std/sys/pal/unix/rand.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
pub fn hashmap_random_keys() -> (u64, u64) {
const KEY_LEN: usize = core::mem::size_of::<u64>();
let mut v = [0u8; KEY_LEN * 2];
if let Err(err) = read(&mut v) {
panic!("failed to retrieve random hash map seed: {err}");
}
let key1 = v[0..KEY_LEN].try_into().unwrap();
let key2 = v[KEY_LEN..].try_into().unwrap();
(u64::from_ne_bytes(key1), u64::from_ne_bytes(key2))
}
cfg_if::cfg_if! {
if #[cfg(any(
target_vendor = "apple",
target_os = "openbsd",
target_os = "emscripten",
target_os = "vita",
all(target_os = "netbsd", not(netbsd10)),
target_os = "fuchsia",
target_os = "vxworks",
))] {
// Some systems have a syscall that directly retrieves random data.
// If that is guaranteed to be available, use it.
use imp::syscall as read;
} else {
// Otherwise, try the syscall to see if it exists only on some systems
// and fall back to reading from the random device otherwise.
fn read(bytes: &mut [u8]) -> crate::io::Result<()> {
use crate::fs::File;
use crate::io::Read;
use crate::sync::OnceLock;
#[cfg(any(
target_os = "linux",
target_os = "android",
target_os = "espidf",
target_os = "horizon",
target_os = "freebsd",
target_os = "dragonfly",
target_os = "solaris",
target_os = "illumos",
netbsd10,
))]
if let Some(res) = imp::syscall(bytes) {
return res;
}
const PATH: &'static str = if cfg!(target_os = "redox") {
"/scheme/rand"
} else {
"/dev/urandom"
};
static FILE: OnceLock<File> = OnceLock::new();
FILE.get_or_try_init(|| File::open(PATH))?.read_exact(bytes)
}
}
}
// All these systems a `getrandom` syscall.
//
// It is not guaranteed to be available, so return None to fallback to the file
// implementation.
#[cfg(any(
target_os = "linux",
target_os = "android",
target_os = "espidf",
target_os = "horizon",
target_os = "freebsd",
target_os = "dragonfly",
target_os = "solaris",
target_os = "illumos",
netbsd10,
))]
mod imp {
use crate::io::{Error, Result};
use crate::sync::atomic::{AtomicBool, Ordering};
use crate::sys::os::errno;
#[cfg(any(target_os = "linux", target_os = "android"))]
fn getrandom(buf: &mut [u8]) -> libc::ssize_t {
use crate::sys::weak::syscall;
// A weak symbol allows interposition, e.g. for perf measurements that want to
// disable randomness for consistency. Otherwise, we'll try a raw syscall.
// (`getrandom` was added in glibc 2.25, musl 1.1.20, android API level 28)
syscall! {
fn getrandom(
buffer: *mut libc::c_void,
length: libc::size_t,
flags: libc::c_uint
) -> libc::ssize_t
}
// This provides the best quality random numbers available at the given moment
// without ever blocking, and is preferable to falling back to /dev/urandom.
static GRND_INSECURE_AVAILABLE: AtomicBool = AtomicBool::new(true);
if GRND_INSECURE_AVAILABLE.load(Ordering::Relaxed) {
let ret = unsafe { getrandom(buf.as_mut_ptr().cast(), buf.len(), libc::GRND_INSECURE) };
if ret == -1 && errno() as libc::c_int == libc::EINVAL {
GRND_INSECURE_AVAILABLE.store(false, Ordering::Relaxed);
} else {
return ret;
}
}
unsafe { getrandom(buf.as_mut_ptr().cast(), buf.len(), libc::GRND_NONBLOCK) }
}
#[cfg(any(
target_os = "dragonfly",
target_os = "espidf",
target_os = "horizon",
target_os = "freebsd",
netbsd10,
target_os = "illumos",
target_os = "solaris"
))]
fn getrandom(buf: &mut [u8]) -> libc::ssize_t {
unsafe { libc::getrandom(buf.as_mut_ptr().cast(), buf.len(), 0) }
}
pub fn syscall(v: &mut [u8]) -> Option<Result<()>> {
static GETRANDOM_UNAVAILABLE: AtomicBool = AtomicBool::new(false);
if GETRANDOM_UNAVAILABLE.load(Ordering::Relaxed) {
return None;
}
let mut read = 0;
while read < v.len() {
let result = getrandom(&mut v[read..]);
if result == -1 {
let err = errno() as libc::c_int;
if err == libc::EINTR {
continue;
} else if err == libc::ENOSYS || err == libc::EPERM {
// `getrandom` is not supported on the current system.
//
// Also fall back in case it is disabled by something like
// seccomp or inside of docker.
//
// If the `getrandom` syscall is not implemented in the current kernel version it should return an
// `ENOSYS` error. Docker also blocks the whole syscall inside unprivileged containers, and
// returns `EPERM` (instead of `ENOSYS`) when a program tries to invoke the syscall. Because of
// that we need to check for *both* `ENOSYS` and `EPERM`.
//
// Note that Docker's behavior is breaking other projects (notably glibc), so they're planning
// to update their filtering to return `ENOSYS` in a future release:
//
// https://github.com/moby/moby/issues/42680
//
GETRANDOM_UNAVAILABLE.store(true, Ordering::Relaxed);
return None;
} else if err == libc::EAGAIN {
// getrandom has failed because it would have blocked as the
// non-blocking pool (urandom) has not been initialized in
// the kernel yet due to a lack of entropy. Fallback to
// reading from `/dev/urandom` which will return potentially
// insecure random data to avoid blocking applications which
// could depend on this call without ever knowing they do and
// don't have a work around.
return None;
} else {
return Some(Err(Error::from_raw_os_error(err)));
}
} else {
read += result as usize;
}
}
Some(Ok(()))
}
}
#[cfg(any(
target_os = "macos", // Supported since macOS 10.12+.
target_os = "openbsd",
target_os = "emscripten",
target_os = "vita",
))]
mod imp {
use crate::io::{Error, Result};
pub fn syscall(v: &mut [u8]) -> Result<()> {
// getentropy(2) permits a maximum buffer size of 256 bytes
for s in v.chunks_mut(256) {
let ret = unsafe { libc::getentropy(s.as_mut_ptr().cast(), s.len()) };
if ret == -1 {
return Err(Error::last_os_error());
}
}
Ok(())
}
}
// On Apple platforms, `CCRandomGenerateBytes` and `SecRandomCopyBytes` simply
// call into `CCRandomCopyBytes` with `kCCRandomDefault`. `CCRandomCopyBytes`
// manages a CSPRNG which is seeded from the kernel's CSPRNG and which runs on
// its own thread accessed via GCD. This seems needlessly heavyweight for our purposes
// so we only use it when `getentropy` is blocked, which appears to be the case
// on all platforms except macOS (see #102643).
//
// `CCRandomGenerateBytes` is used instead of `SecRandomCopyBytes` because the former is accessible
// via `libSystem` (libc) while the other needs to link to `Security.framework`.
#[cfg(all(target_vendor = "apple", not(target_os = "macos")))]
mod imp {
use libc::size_t;
use crate::ffi::{c_int, c_void};
use crate::io::{Error, Result};
pub fn syscall(v: &mut [u8]) -> Result<()> {
extern "C" {
fn CCRandomGenerateBytes(bytes: *mut c_void, count: size_t) -> c_int;
}
let ret = unsafe { CCRandomGenerateBytes(v.as_mut_ptr().cast(), v.len()) };
if ret != -1 { Ok(()) } else { Err(Error::last_os_error()) }
}
}
// FIXME: once the 10.x release becomes the minimum, this can be dropped for simplification.
#[cfg(all(target_os = "netbsd", not(netbsd10)))]
mod imp {
use crate::io::{Error, Result};
use crate::ptr;
pub fn syscall(v: &mut [u8]) -> Result<()> {
let mib = [libc::CTL_KERN, libc::KERN_ARND];
// kern.arandom permits a maximum buffer size of 256 bytes
for s in v.chunks_mut(256) {
let mut s_len = s.len();
let ret = unsafe {
libc::sysctl(
mib.as_ptr(),
mib.len() as libc::c_uint,
s.as_mut_ptr() as *mut _,
&mut s_len,
ptr::null(),
0,
)
};
if ret == -1 {
return Err(Error::last_os_error());
} else if s_len != s.len() {
// FIXME(joboet): this can't actually happen, can it?
panic!("read less bytes than requested from kern.arandom");
}
}
Ok(())
}
}
#[cfg(target_os = "fuchsia")]
mod imp {
use crate::io::Result;
#[link(name = "zircon")]
extern "C" {
fn zx_cprng_draw(buffer: *mut u8, len: usize);
}
pub fn syscall(v: &mut [u8]) -> Result<()> {
unsafe { zx_cprng_draw(v.as_mut_ptr(), v.len()) };
Ok(())
}
}
#[cfg(target_os = "vxworks")]
mod imp {
use core::sync::atomic::AtomicBool;
use core::sync::atomic::Ordering::Relaxed;
use crate::io::{Error, Result};
pub fn syscall(v: &mut [u8]) -> Result<()> {
static RNG_INIT: AtomicBool = AtomicBool::new(false);
while !RNG_INIT.load(Relaxed) {
let ret = unsafe { libc::randSecure() };
if ret < 0 {
return Err(Error::last_os_error());
} else if ret > 0 {
RNG_INIT.store(true, Relaxed);
break;
}
unsafe { libc::usleep(10) };
}
let ret = unsafe {
libc::randABytes(v.as_mut_ptr() as *mut libc::c_uchar, v.len() as libc::c_int)
};
if ret >= 0 { Ok(()) } else { Err(Error::last_os_error()) }
}
}