core/iter/adapters/peekable.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
use crate::iter::adapters::SourceIter;
use crate::iter::{FusedIterator, TrustedLen};
use crate::ops::{ControlFlow, Try};
/// An iterator with a `peek()` that returns an optional reference to the next
/// element.
///
/// This `struct` is created by the [`peekable`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`peekable`]: Iterator::peekable
/// [`Iterator`]: trait.Iterator.html
#[derive(Clone, Debug)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_diagnostic_item = "IterPeekable"]
pub struct Peekable<I: Iterator> {
iter: I,
/// Remember a peeked value, even if it was None.
peeked: Option<Option<I::Item>>,
}
impl<I: Iterator> Peekable<I> {
pub(in crate::iter) fn new(iter: I) -> Peekable<I> {
Peekable { iter, peeked: None }
}
}
// Peekable must remember if a None has been seen in the `.peek()` method.
// It ensures that `.peek(); .peek();` or `.peek(); .next();` only advances the
// underlying iterator at most once. This does not by itself make the iterator
// fused.
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator> Iterator for Peekable<I> {
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<I::Item> {
match self.peeked.take() {
Some(v) => v,
None => self.iter.next(),
}
}
#[inline]
#[rustc_inherit_overflow_checks]
fn count(mut self) -> usize {
match self.peeked.take() {
Some(None) => 0,
Some(Some(_)) => 1 + self.iter.count(),
None => self.iter.count(),
}
}
#[inline]
fn nth(&mut self, n: usize) -> Option<I::Item> {
match self.peeked.take() {
Some(None) => None,
Some(v @ Some(_)) if n == 0 => v,
Some(Some(_)) => self.iter.nth(n - 1),
None => self.iter.nth(n),
}
}
#[inline]
fn last(mut self) -> Option<I::Item> {
let peek_opt = match self.peeked.take() {
Some(None) => return None,
Some(v) => v,
None => None,
};
self.iter.last().or(peek_opt)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let peek_len = match self.peeked {
Some(None) => return (0, Some(0)),
Some(Some(_)) => 1,
None => 0,
};
let (lo, hi) = self.iter.size_hint();
let lo = lo.saturating_add(peek_len);
let hi = match hi {
Some(x) => x.checked_add(peek_len),
None => None,
};
(lo, hi)
}
#[inline]
fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
where
Self: Sized,
F: FnMut(B, Self::Item) -> R,
R: Try<Output = B>,
{
let acc = match self.peeked.take() {
Some(None) => return try { init },
Some(Some(v)) => f(init, v)?,
None => init,
};
self.iter.try_fold(acc, f)
}
#[inline]
fn fold<Acc, Fold>(self, init: Acc, mut fold: Fold) -> Acc
where
Fold: FnMut(Acc, Self::Item) -> Acc,
{
let acc = match self.peeked {
Some(None) => return init,
Some(Some(v)) => fold(init, v),
None => init,
};
self.iter.fold(acc, fold)
}
}
#[stable(feature = "double_ended_peek_iterator", since = "1.38.0")]
impl<I> DoubleEndedIterator for Peekable<I>
where
I: DoubleEndedIterator,
{
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
match self.peeked.as_mut() {
Some(v @ Some(_)) => self.iter.next_back().or_else(|| v.take()),
Some(None) => None,
None => self.iter.next_back(),
}
}
#[inline]
fn try_rfold<B, F, R>(&mut self, init: B, mut f: F) -> R
where
Self: Sized,
F: FnMut(B, Self::Item) -> R,
R: Try<Output = B>,
{
match self.peeked.take() {
Some(None) => try { init },
Some(Some(v)) => match self.iter.try_rfold(init, &mut f).branch() {
ControlFlow::Continue(acc) => f(acc, v),
ControlFlow::Break(r) => {
self.peeked = Some(Some(v));
R::from_residual(r)
}
},
None => self.iter.try_rfold(init, f),
}
}
#[inline]
fn rfold<Acc, Fold>(self, init: Acc, mut fold: Fold) -> Acc
where
Fold: FnMut(Acc, Self::Item) -> Acc,
{
match self.peeked {
Some(None) => init,
Some(Some(v)) => {
let acc = self.iter.rfold(init, &mut fold);
fold(acc, v)
}
None => self.iter.rfold(init, fold),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: ExactSizeIterator> ExactSizeIterator for Peekable<I> {}
#[stable(feature = "fused", since = "1.26.0")]
impl<I: FusedIterator> FusedIterator for Peekable<I> {}
impl<I: Iterator> Peekable<I> {
/// Returns a reference to the next() value without advancing the iterator.
///
/// Like [`next`], if there is a value, it is wrapped in a `Some(T)`.
/// But if the iteration is over, `None` is returned.
///
/// [`next`]: Iterator::next
///
/// Because `peek()` returns a reference, and many iterators iterate over
/// references, there can be a possibly confusing situation where the
/// return value is a double reference. You can see this effect in the
/// examples below.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let xs = [1, 2, 3];
///
/// let mut iter = xs.iter().peekable();
///
/// // peek() lets us see into the future
/// assert_eq!(iter.peek(), Some(&&1));
/// assert_eq!(iter.next(), Some(&1));
///
/// assert_eq!(iter.next(), Some(&2));
///
/// // The iterator does not advance even if we `peek` multiple times
/// assert_eq!(iter.peek(), Some(&&3));
/// assert_eq!(iter.peek(), Some(&&3));
///
/// assert_eq!(iter.next(), Some(&3));
///
/// // After the iterator is finished, so is `peek()`
/// assert_eq!(iter.peek(), None);
/// assert_eq!(iter.next(), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn peek(&mut self) -> Option<&I::Item> {
let iter = &mut self.iter;
self.peeked.get_or_insert_with(|| iter.next()).as_ref()
}
/// Returns a mutable reference to the next() value without advancing the iterator.
///
/// Like [`next`], if there is a value, it is wrapped in a `Some(T)`.
/// But if the iteration is over, `None` is returned.
///
/// Because `peek_mut()` returns a reference, and many iterators iterate over
/// references, there can be a possibly confusing situation where the
/// return value is a double reference. You can see this effect in the examples
/// below.
///
/// [`next`]: Iterator::next
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let mut iter = [1, 2, 3].iter().peekable();
///
/// // Like with `peek()`, we can see into the future without advancing the iterator.
/// assert_eq!(iter.peek_mut(), Some(&mut &1));
/// assert_eq!(iter.peek_mut(), Some(&mut &1));
/// assert_eq!(iter.next(), Some(&1));
///
/// // Peek into the iterator and set the value behind the mutable reference.
/// if let Some(p) = iter.peek_mut() {
/// assert_eq!(*p, &2);
/// *p = &5;
/// }
///
/// // The value we put in reappears as the iterator continues.
/// assert_eq!(iter.collect::<Vec<_>>(), vec![&5, &3]);
/// ```
#[inline]
#[stable(feature = "peekable_peek_mut", since = "1.53.0")]
pub fn peek_mut(&mut self) -> Option<&mut I::Item> {
let iter = &mut self.iter;
self.peeked.get_or_insert_with(|| iter.next()).as_mut()
}
/// Consume and return the next value of this iterator if a condition is true.
///
/// If `func` returns `true` for the next value of this iterator, consume and return it.
/// Otherwise, return `None`.
///
/// # Examples
/// Consume a number if it's equal to 0.
/// ```
/// let mut iter = (0..5).peekable();
/// // The first item of the iterator is 0; consume it.
/// assert_eq!(iter.next_if(|&x| x == 0), Some(0));
/// // The next item returned is now 1, so `consume` will return `false`.
/// assert_eq!(iter.next_if(|&x| x == 0), None);
/// // `next_if` saves the value of the next item if it was not equal to `expected`.
/// assert_eq!(iter.next(), Some(1));
/// ```
///
/// Consume any number less than 10.
/// ```
/// let mut iter = (1..20).peekable();
/// // Consume all numbers less than 10
/// while iter.next_if(|&x| x < 10).is_some() {}
/// // The next value returned will be 10
/// assert_eq!(iter.next(), Some(10));
/// ```
#[stable(feature = "peekable_next_if", since = "1.51.0")]
pub fn next_if(&mut self, func: impl FnOnce(&I::Item) -> bool) -> Option<I::Item> {
match self.next() {
Some(matched) if func(&matched) => Some(matched),
other => {
// Since we called `self.next()`, we consumed `self.peeked`.
assert!(self.peeked.is_none());
self.peeked = Some(other);
None
}
}
}
/// Consume and return the next item if it is equal to `expected`.
///
/// # Example
/// Consume a number if it's equal to 0.
/// ```
/// let mut iter = (0..5).peekable();
/// // The first item of the iterator is 0; consume it.
/// assert_eq!(iter.next_if_eq(&0), Some(0));
/// // The next item returned is now 1, so `consume` will return `false`.
/// assert_eq!(iter.next_if_eq(&0), None);
/// // `next_if_eq` saves the value of the next item if it was not equal to `expected`.
/// assert_eq!(iter.next(), Some(1));
/// ```
#[stable(feature = "peekable_next_if", since = "1.51.0")]
pub fn next_if_eq<T>(&mut self, expected: &T) -> Option<I::Item>
where
T: ?Sized,
I::Item: PartialEq<T>,
{
self.next_if(|next| next == expected)
}
}
#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<I> TrustedLen for Peekable<I> where I: TrustedLen {}
#[unstable(issue = "none", feature = "inplace_iteration")]
unsafe impl<I: Iterator> SourceIter for Peekable<I>
where
I: SourceIter,
{
type Source = I::Source;
#[inline]
unsafe fn as_inner(&mut self) -> &mut I::Source {
// SAFETY: unsafe function forwarding to unsafe function with the same requirements
unsafe { SourceIter::as_inner(&mut self.iter) }
}
}