rustc_abi/layout.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
use std::fmt::{self, Write};
use std::ops::{Bound, Deref};
use std::{cmp, iter};
use rustc_index::Idx;
use tracing::debug;
use crate::{
Abi, AbiAndPrefAlign, Align, FieldsShape, HasDataLayout, IndexSlice, IndexVec, Integer,
LayoutData, Niche, NonZeroUsize, Primitive, ReprOptions, Scalar, Size, StructKind, TagEncoding,
Variants, WrappingRange,
};
#[cfg(feature = "nightly")]
mod ty;
#[cfg(feature = "nightly")]
pub use ty::{FIRST_VARIANT, FieldIdx, Layout, TyAbiInterface, TyAndLayout, VariantIdx};
// A variant is absent if it's uninhabited and only has ZST fields.
// Present uninhabited variants only require space for their fields,
// but *not* an encoding of the discriminant (e.g., a tag value).
// See issue #49298 for more details on the need to leave space
// for non-ZST uninhabited data (mostly partial initialization).
fn absent<'a, FieldIdx, VariantIdx, F>(fields: &IndexSlice<FieldIdx, F>) -> bool
where
FieldIdx: Idx,
VariantIdx: Idx,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug,
{
let uninhabited = fields.iter().any(|f| f.is_uninhabited());
// We cannot ignore alignment; that might lead us to entirely discard a variant and
// produce an enum that is less aligned than it should be!
let is_1zst = fields.iter().all(|f| f.is_1zst());
uninhabited && is_1zst
}
/// Determines towards which end of a struct layout optimizations will try to place the best niches.
enum NicheBias {
Start,
End,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum LayoutCalculatorError<F> {
/// An unsized type was found in a location where a sized type was expected.
///
/// This is not always a compile error, for example if there is a `[T]: Sized`
/// bound in a where clause.
///
/// Contains the field that was unexpectedly unsized.
UnexpectedUnsized(F),
/// A type was too large for the target platform.
SizeOverflow,
/// A union had no fields.
EmptyUnion,
/// The fields or variants have irreconcilable reprs
ReprConflict,
}
impl<F> LayoutCalculatorError<F> {
pub fn without_payload(&self) -> LayoutCalculatorError<()> {
match self {
LayoutCalculatorError::UnexpectedUnsized(_) => {
LayoutCalculatorError::UnexpectedUnsized(())
}
LayoutCalculatorError::SizeOverflow => LayoutCalculatorError::SizeOverflow,
LayoutCalculatorError::EmptyUnion => LayoutCalculatorError::EmptyUnion,
LayoutCalculatorError::ReprConflict => LayoutCalculatorError::ReprConflict,
}
}
/// Format an untranslated diagnostic for this type
///
/// Intended for use by rust-analyzer, as neither it nor `rustc_abi` depend on fluent infra.
pub fn fallback_fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
LayoutCalculatorError::UnexpectedUnsized(_) => {
"an unsized type was found where a sized type was expected"
}
LayoutCalculatorError::SizeOverflow => "size overflow",
LayoutCalculatorError::EmptyUnion => "type is a union with no fields",
LayoutCalculatorError::ReprConflict => "type has an invalid repr",
})
}
}
type LayoutCalculatorResult<FieldIdx, VariantIdx, F> =
Result<LayoutData<FieldIdx, VariantIdx>, LayoutCalculatorError<F>>;
#[derive(Clone, Copy, Debug)]
pub struct LayoutCalculator<Cx> {
pub cx: Cx,
}
impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
pub fn new(cx: Cx) -> Self {
Self { cx }
}
pub fn scalar_pair<FieldIdx: Idx, VariantIdx: Idx>(
&self,
a: Scalar,
b: Scalar,
) -> LayoutData<FieldIdx, VariantIdx> {
let dl = self.cx.data_layout();
let b_align = b.align(dl);
let align = a.align(dl).max(b_align).max(dl.aggregate_align);
let b_offset = a.size(dl).align_to(b_align.abi);
let size = (b_offset + b.size(dl)).align_to(align.abi);
// HACK(nox): We iter on `b` and then `a` because `max_by_key`
// returns the last maximum.
let largest_niche = Niche::from_scalar(dl, b_offset, b)
.into_iter()
.chain(Niche::from_scalar(dl, Size::ZERO, a))
.max_by_key(|niche| niche.available(dl));
LayoutData {
variants: Variants::Single { index: VariantIdx::new(0) },
fields: FieldsShape::Arbitrary {
offsets: [Size::ZERO, b_offset].into(),
memory_index: [0, 1].into(),
},
abi: Abi::ScalarPair(a, b),
largest_niche,
align,
size,
max_repr_align: None,
unadjusted_abi_align: align.abi,
}
}
pub fn univariant<
'a,
FieldIdx: Idx,
VariantIdx: Idx,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug + Copy,
>(
&self,
fields: &IndexSlice<FieldIdx, F>,
repr: &ReprOptions,
kind: StructKind,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
let dl = self.cx.data_layout();
let layout = self.univariant_biased(fields, repr, kind, NicheBias::Start);
// Enums prefer niches close to the beginning or the end of the variants so that other
// (smaller) data-carrying variants can be packed into the space after/before the niche.
// If the default field ordering does not give us a niche at the front then we do a second
// run and bias niches to the right and then check which one is closer to one of the
// struct's edges.
if let Ok(layout) = &layout {
// Don't try to calculate an end-biased layout for unsizable structs,
// otherwise we could end up with different layouts for
// Foo<Type> and Foo<dyn Trait> which would break unsizing.
if !matches!(kind, StructKind::MaybeUnsized) {
if let Some(niche) = layout.largest_niche {
let head_space = niche.offset.bytes();
let niche_len = niche.value.size(dl).bytes();
let tail_space = layout.size.bytes() - head_space - niche_len;
// This may end up doing redundant work if the niche is already in the last
// field (e.g. a trailing bool) and there is tail padding. But it's non-trivial
// to get the unpadded size so we try anyway.
if fields.len() > 1 && head_space != 0 && tail_space > 0 {
let alt_layout = self
.univariant_biased(fields, repr, kind, NicheBias::End)
.expect("alt layout should always work");
let alt_niche = alt_layout
.largest_niche
.expect("alt layout should have a niche like the regular one");
let alt_head_space = alt_niche.offset.bytes();
let alt_niche_len = alt_niche.value.size(dl).bytes();
let alt_tail_space =
alt_layout.size.bytes() - alt_head_space - alt_niche_len;
debug_assert_eq!(layout.size.bytes(), alt_layout.size.bytes());
let prefer_alt_layout =
alt_head_space > head_space && alt_head_space > tail_space;
debug!(
"sz: {}, default_niche_at: {}+{}, default_tail_space: {}, alt_niche_at/head_space: {}+{}, alt_tail: {}, num_fields: {}, better: {}\n\
layout: {}\n\
alt_layout: {}\n",
layout.size.bytes(),
head_space,
niche_len,
tail_space,
alt_head_space,
alt_niche_len,
alt_tail_space,
layout.fields.count(),
prefer_alt_layout,
self.format_field_niches(layout, fields),
self.format_field_niches(&alt_layout, fields),
);
if prefer_alt_layout {
return Ok(alt_layout);
}
}
}
}
}
layout
}
pub fn layout_of_never_type<FieldIdx: Idx, VariantIdx: Idx>(
&self,
) -> LayoutData<FieldIdx, VariantIdx> {
let dl = self.cx.data_layout();
LayoutData {
variants: Variants::Single { index: VariantIdx::new(0) },
fields: FieldsShape::Primitive,
abi: Abi::Uninhabited,
largest_niche: None,
align: dl.i8_align,
size: Size::ZERO,
max_repr_align: None,
unadjusted_abi_align: dl.i8_align.abi,
}
}
pub fn layout_of_struct_or_enum<
'a,
FieldIdx: Idx,
VariantIdx: Idx,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug + Copy,
>(
&self,
repr: &ReprOptions,
variants: &IndexSlice<VariantIdx, IndexVec<FieldIdx, F>>,
is_enum: bool,
is_unsafe_cell: bool,
scalar_valid_range: (Bound<u128>, Bound<u128>),
discr_range_of_repr: impl Fn(i128, i128) -> (Integer, bool),
discriminants: impl Iterator<Item = (VariantIdx, i128)>,
dont_niche_optimize_enum: bool,
always_sized: bool,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
let (present_first, present_second) = {
let mut present_variants = variants
.iter_enumerated()
.filter_map(|(i, v)| if !repr.c() && absent(v) { None } else { Some(i) });
(present_variants.next(), present_variants.next())
};
let present_first = match present_first {
Some(present_first) => present_first,
// Uninhabited because it has no variants, or only absent ones.
None if is_enum => {
return Ok(self.layout_of_never_type());
}
// If it's a struct, still compute a layout so that we can still compute the
// field offsets.
None => VariantIdx::new(0),
};
// take the struct path if it is an actual struct
if !is_enum ||
// or for optimizing univariant enums
(present_second.is_none() && !repr.inhibit_enum_layout_opt())
{
self.layout_of_struct(
repr,
variants,
is_enum,
is_unsafe_cell,
scalar_valid_range,
always_sized,
present_first,
)
} else {
// At this point, we have handled all unions and
// structs. (We have also handled univariant enums
// that allow representation optimization.)
assert!(is_enum);
self.layout_of_enum(
repr,
variants,
discr_range_of_repr,
discriminants,
dont_niche_optimize_enum,
)
}
}
pub fn layout_of_union<
'a,
FieldIdx: Idx,
VariantIdx: Idx,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug + Copy,
>(
&self,
repr: &ReprOptions,
variants: &IndexSlice<VariantIdx, IndexVec<FieldIdx, F>>,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
let dl = self.cx.data_layout();
let mut align = if repr.pack.is_some() { dl.i8_align } else { dl.aggregate_align };
let mut max_repr_align = repr.align;
// If all the non-ZST fields have the same ABI and union ABI optimizations aren't
// disabled, we can use that common ABI for the union as a whole.
struct AbiMismatch;
let mut common_non_zst_abi_and_align = if repr.inhibits_union_abi_opt() {
// Can't optimize
Err(AbiMismatch)
} else {
Ok(None)
};
let mut size = Size::ZERO;
let only_variant_idx = VariantIdx::new(0);
let only_variant = &variants[only_variant_idx];
for field in only_variant {
if field.is_unsized() {
return Err(LayoutCalculatorError::UnexpectedUnsized(*field));
}
align = align.max(field.align);
max_repr_align = max_repr_align.max(field.max_repr_align);
size = cmp::max(size, field.size);
if field.is_zst() {
// Nothing more to do for ZST fields
continue;
}
if let Ok(common) = common_non_zst_abi_and_align {
// Discard valid range information and allow undef
let field_abi = field.abi.to_union();
if let Some((common_abi, common_align)) = common {
if common_abi != field_abi {
// Different fields have different ABI: disable opt
common_non_zst_abi_and_align = Err(AbiMismatch);
} else {
// Fields with the same non-Aggregate ABI should also
// have the same alignment
if !matches!(common_abi, Abi::Aggregate { .. }) {
assert_eq!(
common_align, field.align.abi,
"non-Aggregate field with matching ABI but differing alignment"
);
}
}
} else {
// First non-ZST field: record its ABI and alignment
common_non_zst_abi_and_align = Ok(Some((field_abi, field.align.abi)));
}
}
}
if let Some(pack) = repr.pack {
align = align.min(AbiAndPrefAlign::new(pack));
}
// The unadjusted ABI alignment does not include repr(align), but does include repr(pack).
// See documentation on `LayoutS::unadjusted_abi_align`.
let unadjusted_abi_align = align.abi;
if let Some(repr_align) = repr.align {
align = align.max(AbiAndPrefAlign::new(repr_align));
}
// `align` must not be modified after this, or `unadjusted_abi_align` could be inaccurate.
let align = align;
// If all non-ZST fields have the same ABI, we may forward that ABI
// for the union as a whole, unless otherwise inhibited.
let abi = match common_non_zst_abi_and_align {
Err(AbiMismatch) | Ok(None) => Abi::Aggregate { sized: true },
Ok(Some((abi, _))) => {
if abi.inherent_align(dl).map(|a| a.abi) != Some(align.abi) {
// Mismatched alignment (e.g. union is #[repr(packed)]): disable opt
Abi::Aggregate { sized: true }
} else {
abi
}
}
};
let Some(union_field_count) = NonZeroUsize::new(only_variant.len()) else {
return Err(LayoutCalculatorError::EmptyUnion);
};
Ok(LayoutData {
variants: Variants::Single { index: only_variant_idx },
fields: FieldsShape::Union(union_field_count),
abi,
largest_niche: None,
align,
size: size.align_to(align.abi),
max_repr_align,
unadjusted_abi_align,
})
}
/// single-variant enums are just structs, if you think about it
fn layout_of_struct<
'a,
FieldIdx: Idx,
VariantIdx: Idx,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug + Copy,
>(
&self,
repr: &ReprOptions,
variants: &IndexSlice<VariantIdx, IndexVec<FieldIdx, F>>,
is_enum: bool,
is_unsafe_cell: bool,
scalar_valid_range: (Bound<u128>, Bound<u128>),
always_sized: bool,
present_first: VariantIdx,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
// Struct, or univariant enum equivalent to a struct.
// (Typechecking will reject discriminant-sizing attrs.)
let dl = self.cx.data_layout();
let v = present_first;
let kind = if is_enum || variants[v].is_empty() || always_sized {
StructKind::AlwaysSized
} else {
StructKind::MaybeUnsized
};
let mut st = self.univariant(&variants[v], repr, kind)?;
st.variants = Variants::Single { index: v };
if is_unsafe_cell {
let hide_niches = |scalar: &mut _| match scalar {
Scalar::Initialized { value, valid_range } => {
*valid_range = WrappingRange::full(value.size(dl))
}
// Already doesn't have any niches
Scalar::Union { .. } => {}
};
match &mut st.abi {
Abi::Uninhabited => {}
Abi::Scalar(scalar) => hide_niches(scalar),
Abi::ScalarPair(a, b) => {
hide_niches(a);
hide_niches(b);
}
Abi::Vector { element, count: _ } => hide_niches(element),
Abi::Aggregate { sized: _ } => {}
}
st.largest_niche = None;
return Ok(st);
}
let (start, end) = scalar_valid_range;
match st.abi {
Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => {
// Enlarging validity ranges would result in missed
// optimizations, *not* wrongly assuming the inner
// value is valid. e.g. unions already enlarge validity ranges,
// because the values may be uninitialized.
//
// Because of that we only check that the start and end
// of the range is representable with this scalar type.
let max_value = scalar.size(dl).unsigned_int_max();
if let Bound::Included(start) = start {
// FIXME(eddyb) this might be incorrect - it doesn't
// account for wrap-around (end < start) ranges.
assert!(start <= max_value, "{start} > {max_value}");
scalar.valid_range_mut().start = start;
}
if let Bound::Included(end) = end {
// FIXME(eddyb) this might be incorrect - it doesn't
// account for wrap-around (end < start) ranges.
assert!(end <= max_value, "{end} > {max_value}");
scalar.valid_range_mut().end = end;
}
// Update `largest_niche` if we have introduced a larger niche.
let niche = Niche::from_scalar(dl, Size::ZERO, *scalar);
if let Some(niche) = niche {
match st.largest_niche {
Some(largest_niche) => {
// Replace the existing niche even if they're equal,
// because this one is at a lower offset.
if largest_niche.available(dl) <= niche.available(dl) {
st.largest_niche = Some(niche);
}
}
None => st.largest_niche = Some(niche),
}
}
}
_ => assert!(
start == Bound::Unbounded && end == Bound::Unbounded,
"nonscalar layout for layout_scalar_valid_range type: {st:#?}",
),
}
Ok(st)
}
fn layout_of_enum<
'a,
FieldIdx: Idx,
VariantIdx: Idx,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug + Copy,
>(
&self,
repr: &ReprOptions,
variants: &IndexSlice<VariantIdx, IndexVec<FieldIdx, F>>,
discr_range_of_repr: impl Fn(i128, i128) -> (Integer, bool),
discriminants: impl Iterator<Item = (VariantIdx, i128)>,
dont_niche_optimize_enum: bool,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
// Until we've decided whether to use the tagged or
// niche filling LayoutS, we don't want to intern the
// variant layouts, so we can't store them in the
// overall LayoutS. Store the overall LayoutS
// and the variant LayoutSs here until then.
struct TmpLayout<FieldIdx: Idx, VariantIdx: Idx> {
layout: LayoutData<FieldIdx, VariantIdx>,
variants: IndexVec<VariantIdx, LayoutData<FieldIdx, VariantIdx>>,
}
let dl = self.cx.data_layout();
// bail if the enum has an incoherent repr that cannot be computed
if repr.packed() {
return Err(LayoutCalculatorError::ReprConflict);
}
let calculate_niche_filling_layout = || -> Option<TmpLayout<FieldIdx, VariantIdx>> {
if dont_niche_optimize_enum {
return None;
}
if variants.len() < 2 {
return None;
}
let mut align = dl.aggregate_align;
let mut max_repr_align = repr.align;
let mut unadjusted_abi_align = align.abi;
let mut variant_layouts = variants
.iter_enumerated()
.map(|(j, v)| {
let mut st = self.univariant(v, repr, StructKind::AlwaysSized).ok()?;
st.variants = Variants::Single { index: j };
align = align.max(st.align);
max_repr_align = max_repr_align.max(st.max_repr_align);
unadjusted_abi_align = unadjusted_abi_align.max(st.unadjusted_abi_align);
Some(st)
})
.collect::<Option<IndexVec<VariantIdx, _>>>()?;
let largest_variant_index = variant_layouts
.iter_enumerated()
.max_by_key(|(_i, layout)| layout.size.bytes())
.map(|(i, _layout)| i)?;
let all_indices = variants.indices();
let needs_disc =
|index: VariantIdx| index != largest_variant_index && !absent(&variants[index]);
let niche_variants = all_indices.clone().find(|v| needs_disc(*v)).unwrap()
..=all_indices.rev().find(|v| needs_disc(*v)).unwrap();
let count =
(niche_variants.end().index() as u128 - niche_variants.start().index() as u128) + 1;
// Use the largest niche in the largest variant.
let niche = variant_layouts[largest_variant_index].largest_niche?;
let (niche_start, niche_scalar) = niche.reserve(dl, count)?;
let niche_offset = niche.offset;
let niche_size = niche.value.size(dl);
let size = variant_layouts[largest_variant_index].size.align_to(align.abi);
let all_variants_fit = variant_layouts.iter_enumerated_mut().all(|(i, layout)| {
if i == largest_variant_index {
return true;
}
layout.largest_niche = None;
if layout.size <= niche_offset {
// This variant will fit before the niche.
return true;
}
// Determine if it'll fit after the niche.
let this_align = layout.align.abi;
let this_offset = (niche_offset + niche_size).align_to(this_align);
if this_offset + layout.size > size {
return false;
}
// It'll fit, but we need to make some adjustments.
match layout.fields {
FieldsShape::Arbitrary { ref mut offsets, .. } => {
for offset in offsets.iter_mut() {
*offset += this_offset;
}
}
FieldsShape::Primitive | FieldsShape::Array { .. } | FieldsShape::Union(..) => {
panic!("Layout of fields should be Arbitrary for variants")
}
}
// It can't be a Scalar or ScalarPair because the offset isn't 0.
if !layout.abi.is_uninhabited() {
layout.abi = Abi::Aggregate { sized: true };
}
layout.size += this_offset;
true
});
if !all_variants_fit {
return None;
}
let largest_niche = Niche::from_scalar(dl, niche_offset, niche_scalar);
let others_zst = variant_layouts
.iter_enumerated()
.all(|(i, layout)| i == largest_variant_index || layout.size == Size::ZERO);
let same_size = size == variant_layouts[largest_variant_index].size;
let same_align = align == variant_layouts[largest_variant_index].align;
let abi = if variant_layouts.iter().all(|v| v.abi.is_uninhabited()) {
Abi::Uninhabited
} else if same_size && same_align && others_zst {
match variant_layouts[largest_variant_index].abi {
// When the total alignment and size match, we can use the
// same ABI as the scalar variant with the reserved niche.
Abi::Scalar(_) => Abi::Scalar(niche_scalar),
Abi::ScalarPair(first, second) => {
// Only the niche is guaranteed to be initialised,
// so use union layouts for the other primitive.
if niche_offset == Size::ZERO {
Abi::ScalarPair(niche_scalar, second.to_union())
} else {
Abi::ScalarPair(first.to_union(), niche_scalar)
}
}
_ => Abi::Aggregate { sized: true },
}
} else {
Abi::Aggregate { sized: true }
};
let layout = LayoutData {
variants: Variants::Multiple {
tag: niche_scalar,
tag_encoding: TagEncoding::Niche {
untagged_variant: largest_variant_index,
niche_variants,
niche_start,
},
tag_field: 0,
variants: IndexVec::new(),
},
fields: FieldsShape::Arbitrary {
offsets: [niche_offset].into(),
memory_index: [0].into(),
},
abi,
largest_niche,
size,
align,
max_repr_align,
unadjusted_abi_align,
};
Some(TmpLayout { layout, variants: variant_layouts })
};
let niche_filling_layout = calculate_niche_filling_layout();
let (mut min, mut max) = (i128::MAX, i128::MIN);
let discr_type = repr.discr_type();
let bits = Integer::from_attr(dl, discr_type).size().bits();
for (i, mut val) in discriminants {
if !repr.c() && variants[i].iter().any(|f| f.is_uninhabited()) {
continue;
}
if discr_type.is_signed() {
// sign extend the raw representation to be an i128
val = (val << (128 - bits)) >> (128 - bits);
}
if val < min {
min = val;
}
if val > max {
max = val;
}
}
// We might have no inhabited variants, so pretend there's at least one.
if (min, max) == (i128::MAX, i128::MIN) {
min = 0;
max = 0;
}
assert!(min <= max, "discriminant range is {min}...{max}");
let (min_ity, signed) = discr_range_of_repr(min, max); //Integer::repr_discr(tcx, ty, &repr, min, max);
let mut align = dl.aggregate_align;
let mut max_repr_align = repr.align;
let mut unadjusted_abi_align = align.abi;
let mut size = Size::ZERO;
// We're interested in the smallest alignment, so start large.
let mut start_align = Align::from_bytes(256).unwrap();
assert_eq!(Integer::for_align(dl, start_align), None);
// repr(C) on an enum tells us to make a (tag, union) layout,
// so we need to grow the prefix alignment to be at least
// the alignment of the union. (This value is used both for
// determining the alignment of the overall enum, and the
// determining the alignment of the payload after the tag.)
let mut prefix_align = min_ity.align(dl).abi;
if repr.c() {
for fields in variants {
for field in fields {
prefix_align = prefix_align.max(field.align.abi);
}
}
}
// Create the set of structs that represent each variant.
let mut layout_variants = variants
.iter_enumerated()
.map(|(i, field_layouts)| {
let mut st = self.univariant(
field_layouts,
repr,
StructKind::Prefixed(min_ity.size(), prefix_align),
)?;
st.variants = Variants::Single { index: i };
// Find the first field we can't move later
// to make room for a larger discriminant.
for field_idx in st.fields.index_by_increasing_offset() {
let field = &field_layouts[FieldIdx::new(field_idx)];
if !field.is_1zst() {
start_align = start_align.min(field.align.abi);
break;
}
}
size = cmp::max(size, st.size);
align = align.max(st.align);
max_repr_align = max_repr_align.max(st.max_repr_align);
unadjusted_abi_align = unadjusted_abi_align.max(st.unadjusted_abi_align);
Ok(st)
})
.collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
// Align the maximum variant size to the largest alignment.
size = size.align_to(align.abi);
// FIXME(oli-obk): deduplicate and harden these checks
if size.bytes() >= dl.obj_size_bound() {
return Err(LayoutCalculatorError::SizeOverflow);
}
let typeck_ity = Integer::from_attr(dl, repr.discr_type());
if typeck_ity < min_ity {
// It is a bug if Layout decided on a greater discriminant size than typeck for
// some reason at this point (based on values discriminant can take on). Mostly
// because this discriminant will be loaded, and then stored into variable of
// type calculated by typeck. Consider such case (a bug): typeck decided on
// byte-sized discriminant, but layout thinks we need a 16-bit to store all
// discriminant values. That would be a bug, because then, in codegen, in order
// to store this 16-bit discriminant into 8-bit sized temporary some of the
// space necessary to represent would have to be discarded (or layout is wrong
// on thinking it needs 16 bits)
panic!(
"layout decided on a larger discriminant type ({min_ity:?}) than typeck ({typeck_ity:?})"
);
// However, it is fine to make discr type however large (as an optimisation)
// after this point – we’ll just truncate the value we load in codegen.
}
// Check to see if we should use a different type for the
// discriminant. We can safely use a type with the same size
// as the alignment of the first field of each variant.
// We increase the size of the discriminant to avoid LLVM copying
// padding when it doesn't need to. This normally causes unaligned
// load/stores and excessive memcpy/memset operations. By using a
// bigger integer size, LLVM can be sure about its contents and
// won't be so conservative.
// Use the initial field alignment
let mut ity = if repr.c() || repr.int.is_some() {
min_ity
} else {
Integer::for_align(dl, start_align).unwrap_or(min_ity)
};
// If the alignment is not larger than the chosen discriminant size,
// don't use the alignment as the final size.
if ity <= min_ity {
ity = min_ity;
} else {
// Patch up the variants' first few fields.
let old_ity_size = min_ity.size();
let new_ity_size = ity.size();
for variant in &mut layout_variants {
match variant.fields {
FieldsShape::Arbitrary { ref mut offsets, .. } => {
for i in offsets {
if *i <= old_ity_size {
assert_eq!(*i, old_ity_size);
*i = new_ity_size;
}
}
// We might be making the struct larger.
if variant.size <= old_ity_size {
variant.size = new_ity_size;
}
}
FieldsShape::Primitive | FieldsShape::Array { .. } | FieldsShape::Union(..) => {
panic!("encountered a non-arbitrary layout during enum layout")
}
}
}
}
let tag_mask = ity.size().unsigned_int_max();
let tag = Scalar::Initialized {
value: Primitive::Int(ity, signed),
valid_range: WrappingRange {
start: (min as u128 & tag_mask),
end: (max as u128 & tag_mask),
},
};
let mut abi = Abi::Aggregate { sized: true };
if layout_variants.iter().all(|v| v.abi.is_uninhabited()) {
abi = Abi::Uninhabited;
} else if tag.size(dl) == size {
// Make sure we only use scalar layout when the enum is entirely its
// own tag (i.e. it has no padding nor any non-ZST variant fields).
abi = Abi::Scalar(tag);
} else {
// Try to use a ScalarPair for all tagged enums.
// That's possible only if we can find a common primitive type for all variants.
let mut common_prim = None;
let mut common_prim_initialized_in_all_variants = true;
for (field_layouts, layout_variant) in iter::zip(variants, &layout_variants) {
let FieldsShape::Arbitrary { ref offsets, .. } = layout_variant.fields else {
panic!("encountered a non-arbitrary layout during enum layout");
};
// We skip *all* ZST here and later check if we are good in terms of alignment.
// This lets us handle some cases involving aligned ZST.
let mut fields = iter::zip(field_layouts, offsets).filter(|p| !p.0.is_zst());
let (field, offset) = match (fields.next(), fields.next()) {
(None, None) => {
common_prim_initialized_in_all_variants = false;
continue;
}
(Some(pair), None) => pair,
_ => {
common_prim = None;
break;
}
};
let prim = match field.abi {
Abi::Scalar(scalar) => {
common_prim_initialized_in_all_variants &=
matches!(scalar, Scalar::Initialized { .. });
scalar.primitive()
}
_ => {
common_prim = None;
break;
}
};
if let Some((old_prim, common_offset)) = common_prim {
// All variants must be at the same offset
if offset != common_offset {
common_prim = None;
break;
}
// This is pretty conservative. We could go fancier
// by realising that (u8, u8) could just cohabit with
// u16 or even u32.
let new_prim = match (old_prim, prim) {
// Allow all identical primitives.
(x, y) if x == y => x,
// Allow integers of the same size with differing signedness.
// We arbitrarily choose the signedness of the first variant.
(p @ Primitive::Int(x, _), Primitive::Int(y, _)) if x == y => p,
// Allow integers mixed with pointers of the same layout.
// We must represent this using a pointer, to avoid
// roundtripping pointers through ptrtoint/inttoptr.
(p @ Primitive::Pointer(_), i @ Primitive::Int(..))
| (i @ Primitive::Int(..), p @ Primitive::Pointer(_))
if p.size(dl) == i.size(dl) && p.align(dl) == i.align(dl) =>
{
p
}
_ => {
common_prim = None;
break;
}
};
// We may be updating the primitive here, for example from int->ptr.
common_prim = Some((new_prim, common_offset));
} else {
common_prim = Some((prim, offset));
}
}
if let Some((prim, offset)) = common_prim {
let prim_scalar = if common_prim_initialized_in_all_variants {
let size = prim.size(dl);
assert!(size.bits() <= 128);
Scalar::Initialized { value: prim, valid_range: WrappingRange::full(size) }
} else {
// Common prim might be uninit.
Scalar::Union { value: prim }
};
let pair = self.scalar_pair::<FieldIdx, VariantIdx>(tag, prim_scalar);
let pair_offsets = match pair.fields {
FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
assert_eq!(memory_index.raw, [0, 1]);
offsets
}
_ => panic!("encountered a non-arbitrary layout during enum layout"),
};
if pair_offsets[FieldIdx::new(0)] == Size::ZERO
&& pair_offsets[FieldIdx::new(1)] == *offset
&& align == pair.align
&& size == pair.size
{
// We can use `ScalarPair` only when it matches our
// already computed layout (including `#[repr(C)]`).
abi = pair.abi;
}
}
}
// If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the
// variants to ensure they are consistent. This is because a downcast is
// semantically a NOP, and thus should not affect layout.
if matches!(abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
for variant in &mut layout_variants {
// We only do this for variants with fields; the others are not accessed anyway.
// Also do not overwrite any already existing "clever" ABIs.
if variant.fields.count() > 0 && matches!(variant.abi, Abi::Aggregate { .. }) {
variant.abi = abi;
// Also need to bump up the size and alignment, so that the entire value fits
// in here.
variant.size = cmp::max(variant.size, size);
variant.align.abi = cmp::max(variant.align.abi, align.abi);
}
}
}
let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag);
let tagged_layout = LayoutData {
variants: Variants::Multiple {
tag,
tag_encoding: TagEncoding::Direct,
tag_field: 0,
variants: IndexVec::new(),
},
fields: FieldsShape::Arbitrary {
offsets: [Size::ZERO].into(),
memory_index: [0].into(),
},
largest_niche,
abi,
align,
size,
max_repr_align,
unadjusted_abi_align,
};
let tagged_layout = TmpLayout { layout: tagged_layout, variants: layout_variants };
let mut best_layout = match (tagged_layout, niche_filling_layout) {
(tl, Some(nl)) => {
// Pick the smaller layout; otherwise,
// pick the layout with the larger niche; otherwise,
// pick tagged as it has simpler codegen.
use cmp::Ordering::*;
let niche_size = |tmp_l: &TmpLayout<FieldIdx, VariantIdx>| {
tmp_l.layout.largest_niche.map_or(0, |n| n.available(dl))
};
match (tl.layout.size.cmp(&nl.layout.size), niche_size(&tl).cmp(&niche_size(&nl))) {
(Greater, _) => nl,
(Equal, Less) => nl,
_ => tl,
}
}
(tl, None) => tl,
};
// Now we can intern the variant layouts and store them in the enum layout.
best_layout.layout.variants = match best_layout.layout.variants {
Variants::Multiple { tag, tag_encoding, tag_field, .. } => {
Variants::Multiple { tag, tag_encoding, tag_field, variants: best_layout.variants }
}
Variants::Single { .. } => {
panic!("encountered a single-variant enum during multi-variant layout")
}
};
Ok(best_layout.layout)
}
fn univariant_biased<
'a,
FieldIdx: Idx,
VariantIdx: Idx,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug + Copy,
>(
&self,
fields: &IndexSlice<FieldIdx, F>,
repr: &ReprOptions,
kind: StructKind,
niche_bias: NicheBias,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
let dl = self.cx.data_layout();
let pack = repr.pack;
let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align };
let mut max_repr_align = repr.align;
let mut inverse_memory_index: IndexVec<u32, FieldIdx> = fields.indices().collect();
let optimize_field_order = !repr.inhibit_struct_field_reordering();
if optimize_field_order && fields.len() > 1 {
let end =
if let StructKind::MaybeUnsized = kind { fields.len() - 1 } else { fields.len() };
let optimizing = &mut inverse_memory_index.raw[..end];
let fields_excluding_tail = &fields.raw[..end];
// If `-Z randomize-layout` was enabled for the type definition we can shuffle
// the field ordering to try and catch some code making assumptions about layouts
// we don't guarantee.
if repr.can_randomize_type_layout() && cfg!(feature = "randomize") {
#[cfg(feature = "randomize")]
{
use rand::SeedableRng;
use rand::seq::SliceRandom;
// `ReprOptions.field_shuffle_seed` is a deterministic seed we can use to randomize field
// ordering.
let mut rng =
rand_xoshiro::Xoshiro128StarStar::seed_from_u64(repr.field_shuffle_seed);
// Shuffle the ordering of the fields.
optimizing.shuffle(&mut rng);
}
// Otherwise we just leave things alone and actually optimize the type's fields
} else {
// To allow unsizing `&Foo<Type>` -> `&Foo<dyn Trait>`, the layout of the struct must
// not depend on the layout of the tail.
let max_field_align =
fields_excluding_tail.iter().map(|f| f.align.abi.bytes()).max().unwrap_or(1);
let largest_niche_size = fields_excluding_tail
.iter()
.filter_map(|f| f.largest_niche)
.map(|n| n.available(dl))
.max()
.unwrap_or(0);
// Calculates a sort key to group fields by their alignment or possibly some
// size-derived pseudo-alignment.
let alignment_group_key = |layout: &F| {
// The two branches here return values that cannot be meaningfully compared with
// each other. However, we know that consistently for all executions of
// `alignment_group_key`, one or the other branch will be taken, so this is okay.
if let Some(pack) = pack {
// Return the packed alignment in bytes.
layout.align.abi.min(pack).bytes()
} else {
// Returns `log2(effective-align)`. The calculation assumes that size is an
// integer multiple of align, except for ZSTs.
let align = layout.align.abi.bytes();
let size = layout.size.bytes();
let niche_size = layout.largest_niche.map(|n| n.available(dl)).unwrap_or(0);
// Group [u8; 4] with align-4 or [u8; 6] with align-2 fields.
let size_as_align = align.max(size).trailing_zeros();
let size_as_align = if largest_niche_size > 0 {
match niche_bias {
// Given `A(u8, [u8; 16])` and `B(bool, [u8; 16])` we want to bump the
// array to the front in the first case (for aligned loads) but keep
// the bool in front in the second case for its niches.
NicheBias::Start => {
max_field_align.trailing_zeros().min(size_as_align)
}
// When moving niches towards the end of the struct then for
// A((u8, u8, u8, bool), (u8, bool, u8)) we want to keep the first tuple
// in the align-1 group because its bool can be moved closer to the end.
NicheBias::End if niche_size == largest_niche_size => {
align.trailing_zeros()
}
NicheBias::End => size_as_align,
}
} else {
size_as_align
};
size_as_align as u64
}
};
match kind {
StructKind::AlwaysSized | StructKind::MaybeUnsized => {
// Currently `LayoutS` only exposes a single niche so sorting is usually
// sufficient to get one niche into the preferred position. If it ever
// supported multiple niches then a more advanced pick-and-pack approach could
// provide better results. But even for the single-niche cache it's not
// optimal. E.g. for A(u32, (bool, u8), u16) it would be possible to move the
// bool to the front but it would require packing the tuple together with the
// u16 to build a 4-byte group so that the u32 can be placed after it without
// padding. This kind of packing can't be achieved by sorting.
optimizing.sort_by_key(|&x| {
let f = &fields[x];
let field_size = f.size.bytes();
let niche_size = f.largest_niche.map_or(0, |n| n.available(dl));
let niche_size_key = match niche_bias {
// large niche first
NicheBias::Start => !niche_size,
// large niche last
NicheBias::End => niche_size,
};
let inner_niche_offset_key = match niche_bias {
NicheBias::Start => f.largest_niche.map_or(0, |n| n.offset.bytes()),
NicheBias::End => f.largest_niche.map_or(0, |n| {
!(field_size - n.value.size(dl).bytes() - n.offset.bytes())
}),
};
(
// Then place largest alignments first.
cmp::Reverse(alignment_group_key(f)),
// Then prioritize niche placement within alignment group according to
// `niche_bias_start`.
niche_size_key,
// Then among fields with equally-sized niches prefer the ones
// closer to the start/end of the field.
inner_niche_offset_key,
)
});
}
StructKind::Prefixed(..) => {
// Sort in ascending alignment so that the layout stays optimal
// regardless of the prefix.
// And put the largest niche in an alignment group at the end
// so it can be used as discriminant in jagged enums
optimizing.sort_by_key(|&x| {
let f = &fields[x];
let niche_size = f.largest_niche.map_or(0, |n| n.available(dl));
(alignment_group_key(f), niche_size)
});
}
}
// FIXME(Kixiron): We can always shuffle fields within a given alignment class
// regardless of the status of `-Z randomize-layout`
}
}
// inverse_memory_index holds field indices by increasing memory offset.
// That is, if field 5 has offset 0, the first element of inverse_memory_index is 5.
// We now write field offsets to the corresponding offset slot;
// field 5 with offset 0 puts 0 in offsets[5].
// At the bottom of this function, we invert `inverse_memory_index` to
// produce `memory_index` (see `invert_mapping`).
let mut unsized_field = None::<&F>;
let mut offsets = IndexVec::from_elem(Size::ZERO, fields);
let mut offset = Size::ZERO;
let mut largest_niche = None;
let mut largest_niche_available = 0;
if let StructKind::Prefixed(prefix_size, prefix_align) = kind {
let prefix_align =
if let Some(pack) = pack { prefix_align.min(pack) } else { prefix_align };
align = align.max(AbiAndPrefAlign::new(prefix_align));
offset = prefix_size.align_to(prefix_align);
}
for &i in &inverse_memory_index {
let field = &fields[i];
if let Some(unsized_field) = unsized_field {
return Err(LayoutCalculatorError::UnexpectedUnsized(*unsized_field));
}
if field.is_unsized() {
if let StructKind::MaybeUnsized = kind {
unsized_field = Some(field);
} else {
return Err(LayoutCalculatorError::UnexpectedUnsized(*field));
}
}
// Invariant: offset < dl.obj_size_bound() <= 1<<61
let field_align = if let Some(pack) = pack {
field.align.min(AbiAndPrefAlign::new(pack))
} else {
field.align
};
offset = offset.align_to(field_align.abi);
align = align.max(field_align);
max_repr_align = max_repr_align.max(field.max_repr_align);
debug!("univariant offset: {:?} field: {:#?}", offset, field);
offsets[i] = offset;
if let Some(mut niche) = field.largest_niche {
let available = niche.available(dl);
// Pick up larger niches.
let prefer_new_niche = match niche_bias {
NicheBias::Start => available > largest_niche_available,
// if there are several niches of the same size then pick the last one
NicheBias::End => available >= largest_niche_available,
};
if prefer_new_niche {
largest_niche_available = available;
niche.offset += offset;
largest_niche = Some(niche);
}
}
offset =
offset.checked_add(field.size, dl).ok_or(LayoutCalculatorError::SizeOverflow)?;
}
// The unadjusted ABI alignment does not include repr(align), but does include repr(pack).
// See documentation on `LayoutS::unadjusted_abi_align`.
let unadjusted_abi_align = align.abi;
if let Some(repr_align) = repr.align {
align = align.max(AbiAndPrefAlign::new(repr_align));
}
// `align` must not be modified after this point, or `unadjusted_abi_align` could be inaccurate.
let align = align;
debug!("univariant min_size: {:?}", offset);
let min_size = offset;
// As stated above, inverse_memory_index holds field indices by increasing offset.
// This makes it an already-sorted view of the offsets vec.
// To invert it, consider:
// If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0.
// Field 5 would be the first element, so memory_index is i:
// Note: if we didn't optimize, it's already right.
let memory_index = if optimize_field_order {
inverse_memory_index.invert_bijective_mapping()
} else {
debug_assert!(inverse_memory_index.iter().copied().eq(fields.indices()));
inverse_memory_index.into_iter().map(|it| it.index() as u32).collect()
};
let size = min_size.align_to(align.abi);
// FIXME(oli-obk): deduplicate and harden these checks
if size.bytes() >= dl.obj_size_bound() {
return Err(LayoutCalculatorError::SizeOverflow);
}
let mut layout_of_single_non_zst_field = None;
let sized = unsized_field.is_none();
let mut abi = Abi::Aggregate { sized };
let optimize_abi = !repr.inhibit_newtype_abi_optimization();
// Try to make this a Scalar/ScalarPair.
if sized && size.bytes() > 0 {
// We skip *all* ZST here and later check if we are good in terms of alignment.
// This lets us handle some cases involving aligned ZST.
let mut non_zst_fields = fields.iter_enumerated().filter(|&(_, f)| !f.is_zst());
match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) {
// We have exactly one non-ZST field.
(Some((i, field)), None, None) => {
layout_of_single_non_zst_field = Some(field);
// Field fills the struct and it has a scalar or scalar pair ABI.
if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size
{
match field.abi {
// For plain scalars, or vectors of them, we can't unpack
// newtypes for `#[repr(C)]`, as that affects C ABIs.
Abi::Scalar(_) | Abi::Vector { .. } if optimize_abi => {
abi = field.abi;
}
// But scalar pairs are Rust-specific and get
// treated as aggregates by C ABIs anyway.
Abi::ScalarPair(..) => {
abi = field.abi;
}
_ => {}
}
}
}
// Two non-ZST fields, and they're both scalars.
(Some((i, a)), Some((j, b)), None) => {
match (a.abi, b.abi) {
(Abi::Scalar(a), Abi::Scalar(b)) => {
// Order by the memory placement, not source order.
let ((i, a), (j, b)) = if offsets[i] < offsets[j] {
((i, a), (j, b))
} else {
((j, b), (i, a))
};
let pair = self.scalar_pair::<FieldIdx, VariantIdx>(a, b);
let pair_offsets = match pair.fields {
FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
assert_eq!(memory_index.raw, [0, 1]);
offsets
}
FieldsShape::Primitive
| FieldsShape::Array { .. }
| FieldsShape::Union(..) => {
panic!("encountered a non-arbitrary layout during enum layout")
}
};
if offsets[i] == pair_offsets[FieldIdx::new(0)]
&& offsets[j] == pair_offsets[FieldIdx::new(1)]
&& align == pair.align
&& size == pair.size
{
// We can use `ScalarPair` only when it matches our
// already computed layout (including `#[repr(C)]`).
abi = pair.abi;
}
}
_ => {}
}
}
_ => {}
}
}
if fields.iter().any(|f| f.abi.is_uninhabited()) {
abi = Abi::Uninhabited;
}
let unadjusted_abi_align = if repr.transparent() {
match layout_of_single_non_zst_field {
Some(l) => l.unadjusted_abi_align,
None => {
// `repr(transparent)` with all ZST fields.
align.abi
}
}
} else {
unadjusted_abi_align
};
Ok(LayoutData {
variants: Variants::Single { index: VariantIdx::new(0) },
fields: FieldsShape::Arbitrary { offsets, memory_index },
abi,
largest_niche,
align,
size,
max_repr_align,
unadjusted_abi_align,
})
}
fn format_field_niches<
'a,
FieldIdx: Idx,
VariantIdx: Idx,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug,
>(
&self,
layout: &LayoutData<FieldIdx, VariantIdx>,
fields: &IndexSlice<FieldIdx, F>,
) -> String {
let dl = self.cx.data_layout();
let mut s = String::new();
for i in layout.fields.index_by_increasing_offset() {
let offset = layout.fields.offset(i);
let f = &fields[FieldIdx::new(i)];
write!(s, "[o{}a{}s{}", offset.bytes(), f.align.abi.bytes(), f.size.bytes()).unwrap();
if let Some(n) = f.largest_niche {
write!(
s,
" n{}b{}s{}",
n.offset.bytes(),
n.available(dl).ilog2(),
n.value.size(dl).bytes()
)
.unwrap();
}
write!(s, "] ").unwrap();
}
s
}
}