracked places, this is `O(tracked_places * n)`. However,
        // because every transfer function application could traverse the whole map, this becomes
        // `O(num_nodes * tracked_places * n)` in terms of time complexity. Since the number of
        // map nodes is strongly correlated to the number of tracked places, this becomes more or
        // less `O(n)` if we place a constant limit on the number of tracked places.
        let place_limit = if tcx.sess.mir_opt_level() < 4 { Some(PLACE_LIMIT) } else { None };

        // Decide which places to track during the analysis.
        let map = Map::new(tcx, body, place_limit);

        // Perform the actual dataflow analysis.
        let analysis = ConstAnalysis::new(tcx, body, map);
        let mut results = debug_span!("analyze")
            .in_scope(|| analysis.wrap().iterate_to_fixpoint(tcx, body, None));

        // Collect results and patch the body afterwards.
        let mut visitor = Collector::new(tcx, &body.local_decls);
        debug_span!("collect").in_scope(|| results.visit_reachable_with(body, &mut visitor));
        let mut patch = visitor.patch;
        debug_span!("patch").in_scope(|| patch.visit_body_preserves_cfg(body));
    }
}

struct ConstAnalysis<'a, 'tcx> {
    map: Map<'tcx>,
    tcx: TyCtxt<'tcx>,
    local_decls: &'a LocalDecls<'tcx>,
    ecx: InterpCx<'tcx, DummyMachine>,
    param_env: ty::ParamEnv<'tcx>,
}

impl<'tcx> ValueAnalysis<'tcx> for ConstAnalysis<'_, 'tcx> {
    type Value = FlatSet<Scalar>;

    const NAME: &'static str = "ConstAnalysis";

    fn map(&self) -> &Map<'tcx> {
        &self.map
    }

    fn handle_set_discriminant(
        &self,
        place: Place<'tcx>,
        variant_index: VariantIdx,
        state: &mut State<Self::Value>,
    ) {
        state.flood_discr(place.as_ref(), &self.map);
        if self.map.find_discr(place.as_ref()).is_some() {
            let enum_ty = place.ty(self.local_decls, self.tcx).ty;
            if let Some(discr) = self.eval_discriminant(enum_ty, variant_index) {
                state.assign_discr(
                    place.as_ref(),
                    ValueOrPlace::Value(FlatSet::Elem(discr)),
                    &self.map,
                );
            }
        }
    }

    fn handle_assign(
        &self,
        target: Place<'tcx>,
        rvalue: &Rvalue<'tcx>,
        state: &mut State<Self::Value>,
    ) {
        match rvalue {
            Rvalue::Use(operand) => {
                state.flood(target.as_ref(), self.map());
                if let Some(target) = self.map.find(target.as_ref()) {
                    self.assign_operand(state, target, operand);
                }
            }
            Rvalue::CopyForDeref(rhs) => {
                state.flood(target.as_ref(), self.map());
                if let Some(target) = self.map.find(target.as_ref()) {
                    self.assign_operand(state, target, &Operand::Copy(*rhs));
                }
            }
            Rvalue::Aggregate(kind, operands) => {
                // If we assign `target = Enum::Variant#0(operand)`,
                // we must make sure that all `target as Variant#i` are `Top`.
                state.flood(target.as_ref(), self.map());

                let Some(target_idx) = self.map().find(target.as_ref()) else { return };

                let (variant_target, variant_index) = match **kind {
                    AggregateKind::Tuple | AggregateKind::Closure(..) => (Some(target_idx), None),
                    AggregateKind::Adt(def_id, variant_index, ..) => {
                        match self.tcx.def_kind(def_id) {
                            DefKind::Struct => (Some(target_idx), None),
                            DefKind::Enum => (
                                self.map.apply(target_idx, TrackElem::Variant(variant_index)),
                                Some(variant_index),
                            ),
                            _ => return,
                        }
                    }
                    _ => return,
                };
                if let Some(variant_target_idx) = variant_target {
                    for (field_index, operand) in operands.iter_enumerated() {
                        if let Some(field) =
                            self.map().apply(variant_target_idx, TrackElem::Field(field_index))
                        {
                            self.assign_operand(state, field, operand);
                        }
                    }
                }
                if let Some(variant_index) = variant_index
                    && let Some(discr_idx) = self.map().apply(target_idx, TrackElem::Discriminant)
                {
                    // We are assigning the discriminant as part of an aggregate.
                    // This discriminant can only alias a variant field's value if the operand
                    // had an invalid value for that type.
                    // Using invalid values is UB, so we are allowed to perform the assignment
                    // without extra flooding.
                    let enum_ty = target.ty(self.local_decls, self.tcx).ty;
                    if let Some(discr_val) = self.eval_discriminant(enum_ty, variant_index) {
                        state.insert_value_idx(discr_idx, FlatSet::Elem(discr_val), &self.map);
                    }
                }
            }
            Rvalue::BinaryOp(op, box (left, right)) if op.is_overflowing() => {
                // Flood everything now, so we can use `insert_value_idx` directly later.
                state.flood(target.as_ref(), self.map());

                let Some(target) = self.map().find(target.as_ref()) else { return };

                let value_target = self.map().apply(target, TrackElem::Field(0_u32.into()));
                let overflow_target = self.map().apply(target, TrackElem::Field(1_u32.into()));

                if value_target.is_some() || overflow_target.is_some() {
                    let (val, overflow) = self.binary_op(state, *op, left, right);

                    if let Some(value_target) = value_target {
                        // We have flooded `target` earlier.
                        state.insert_value_idx(value_target, val, self.map());
                    }
                    if let Some(overflow_target) = overflow_target {
                        // We have flooded `target` earlier.
                        state.insert_value_idx(overflow_target, overflow, self.map());
                    }
                }
            }
            Rvalue::Cast(
                CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _),
                operand,
                _,
            ) => {
                let pointer = self.handle_operand(operand, state);
                state.assign(target.as_ref(), pointer, self.map());

                if let Some(target_len) = self.map().find_len(target.as_ref())
                    && let operand_ty = operand.ty(self.local_decls, self.tcx)
                    && let Some(operand_ty) = operand_ty.builtin_deref(true)
                    && let ty::Array(_, len) = operand_ty.kind()
                    && let Some(len) = Const::Ty(self.tcx.types.usize, *len)
                        .try_eval_scalar_int(self.tcx, self.param_env)
                {
                    state.insert_value_idx(target_len, FlatSet::Elem(len.into()), self.map());
                }
            }
            _ => self.super_assign(target, rvalue, state),
        }
    }

    fn handle_rvalue(
        &self,
        rvalue: &Rvalue<'tcx>,
        state: &mut State<Self::Value>,
    ) -> ValueOrPlace<Self::Value> {
        let val = match rvalue {
            Rvalue::Len(place) => {
                let place_ty = place.ty(self.local_decls, self.tcx);
                if let ty::Array(_, len) = place_ty.ty.kind() {
                    Const::Ty(self.tcx.types.usize, *len)
                        .try_eval_scalar(self.tcx, self.param_env)
                        .map_or(FlatSet::Top, FlatSet::Elem)
                } else if let [ProjectionElem::Deref] = place.projection[..] {
                    state.get_len(place.local.into(), self.map())
                } else {
                    FlatSet::Top
                }
            }
            Rvalue::Cast(CastKind::IntToInt | CastKind::IntToFloat, operand, ty) => {
                let Ok(layout) = self.tcx.layout_of(self.param_env.and(*ty)) else {
                    return ValueOrPlace::Value(FlatSet::Top);
                };
                match self.eval_operand(operand, state) {
                    FlatSet::Elem(op) => self
                        .ecx
                        .int_to_int_or_float(&op, layout)
                        .discard_err()
                        .map_or(FlatSet::Top, |result| self.wrap_immediate(*result)),
                    FlatSet::Bottom => FlatSet::Bottom,
                    FlatSet::Top => FlatSet::Top,
                }
            }
            Rvalue::Cast(CastKind::FloatToInt | CastKind::FloatToFloat, operand, ty) => {
                let Ok(layout) = self.tcx.layout_of(self.param_env.and(*ty)) else {
                    return ValueOrPlace::Value(FlatSet::Top);
                };
                match self.eval_operand(operand, state) {
                    FlatSet::Elem(op) => self
                        .ecx
                        .float_to_float_or_int(&op, layout)
                        .discard_err()
                        .map_or(FlatSet::Top, |result| self.wrap_immediate(*result)),
                    FlatSet::Bottom => FlatSet::Bottom,
                    FlatSet::Top => FlatSet::Top,
                }
            }
            Rvalue::Cast(CastKind::Transmute, operand, _) => {
                match self.eval_operand(operand, state) {
                    FlatSet::Elem(op) => self.wrap_immediate(*op),
                    FlatSet::Bottom => FlatSet::Bottom,
                    FlatSet::Top => FlatSet::Top,
                }
            }
            Rvalue::BinaryOp(op, box (left, right)) if !op.is_overflowing() => {
                // Overflows must be ignored here.
                // The overflowing operators are handled in `handle_assign`.
                let (val, _overflow) = self.binary_op(state, *op, left, right);
                val
            }
            Rvalue::UnaryOp(op, operand) => match self.eval_operand(operand, state) {
                FlatSet::Elem(value) => self
                    .ecx
                    .unary_op(*op, &value)
                    .discard_err()
                    .map_or(FlatSet::Top, |val| self.wrap_immediate(*val)),
                FlatSet::Bottom => FlatSet::Bottom,
                FlatSet::Top => FlatSet::Top,
            },
            Rvalue::NullaryOp(null_op, ty) => {
                let Ok(layout) = self.tcx.layout_of(self.param_env.and(*ty)) else {
                    return ValueOrPlace::Value(FlatSet::Top);
                };
                let val = match null_op {
                    NullOp::SizeOf if layout.is_sized() => layout.size.bytes(),
                    NullOp::AlignOf if layout.is_sized() => layout.align.abi.bytes(),
                    NullOp::OffsetOf(fields) => self
                        .ecx
                        .tcx
                        .offset_of_subfield(self.ecx.param_env(), layout, fields.iter())
                        .bytes(),
                    _ => return ValueOrPlace::Value(FlatSet::Top),
                };
                FlatSet::Elem(Scalar::from_target_usize(val, &self.tcx))
            }
            Rvalue::Discriminant(place) => state.get_discr(place.as_ref(), self.map()),
            _ => return self.super_rvalue(rvalue, state),
        };
        ValueOrPlace::Value(val)
    }

    fn handle_constant(
        &self,
        constant: &ConstOperand<'tcx>,
        _state: &mut State<Self::Value>,
    ) -> Self::Value {
        constant
            .const_
            .try_eval_scalar(self.tcx, self.param_env)
            .map_or(FlatSet::Top, FlatSet::Elem)
    }

    fn handle_switch_int<'mir>(
        &self,
        discr: &'mir Operand<'tcx>,
        targets: &'mir SwitchTargets,
        state: &mut State<Self::Value>,
    ) -> TerminatorEdges<'mir, 'tcx> {
        let value = match self.handle_operand(discr, state) {
            ValueOrPlace::Value(value) => value,
            ValueOrPlace::Place(place) => state.get_idx(place, self.map()),
        };
        match value {
            // We are branching on uninitialized data, this is UB, treat it as unreachable.
            // This allows the set of visited edges to grow monotonically with the lattice.
            FlatSet::Bottom => TerminatorEdges::None,
            FlatSet::Elem(scalar) => {
                let choice = scalar.assert_scalar_int().to_bits_unchecked();
                TerminatorEdges::Single(targets.target_for_value(choice))
            }
            FlatSet::Top => TerminatorEdges::SwitchInt { discr, targets },
        }
    }
}

impl<'a, 'tcx> ConstAnalysis<'a, 'tcx> {
    fn new(tcx: TyCtxt<'tcx>, body: &'a Body<'tcx>, map: Map<'tcx>) -> Self {
        let param_env = tcx.param_env_reveal_all_normalized(body.source.def_id());
        Self {
            map,
            tcx,
            local_decls: &body.local_decls,
            ecx: InterpCx::new(tcx, DUMMY_SP, param_env, DummyMachine),
            param_env,
        }
    }

    /// The caller must have flooded `place`.
    fn assign_operand(
        &self,
        state: &mut State<FlatSet<Scalar>>,
        place: PlaceIndex,
        operand: &Operand<'tcx>,
    ) {
        match operand {
            Operand::Copy(rhs) | Operand::Move(rhs) => {
                if let Some(rhs) = self.map.find(rhs.as_ref()) {
                    state.insert_place_idx(place, rhs, &self.map);
                } else if rhs.projection.first() == Some(&PlaceElem::Deref)
                    && let FlatSet::Elem(pointer) = state.get(rhs.local.into(), &self.map)
                    && let rhs_ty = self.local_decls[rhs.local].ty
                    && let Ok(rhs_layout) = self.tcx.layout_of(self.param_env.and(rhs_ty))
                {
                    let op = ImmTy::from_scalar(pointer, rhs_layout).into();
                    self.assign_constant(state, place, op, rhs.projection);
                }
            }
            Operand::Constant(box constant) => {
                if let Some(constant) =
                    self.ecx.eval_mir_constant(&constant.const_, constant.span, None).discard_err()
                {
                    self.assign_constant(state, place, constant, &[]);
                }
            }
        }
    }

    /// The caller must have flooded `place`.
    ///
    /// Perform: `place = operand.projection`.
    #[instrument(level = "trace", skip(self, state))]
    fn assign_constant(
        &self,
        state: &mut State<FlatSet<Scalar>>,
        place: PlaceIndex,
        mut operand: OpTy<'tcx>,
        projection: &[PlaceElem<'tcx>],
    ) {
        for &(mut proj_elem) in projection {
            if let PlaceElem::Index(index) = proj_elem {
                if let FlatSet::Elem(index) = state.get(index.into(), &self.map)
                    && let Some(offset) = index.to_target_usize(&self.tcx).discard_err()
                    && let Some(min_length) = offset.checked_add(1)
                {
                    proj_elem = PlaceElem::ConstantIndex { offset, min_length, from_end: false };
                } else {
                    return;
                }
            }
            operand = if let Some(operand) = self.ecx.project(&operand, proj_elem).discard_err() {
                operand
            } else {
                return;
            }
        }

        self.map.for_each_projection_value(
            place,
            operand,
            &mut |elem, op| match elem {
                TrackElem::Field(idx) => self.ecx.project_field(op, idx.as_usize()).discard_err(),
                TrackElem::Variant(idx) => self.ecx.project_downcast(op, idx).discard_err(),
                TrackElem::Discriminant => {
                    let variant = self.ecx.read_discriminant(op).discard_err()?;
                    let discr_value =
                        self.ecx.discriminant_for_variant(op.layout.ty, variant).discard_err()?;
                    Some(discr_value.into())
                }
                TrackElem::DerefLen => {
                    let op: OpTy<'_> = self.ecx.deref_pointer(op).discard_err()?.into();
                    let len_usize = op.len(&self.ecx).discard_err()?;
                    let layout =
                        self.tcx.layout_of(self.param_env.and(self.tcx.types.usize)).unwrap();
                    Some(ImmTy::from_uint(len_usize, layout).into())
                }
            },
            &mut |place, op| {
                if let Some(imm) = self.ecx.read_immediate_raw(op).discard_err()
                    && let Some(imm) = imm.right()
                {
                    let elem = self.wrap_immediate(*imm);
                    state.insert_value_idx(place, elem, &self.map);
                }
            },
        );
    }

    fn binary_op(
        &self,
        state: &mut State<FlatSet<Scalar>>,
        op: BinOp,
        left: &Operand<'tcx>,
        right: &Operand<'tcx>,
    ) -> (FlatSet<Scalar>, FlatSet<Scalar>) {
        let left = self.eval_operand(left, state);
        let right = self.eval_operand(right, state);

        match (left, right) {
            (FlatSet::Bottom, _) | (_, FlatSet::Bottom) => (FlatSet::Bottom, FlatSet::Bottom),
            // Both sides are known, do the actual computation.
            (FlatSet::Elem(left), FlatSet::Elem(right)) => {
                match self.ecx.binary_op(op, &left, &right).discard_err() {
                    // Ideally this would return an Immediate, since it's sometimes
                    // a pair and sometimes not. But as a hack we always return a pair
                    // and just make the 2nd component `Bottom` when it does not exist.
                    Some(val) => {
                        if matches!(val.layout.abi, Abi::ScalarPair(..)) {
                            let (val, overflow) = val.to_scalar_pair();
                            (FlatSet::Elem(val), FlatSet::Elem(overflow))
                        } else {
                            (FlatSet::Elem(val.to_scalar()), FlatSet::Bottom)
                        }
                    }
                    _ => (FlatSet::Top, FlatSet::Top),
                }
            }
            // Exactly one side is known, attempt some algebraic simplifications.
            (FlatSet::Elem(const_arg), _) | (_, FlatSet::Elem(const_arg)) => {
                let layout = const_arg.layout;
                if !matches!(layout.abi, rustc_target::abi::Abi::Scalar(..)) {
                    return (FlatSet::Top, FlatSet::Top);
                }

                let arg_scalar = const_arg.to_scalar();
                let Some(arg_value) = arg_scalar.to_bits(layout.size).discard_err() else {
                    return (FlatSet::Top, FlatSet::Top);
                };

                match op {
                    BinOp::BitAnd if arg_value == 0 => (FlatSet::Elem(arg_scalar), FlatSet::Bottom),
                    BinOp::BitOr
                        if arg_value == layout.size.truncate(u128::MAX)
                            || (layout.ty.is_bool() && arg_value == 1) =>
                    {
                        (FlatSet::Elem(arg_scalar), FlatSet::Bottom)
                    }
                    BinOp::Mul if layout.ty.is_integral() && arg_value == 0 => {
                        (FlatSet::Elem(arg_scalar), FlatSet::Elem(Scalar::from_bool(false)))
                    }
                    _ => (FlatSet::Top, FlatSet::Top),
                }
            }
            (FlatSet::Top, FlatSet::Top) => (FlatSet::Top, FlatSet::Top),
        }
    }

    fn eval_operand(
        &self,
        op: &Operand<'tcx>,
        state: &mut State<FlatSet<Scalar>>,
    ) -> FlatSet<ImmTy<'tcx>> {
        let value = match self.handle_operand(op, state) {
            ValueOrPlace::Value(value) => value,
            ValueOrPlace::Place(place) => state.get_idx(place, &self.map),
        };
        match value {
            FlatSet::Top => FlatSet::Top,
            FlatSet::Elem(scalar) => {
                let ty = op.ty(self.local_decls, self.tcx);
                self.tcx.layout_of(self.param_env.and(ty)).map_or(FlatSet::Top, |layout| {
                    FlatSet::Elem(ImmTy::from_scalar(scalar, layout))
                })
            }
            FlatSet::Bottom => FlatSet::Bottom,
        }
    }

    fn eval_discriminant(&self, enum_ty: Ty<'tcx>, variant_index: VariantIdx) -> Option<Scalar> {
        if !enum_ty.is_enum() {
            return None;
        }
        let enum_ty_layout = self.tcx.layout_of(self.param_env.and(enum_ty)).ok()?;
        let discr_value =
            self.ecx.discriminant_for_variant(enum_ty_layout.ty, variant_index).discard_err()?;
        Some(discr_value.to_scalar())
    }

    fn wrap_immediate(&self, imm: Immediate) -> FlatSet<Scalar> {
        match imm {
            Immediate::Scalar(scalar) => FlatSet::Elem(scalar),
            Immediate::Uninit => FlatSet::Bottom,
            _ => FlatSet::Top,
        }
    }
}

pub(crate) struct Patch<'tcx> {
    tcx: TyCtxt<'tcx>,

    /// For a given MIR location, this stores the values of the operands used by that location. In
    /// particular, this is before the effect, such that the operands of `_1 = _1 + _2` are
    /// properly captured. (This may become UB soon, but it is currently emitted even by safe code.)
    pub(crate) before_effect: FxHashMap<(Location, Place<'tcx>), Const<'tcx>>,

    /// Stores the assigned values for assignments where the Rvalue is constant.
    pub(crate) assignments: FxHashMap<Location, Const<'tcx>>,
}

impl<'tcx> Patch<'tcx> {
    pub(crate) fn new(tcx: TyCtxt<'tcx>) -> Self {
        Self { tcx, before_effect: FxHashMap::default(), assignments: FxHashMap::default() }
    }

    fn make_operand(&self, const_: Const<'tcx>) -> Operand<'tcx> {
        Operand::Constant(Box::new(ConstOperand { span: DUMMY_SP, user_ty: None, const_ }))
    }
}

struct Collector<'a, 'tcx> {
    patch: Patch<'tcx>,
    local_decls: &'a LocalDecls<'tcx>,
}

impl<'a, 'tcx> Collector<'a, 'tcx> {
    pub(crate) fn new(tcx: TyCtxt<'tcx>, local_decls: &'a LocalDecls<'tcx>) -> Self {
        Self { patch: Patch::new(tcx), local_decls }
    }

    #[instrument(level = "trace", skip(self, ecx, map), ret)]
    fn try_make_constant(
        &self,
        ecx: &mut InterpCx<'tcx, DummyMachine>,
        place: Place<'tcx>,
        state: &State<FlatSet<Scalar>>,
        map: &Map<'tcx>,
    ) -> Option<Const<'tcx>> {
        let ty = place.ty(self.local_decls, self.patch.tcx).ty;
        let layout = ecx.layout_of(ty).ok()?;

        if layout.is_zst() {
            return Some(Const::zero_sized(ty));
        }

        if layout.is_unsized() {
            return None;
        }

        let place = map.find(place.as_ref())?;
        if layout.abi.is_scalar()
            && let Some(value) = propagatable_scalar(place, state, map)
        {
            return Some(Const::Val(ConstValue::Scalar(value), ty));
        }

        if matches!(layout.abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
            let alloc_id = ecx
                .intern_with_temp_alloc(layout, |ecx, dest| {
                    try_write_constant(ecx, dest, place, ty, state, map)
                })
                .discard_err()?;
            return Some(Const::Val(ConstValue::Indirect { alloc_id, offset: Size::ZERO }, ty));
        }

        None
    }
}

#[instrument(level = "trace", skip(map), ret)]
fn propagatable_scalar(
    place: PlaceIndex,
    state: &State<FlatSet<Scalar>>,
    map: &Map<'_>,
) -> Option<Scalar> {
    if let FlatSet::Elem(value) = state.get_idx(place, map)
        && value.try_to_scalar_int().is_ok()
    {
        // Do not attempt to propagate pointers, as we may fail to preserve their identity.
        Some(value)
    } else {
        None
    }
}

#[instrument(level = "trace", skip(ecx, state, map), ret)]
fn try_write_constant<'tcx>(
    ecx: &mut InterpCx<'tcx, DummyMachine>,
    dest: &PlaceTy<'tcx>,
    place: PlaceIndex,
    ty: Ty<'tcx>,
    state: &State<FlatSet<Scalar>>,
    map: &Map<'tcx>,
) -> InterpResult<'tcx> {
    let layout = ecx.layout_of(ty)?;

    // Fast path for ZSTs.
    if layout.is_zst() {
        return interp_ok(());
    }

    // Fast path for scalars.
    if layout.abi.is_scalar()
        && let Some(value) = propagatable_scalar(place, state, map)
    {
        return ecx.write_immediate(Immediate::Scalar(value), dest);
    }

    match ty.kind() {
        // ZSTs. Nothing to do.
        ty::FnDef(..) => {}

        // Those are scalars, must be handled above.
        ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Char =>
            throw_machine_stop_str!("primitive type with provenance"),

        ty::Tuple(elem_tys) => {
            for (i, elem) in elem_tys.iter().enumerate() {
                let Some(field) = map.apply(place, TrackElem::Field(FieldIdx::from_usize(i))) else {
                    throw_machine_stop_str!("missing field in tuple")
                };
                let field_dest = ecx.project_field(dest, i)?;
                try_write_constant(ecx, &field_dest, field, elem, state, map)?;
            }
        }

        ty::Adt(def, args) => {
            if def.is_union() {
                throw_machine_stop_str!("cannot propagate unions")
            }

            let (variant_idx, variant_def, variant_place, variant_dest) = if def.is_enum() {
                let Some(discr) = map.apply(place, TrackElem::Discriminant) else {
                    throw_machine_stop_str!("missing discriminant for enum")
                };
                let FlatSet::Elem(Scalar::Int(discr)) = state.get_idx(discr, map) else {
                    throw_machine_stop_str!("discriminant with provenance")
                };
                let discr_bits = discr.to_bits(discr.size());
                let Some((variant, _)) = def.discriminants(*ecx.tcx).find(|(_, var)| discr_bits == var.val) else {
                    throw_machine_stop_str!("illegal discriminant for enum")
                };
                let Some(variant_place) = map.apply(place, TrackElem::Variant(variant)) else {
                    throw_machine_stop_str!("missing variant for enum")
                };
                let variant_dest = ecx.project_downcast(dest, variant)?;
                (variant, def.variant(variant), variant_place, variant_dest)
            } else {
                (FIRST_VARIANT, def.non_enum_variant(), place, dest.clone())
            };

            for (i, field) in variant_def.fields.iter_enumerated() {
                let ty = field.ty(*ecx.tcx, args);
                let Some(field) = map.apply(variant_place, TrackElem::Field(i)) else {
                    throw_machine_stop_str!("missing field in ADT")
                };
                let field_dest = ecx.project_field(&variant_dest, i.as_usize())?;
                try_write_constant(ecx, &field_dest, field, ty, state, map)?;
            }
            ecx.write_discriminant(variant_idx, dest)?;
        }

        // Unsupported for now.
        ty::Array(_, _)
        | ty::Pat(_, _)

        // Do not attempt to support indirection in constants.
        | ty::Ref(..) | ty::RawPtr(..) | ty::FnPtr(..) | ty::Str | ty::Slice(_)

        | ty::Never
        | ty::Foreign(..)
        | ty::Alias(..)
        | ty::Param(_)
        | ty::Bound(..)
        | ty::Placeholder(..)
        | ty::Closure(..)
        | ty::CoroutineClosure(..)
        | ty::Coroutine(..)
        | ty::Dynamic(..) => throw_machine_stop_str!("unsupported type"),

        ty::Error(_) | ty::Infer(..) | ty::CoroutineWitness(..) => bug!(),
    }

    interp_ok(())
}

impl<'mir, 'tcx>
    ResultsVisitor<'mir, 'tcx, Results<'tcx, ValueAnalysisWrapper<ConstAnalysis<'_, 'tcx>>>>
    for Collector<'_, 'tcx>
{
    type Domain = State<FlatSet<Scalar>>;

    #[instrument(level = "trace", skip(self, results, statement))]
    fn visit_statement_before_primary_effect(
        &mut self,
        results: &mut Results<'tcx, ValueAnalysisWrapper<ConstAnalysis<'_, 'tcx>>>,
        state: &Self::Domain,
        statement: &'mir Statement<'tcx>,
        location: Location,
    ) {
        match &statement.kind {
            StatementKind::Assign(box (_, rvalue)) => {
                OperandCollector {
                    state,
                    visitor: self,
                    ecx: &mut results.analysis.0.ecx,
                    map: &results.analysis.0.map,
                }
                .visit_rvalue(rvalue, location);
            }
            _ => (),
        }
    }

    #[instrument(level = "trace", skip(self, results, statement))]
    fn visit_statement_after_primary_effect(
        &mut self,
        results: &mut Results<'tcx, ValueAnalysisWrapper<ConstAnalysis<'_, 'tcx>>>,
        state: &Self::Domain,
        statement: &'mir Statement<'tcx>,
        location: Location,
    ) {
        match statement.kind {
            StatementKind::Assign(box (_, Rvalue::Use(Operand::Constant(_)))) => {
                // Don't overwrite the assignment if it already uses a constant (to keep the span).
            }
            StatementKind::Assign(box (place, _)) => {
                if let Some(value) = self.try_make_constant(
                    &mut results.analysis.0.ecx,
                    place,
                    state,
                    &results.analysis.0.map,
                ) {
                    self.patch.assignments.insert(location, value);
                }
            }
            _ => (),
        }
    }

    fn visit_terminator_before_primary_effect(
        &mut self,
        results: &mut Results<'tcx, ValueAnalysisWrapper<ConstAnalysis<'_, 'tcx>>>,
        state: &Self::Domain,
        terminator: &'mir Terminator<'tcx>,
        location: Location,
    ) {
        OperandCollector {
            state,
            visitor: self,
            ecx: &mut results.analysis.0.ecx,
            map: &results.analysis.0.map,
        }
        .visit_terminator(terminator, location);
    }
}

impl<'tcx> MutVisitor<'tcx> for Patch<'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
        if let Some(value) = self.assignments.get(&location) {
            match &mut statement.kind {
                StatementKind::Assign(box (_, rvalue)) => {
                    *rvalue = Rvalue::Use(self.make_operand(*value));
                }
                _ => bug!("found assignment info for non-assign statement"),
            }
        } else {
            self.super_statement(statement, location);
        }
    }

    fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
        match operand {
            Operand::Copy(place) | Operand::Move(place) => {
                if let Some(value) = self.before_effect.get(&(location, *place)) {
                    *operand = self.make_operand(*value);
                } else if !place.projection.is_empty() {
                    self.super_operand(operand, location)
                }
            }
            Operand::Constant(_) => {}
        }
    }

    fn process_projection_elem(
        &mut self,
        elem: PlaceElem<'tcx>,
        location: Location,
    ) -> Option<PlaceElem<'tcx>> {
        if let PlaceElem::Index(local) = elem {
            let offset = self.before_effect.get(&(location, local.into()))?;
            let offset = offset.try_to_scalar()?;
            let offset = offset.to_target_usize(&self.tcx).discard_err()?;
            let min_length = offset.checked_add(1)?;
            Some(PlaceElem::ConstantIndex { offset, min_length, from_end: false })
        } else {
            None
        }
    }
}

struct OperandCollector<'a, 'b, 'tcx> {
    state: &'a State<FlatSet<Scalar>>,
    visitor: &'a mut Collector<'b, 'tcx>,
    ecx: &'a mut InterpCx<'tcx, DummyMachine>,
    map: &'a Map<'tcx>,
}

impl<'tcx> Visitor<'tcx> for OperandCollector<'_, '_, 'tcx> {
    fn visit_projection_elem(
        &mut self,
        _: PlaceRef<'tcx>,
        elem: PlaceElem<'tcx>,
        _: PlaceContext,
        location: Location,
    ) {
        if let PlaceElem::Index(local) = elem
            && let Some(value) =
                self.visitor.try_make_constant(self.ecx, local.into(), self.state, self.map)
        {
            self.visitor.patch.before_effect.insert((location, local.into()), value);
        }
    }

    fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
        if let Some(place) = operand.place() {
            if let Some(value) =
                self.visitor.try_make_constant(self.ecx, place, self.state, self.map)
            {
                self.visitor.patch.before_effect.insert((location, place), value);
            } else if !place.projection.is_empty() {
                // Try to propagate into `Index` projections.
                self.super_operand(operand, location)
            }
        }
    }
}